慢性阻塞性肺疾病并肌少症相关的研究进展
Research Progress of Chronic Obstructive Pulmonary Disease Associated with Sarcopenia
DOI: 10.12677/ACM.2023.1391979, PDF, HTML, XML, 下载: 154  浏览: 303 
作者: 杜丽萍:延安大学医学院,陕西 延安;李 莉*:榆林市第一医院呼吸及危重症科,陕西 榆林
关键词: 慢性阻塞性肺疾病肌少症流行病学发病机制筛查诊断Chronic Obstructive Pulmonary Disease Sarcopenia Epidemiology Pathogenesis Screening and Diagnosis
摘要: 慢性阻塞性肺疾病简称慢阻肺(COPD)是常见的慢性呼吸系统疾病之一,是一种复杂的、具有高度异质性的全身性疾病。肌少症是一种以骨骼肌质量下降和功能减退特点的退行性病变。慢性阻塞性肺疾病病人更易并发肌少症,能够加速慢阻肺疾病进程,增加致残率和死亡率。然而目前只能靠双能X线和BIA确诊,部分医院及社区不能普及,导致慢阻肺肌少症患者漏诊。因此,本文结合最新文献就慢性阻塞性肺疾病相关肌少症的流行病学、发病机制、筛查诊断予以综述。
Abstract: Chronic obstructive pulmonary disease (COPD) is one of the common chronic respiratory diseases. It is a complex systemic disease with high heterogeneity. Sarcopenia is a degenerative disease char-acterized by a decline in skeletal muscle mass and function. Patients with chronic obstructive pul-monary disease are more susceptible to sarcopenia, which can accelerate the disease process and increase disability and all-cause mortality. However, at present, the diagnosis can only be made by dual-energy X-ray and BIA, which can not be popularized in some hospitals and communities, re-sulting in missed diagnosis of COPD patients with sarcopenia. Therefore, the epidemiology, patho-genesis, screening and diagnosis of sarcopenia associated with chronic obstructive pulmonary dis-ease were reviewed in this paper.
文章引用:杜丽萍, 李莉. 慢性阻塞性肺疾病并肌少症相关的研究进展[J]. 临床医学进展, 2023, 13(9): 14158-14165. https://doi.org/10.12677/ACM.2023.1391979

1. 引言

慢性阻塞性肺疾病简称慢阻肺,是一种常见的、可以预防和治疗的疾病,其特征是持续存在的呼吸系统症状和气流受限,通常与显著暴露于有害颗粒或气体引起的气道和(或)肺泡异常有关。肺功能检查对确定气流受限有重要意义,在吸入支气管扩张剂后,第一秒用力呼气容积(FEV1)占用力肺活量(FVC)之比值(FEV1/FVC) < 70%表明存在持续气流受限 [1] 。肌肉减少症的当前定义是与年龄相关的骨骼肌数量或质量下降以及肌肉力量和(或)身体表现下降 [2] [3] 。是一种进行性和全身性骨骼肌疾病,涉及肌肉质量和功能的加速丧失,与不良结局增加有关,其特征是肌肉数量和质量的进行性丧失,导致跌倒,骨折,住院,发病率、死亡率的风险增加,并降低生活质量。它通常为老年人的年龄相关的疾病,不仅受危险因素的影响,还受到整个生命过程中的遗传和生活方式因素的影响 [4] 。COPD是全世界慢性病和死亡的主要原因,许多人过早死于这种疾病或其并发症。肌肉减少症是COPD的重要合并症,与COPD的严重程度和预后有关 [5] 。慢性阻塞性肺疾病(COPD)患者表现为老年相关性肌肉损失或肌肉减少症 [6] 。肌肉减少症在很大一部分COPD患者中普遍存在。Vitalii Poberezhets等人发现COPD恶化在骨骼肌功能障碍的进展中起重要作用。由于频繁的恶化,骨骼肌的耐力下降,小腿围减少,这表现为运动耐力降低。此外,由于COPD更频繁恶化的患者身体活动限制的增加,生活质量都有所下降 [7] 。COPD是唯一在前肌减少症和肌肉减少症患者中更普遍的临床危险因素 [8] 。COPD患者急性发作时会加剧肌肉障碍 [9] 。因此,对慢性阻塞性肺疾病患者合并肌少症进行筛查及诊断的相关分析,识别出COPD肌肉减少症高风险的老年人,在慢阻肺管理中显得尤为重要。

2. COPD合并肌少症的流行病学

慢阻肺肌少症患病率报道不太一致。2019年Benz等人一项荟萃分析报告,COPD患者中肌肉减少症的患病率高于非COPD患者,COPD患者中肌肉减少症的患病率范围为7.9%至66.7% [10] 。2020年荟萃分析报告称,COPD患者中肌肉减少症的总患病率为27.5%,而在更严重的COPD阶段,患病率会更高。COPD患者患肌肉减少症的风险增加,患病率估计为15%~55% [11] 。肌肉减少症患者COPD的患病率为4.4%~86.55% [12] 。

3. COPD合并肌少症的发病机制

3.1. 炎症

炎症是慢性阻塞性肺疾病的主要特征。通常,COPD患者的炎症反应不仅限于肺部,还伴有全身性慢性炎症。全身性慢性炎症反应可导致COPD患者的肌肉减少症。与没有肌肉损失的患者相比,肌肉损失的COPD患者的TNFα和IL-6水平显着增加,并与握力(HGS)骨骼肌质量指数(SMMI)负相关 [13] [14] 。各种研究表明,全身炎症引发的分解代谢、合成代谢失衡是导致骨骼肌萎缩和肌肉力量下降的主要因素。TNF-α是影响肌肉萎缩和恶病质的主要炎症因素。一方面,TNF-α激活NF-κB信号通路,该通路将NF-κB从细胞质转移到细胞核,促进肌细胞中泛素–蛋白酶体系统的活化,并增加肌原纤维蛋白降解 [15] [16] 。响应TNF-α,IkB激酶复合物磷酸化IkB,导致泛素化和蛋白酶体降解。这导致NF-κB的激活,NF-κB迅速进入细胞核以启动转录因子FOXO并上调MuRF1表达。另一方面,TNF-α也可以通过NF-κB途径抑制MyoD和其他肌肉分化生长因子的表达,导致骨骼肌分化的破坏 [16] 。此外,TNF-α通过引起肌肉细胞上的DNA破坏和(或)与TNF-α受体的相互作用来刺激细胞凋亡 [17] 。最后,研究表明TNF-α也可以直接抑制肌纤维,与蛋白质降解或合成的变化无关。人肿瘤坏死因子样凋亡弱诱导因子(tumor necrosis factor-like weak inducer of apoptosis, TWEAK)是一种可溶性细胞因子跨膜蛋白,表达于多种细胞类型,包括炎症细胞,如单核细胞、巨噬细胞、树突状细胞、T细胞、NK细胞等。通过TWEAK高诱导受体,如成纤维细胞生长因子诱导14 (fibroblast growth factor inducible molecule 14, Fn14),发挥多种功能,调控多种细胞反应,包括促炎活动、细胞生长、血管生成,甚至细胞凋亡。通过研究Fn14信号通路对人支气管上皮细胞的影响提示TWEAK可有助于气道炎症的发生 [18] 。逻辑回归分析显示高浓度的TWEAK使肌少症的风险增加14.3倍 [19] 。

3.2. 氧化应激

氧化应激是COPD发生发展的主要驱动机制之一。缺氧、慢性炎症、香烟烟雾、排泄物和呼吸频率增加都会导致肺部氧化应激增加。氧化应激是老年人这种疾病病因的主要参与者,具体而言,蛋白质羰基化被证明可以改变参与肌肉收缩性能的关键酶和结构蛋白的功能 [20] 。氧化应激相关因素的增加和呼吸肌力量的减少与COPD相关的肌肉减少症有关 [21] 。其机制包括一方面骨骼肌蛋白降解,线粒体活性氧(ROS)通过激活COPD患者中的NF-κB、P38丝裂原活化蛋白激酶(p38MAPK)和FOXO转录因子进一步激活下游泛素蛋白酶体系统 [22] 。自噬是真核细胞中溶酶体介导的蛋白质降解途径。在基础代谢或胁迫下,自噬的适应性激活可引起蛋白质降解并产生氨基酸进行循环利用,对骨骼肌质量的维持具有适应性保护作用。然而,在COPD患者中,自噬的异常增加导致肌肉蛋白质降解,导致肌肉萎缩 [23] 。主要通过激活AMPK,抑制Akt/mTORC1信号传导(诱导自噬的启动)和钙蛋白酶,半胱天冬酶-3和其他蛋白水解系统的激活来加速骨骼肌蛋白质降解,导致肌肉功能障碍 [24] 。另一方面是线粒体受损,线粒体呼吸链是细胞中ROS生成的主要部位,也是活性氧的主要靶标。线粒体DNA对氧化损伤高度敏感,诱导线粒体介导的肌肉细胞凋亡:ROS和RNS的过度增加诱导半胱天冬酶激活蛋白如细胞色素和细胞凋亡诱导因子的释放 [25] 。线粒体生物能量下降对肌肉衰老的影响是通过ATP合成、O2之间存在相关性来证明骨骼肌线粒体能量与老年人的最大有氧能力和行走速度有关 [26] 。ATP短缺对蛋白质合成的影响,将线粒体功能障碍与肌肉减少症联系起来。这反映在衰老过程中全身生物能量和肌肉蛋白质合成代谢也减少 [27] 。

3.3. 骨骼肌废用性萎缩

随着气流阻塞加重,COPD患者会出现过度充气和呼吸困难增加。这导致体力活动减少。骨骼肌废用可导致多种适应性变化,包括I型纤维和氧化酶容量降低、肌纤维萎缩和肌肉毛细血管减少。这些变化共同作用使肌肉耐力和力量降低。肌肉力量和耐力的丧失进一步限制了患者的活动能力,形成了恶性循环。一项比较研究发现,健康久坐受试者的股外侧肌中的I型纤维占41%,而健康活动受试者的股外侧肌中的I型纤维占60%~65%。这表明不同肌肉利用会导致I型纤维的比例减少三分之一 [28] 。废用性骨骼肌萎缩是由于蛋白水解加速和合成减少而发生的。COPD患者的体力活动减少可以诱导骨骼肌纤维中ROS的增加和IGF-1/Akt信号通路的减少来诱导FOXO和NF-κB的转录激活,从而激活蛋白水解系统。此外,PI3K/Akt/mTOR信号通路在肌肉不活动期间受到抑制,导致蛋白质合成减少、肌肉萎缩 [25] 。

3.4. 低氧血症

COPD 患者常因进行性气流阻塞和肺泡-毛细血管交换表面破坏而出现慢性低氧血症。慢性缺氧通过炎症反应、氧化应激、对肌源分化、蛋白质合成和分解代谢以及肌纤维型转化的影响导致骨骼肌功能受损。在慢性缺氧中,I型和IIa型纤维从氧化代谢转变为主要来自糖酵解的IIb型纤维被认为是身体对缺氧的适应。据报道,与非缺氧患者相比,COPD患者外周肌肉中I型纤维的比例显着降低 [29] 。

3.5. 药物–糖皮质激素

糖皮质激素(GC)诱导的肌肉萎缩是由蛋白质分解增加和蛋白质合成减少引起的。增加肌肉蛋白水解,特别是通过激活泛素蛋白酶体和溶酶体系统,在GC的分解代谢作用中起主要作用。GC对肌肉蛋白质合成的抑制作用主要是由于抑制mTOR/S6激酶1途径。肌肉蛋白质代谢的变化可以通过两种生长因子的肌肉产生变化来解释,即胰岛素样生长因子(IGF)-I (肌肉合成代谢生长因子)和肌肉生长抑制素(肌肉分解代谢生长因子) [30] 。糖皮质激素(GC)因其抗炎特性而常用于COPD急性加重,有时也用于终末期疾病的长期维持。GC诱导的肌肉萎缩的特征是纤维横截面积减小和肌原纤维蛋白含量降低。GC的长期影响通常会导致肌肉纤维收缩,快速肌肉和糖酵解肌肉(II型纤维)比氧化肌肉(I型纤维)更容易受到GC的影响 [29] [31] 。GC不仅抑制肌肉IGF-I的产生,而且还抑制EIF4E结合蛋白1 (4E-BP1)和核糖体蛋白S6激酶1 (S6K1)的IGF-I磷酸化,从而抑制蛋白质合成 [32] 。

3.6. 营养不良

COPD患者食欲下降,年龄和药物相关厌食,导致能量摄入不足和蛋白质分解增加,导致骨骼肌萎缩,运动耐量降低,生活质量下降。根据GLIM标准,近四分之一的COPD受试者营养不良 [33] 。因此,营养状况在肌肉减少症的发展中也起着重要作用。当营养物质缺乏时,AMPK感知低营养和能量状态,使mTORC1失活,并直接磷酸化ULK1,增强ULK1活性,促进ULK1-ATG13-FIP200复合物的形成,从而启动自噬体的形成。一些研究发现,禁食48小时可以显着改善FOXO的表达,并诱导泛素系统的表达,包括泛素连接酶(Atrogin1和MuRF1)和自噬相关基因 [34] 。从而激活蛋白质降解。

3.7. 其他

在慢性阻塞性肺病中,睾酮、维生素D缺乏和暴露于香烟烟雾也通过多种机制导致肌肉减少症。睾酮与呼吸参数呈正相关,例如睾酮通过阻止NRF1衍生的NF-κB信号传导来减轻COPD模型雄性大鼠的肺上皮炎症,并且可以通过激活卫星细胞来增加肌肉质量。因此,睾酮缺乏会促进肌肉减少症的发展。香烟烟雾暴露不仅导致肌纤维类型从缓慢到快速转化和整体肌肉纤维的减小,而且还会增强肺部氧化应激,抑制卫星细胞的活化并增强泛素蛋白酶体系统,导致肌肉减少症 [35] 。维生素D被认为在肌肉代谢中起着重要作用,当维生素D缺乏时,证实II型肌纤维萎缩 [36] 。

总之,肌肉萎缩的相关决定因素(包括废用性萎缩、低氧血症、营养不良、炎症和糖皮质激素)与COPD相关因素一致,使COPD患者肌少症患病率提高。这些因素对管理慢性阻塞性肺疾病患者在肌肉萎缩方面的研究取得了显著进展 [37] 。

4. COPD合并肌少症的粗筛、诊断

SARC-F是一个相对简单,易于访问的五项问卷,是目前四种现有肌肉减少症筛查工具中一种廉价且方便的肌肉减少症风险筛查方法。EWGSOP2还推荐将其作为社区卫生保健和其他临床环境中可能的肌肉减少症的筛查工具。凭借其低敏感性但高特异性,SARC-F最有可能发现严重病例而不是低风险患者 [38] [39] 。为了提高其灵敏度,Barbosa-Silva等人在SARC-F问卷中增加了小腿周长,从而产生了SARC-CalF筛查工具 [40] 。最近的一项比较研究发现,SARC-CalF是筛查社区居民老年人肌肉减少症的最佳选择。根据最近的文献,亚洲肌肉减少症工作组(AWGS) 2019建议在其筛查方案中使用SARC-CalF [41] 。AWGS 2019保留了先前对肌肉减少症的定义,但修改了诊断算法,协议和一些标准:低肌肉力量定义为男性的握力 < 28公斤,女性 < 18公斤,低身体性能的标准是6米步行 < 1.0米/秒,简易躯体功能量表得分 ≤ 9,或5次椅子站立测试 ≥ 12秒。AWGS 2019保留了调整后肌肉质量的原始截断值:双能X射线吸收测定法,<7.0 kg/m2 (男性)和 < 5.4公斤/米2 (女性);或生物阻抗,<7.0公斤/米2 (男性)和 < 5.7公斤/米2 (女性)。此外,AWGS 2019更新为社区和医院环境提出了预测方法,这两种方法都从筛查小腿周长(男性 < 34厘米,女性 < 33厘米),SARC-F (≥4)或SARC-CalF (≥11)开始,以促进早期识别有肌肉减少症风险的人。虽然骨骼肌力量和质量仍然被认为是明确临床诊断的基础,但AWGS 2019还引入了“可能的肌肉减少症”,其定义是低肌肉力量或低体能,专门用于初级卫生保健或基于社区的健康促进,以实现早期生活方式干预 [42] 。肌肉减少症(肌肉质量和功能丧失)意味着预后较差。然而,其诊断很复杂,不能在常规临床中进行。目前用于监测骨骼肌含量的方法多为双能 × 线吸收法(DXA)、生物电阻抗法(BIA)以及CT和MRI等影像学方法测量肌肉横截面积(CSA)估算法估算肌肉质量来确诊肌少症。这一系列方法都存在放射性、监测连贯性、经济实用性等问题。现已经提出了一种生物标志物作为骨骼肌质量的替代因子,即肌肉减少症指数([血清肌酐/胱抑素C] × 100),是估计肌肉质量的潜在客观指标,是无创的、便宜,与各种疾病的预后特征相关,包括稳定型慢性阻塞性肺病(COPD)患者 [43] 。Cr是骨骼肌中磷酸肌酸的代谢产物,能自由滤过肾小球,其血清浓度受身体骨骼肌含量影响。它是由所有的有核细胞分泌的小分子量非离子蛋白,也能经肾小球自由滤过,但是CysC血清浓度受骨骼肌肉量的影响显著低于Cr。因此,Cr/CysC即SI,排除了肾功能的影响,而与骨骼肌量的多少直接相关 [44] 。且Cr反映肌肉质量而CysC不反映,因此Cr/CysC比已被提议作为肌肉减少症的替代标志物。Cr/CysC比值与肌肉质量的相关性和慢性阻塞性肺病相关不良结局已经得到证明。平井等人证明Cr/CysC可作为COPD中肌肉减少症的替代标志物,并且具有严重急性COPD恶化的高风险 [45] 。血清Cr和CysC在临床实践中可以很容易地测定,与双能X射线吸收法、生物阻抗分析、CT等传统检测方法相比,Cr/CysC比值检测仅涉及血液采样,便于分析,患者不需要承担高昂的检测成本。外此,Cr/CysC比值结果直观且易于理解,更容易被接受。因此,临床医生使用Cr/CysC比值评估骨骼肌质量,根据AWGS 2019诊断标准确诊COPD肌少症在基层及无双能X射线吸收法、无生物阻抗分析、无CT等传统检测的医院中得以推广使用,从而降低慢阻肺肌少症患病率。

5. 小结

肌少肉减少症作为COPD病人的一种严重并发症,二者形成了一个恶性循环,加速了COPD的进展。因此,早期识别COPD患者的肌肉减少症,特别是COPD急性加重(AECOPD),在临床实践中至关重要。肌肉减少指数有望作为肌肉质量的替代指标,需要大量研究支持。

NOTES

*通讯作者。

参考文献

[1] Labaki, W.W. and Rosenberg, S.R. (2020) Chronic Obstructive Pulmonary Disease. Annals of Internal Medicine, 173, Itc17-Itc32.
https://doi.org/10.7326/AITC202008040
[2] Cruz-Jentoft, A.J. and Sayer, A.A. (2019) Sarcopenia. The Lancet, 393, 2636-2646.
https://doi.org/10.1016/S0140-6736(19)31138-9
[3] Sayer, A.A. and Cruz-Jentoft, A. (2022) Sarcopenia Defi-nition, Diagnosis and Treatment: Consensus Is Growing. Age and Ageing, 51, Article ID: Afac220.
https://doi.org/10.1093/ageing/afac220
[4] Tournadre, A., Vial, G., Capel, F., Soubrier, M. and Boirie, Y. (2019) Sarcopenia. Joint Bone Spine, 86, 309-314.
https://doi.org/10.1016/j.jbspin.2018.08.001
[5] Zhang, L. and Sun, Y. (2021) Muscle-Bone Crosstalk in Chronic Obstructive Pulmonary Disease. Frontiers in Endocrinology, 12, Article 724911.
https://doi.org/10.3389/fendo.2021.724911
[6] Bone, A.E., Hepgul, N., Kon, S. and Maddocks, M. (2017) Sar-copenia and Frailty in Chronic Respiratory Disease: Lessons from Gerontology. Chronic Respiratory Disease, 14, 85-99.
https://doi.org/10.1177/1479972316679664
[7] Poberezhets, V., Mostovoy, Y. and Demchuk, H. (2019) Exacer-bation of Chronic Obstructive Pulmonary Diseases as a Risk Factor of the Skeletal Muscle Dysfunction. Lung India, 36, 188-192.
[8] Trajanoska, K., Schoufour, J.D., Darweesh, S.K., Benz, E., Medina-Gomez, C., Alferink, L.J., Lahousse, L., Brusselle, G., Stricker, B., Darwish Murad, S., et al.. (2018) Sarcopenia and Its Clinical Correlates in the General Population: The Rotterdam Study. Journal of Bone and Mineral Research, 33, 1209-1218.
https://doi.org/10.1002/jbmr.3416
[9] Espíndola de Araújo, B., Teixeira, P.P., Valduga, K., da Silva Fink, J. and Silva, F.M. (2021) Prevalence, Associated Factors, and Prognostic Value of Sarcopenia in Patients with Acute Exacer-bated Chronic Obstructive Pulmonary Disease: A Cohort Study. Clinical Nutrition ESPEN, 42, 188-194.
https://doi.org/10.1016/j.clnesp.2021.01.042
[10] Benz, E., Trajanoska, K., Lahousse, L., Schoufour, J.D., Ter-zikhan, N., De, Roos, E., de, Jonge, G.B., Williams, R., Franco, O.H., Brusselle, G., et al. (2019) Sarcopenia in COPD: A Systematic Review and Meta-Analysis. European Respiratory Review, 28, Article ID: 190049.
https://doi.org/10.1183/16000617.0049-2019
[11] Sepúlveda-Loyola, W., Osadnik, C., Phu, S., Morita, A.A., Duque, G. and Probst, V.S. (2020) Diagnosis, Prevalence, and Clinical Impact of Sarcopenia in COPD: A Systematic Review and Meta-Analysis. Journal of Cachexia, Sarcopenia and Muscle, 11, 1164-1176.
https://doi.org/10.1002/jcsm.12600
[12] Tsekoura, M., Tsepis, E., Billis, E. and Gliatis, J. (2020) Sarcopenia in Pa-tients with Chronic Obstructive Pulmonary Disease: A Study of Prevalence and Associated Factors in Western Greek Population. Lung India, 37, 479-484.
https://doi.org/10.4103/lungindia.lungindia_143_20
[13] Byun, M.K., Cho, E.N., Chang, J., Ahn, C.M. and Kim, H.J. (2017) Sarcopenia Correlates with Systemic Inflammation in COPD. International Journal of Chronic Obstructive Pulmonary Disease, 12, 669-675.
https://doi.org/10.2147/COPD.S130790
[14] Can, B., Kara, O., Kizilarslanoglu, M.C., Arik, G., Aycicek, G.S., Sumer, F., Civelek, R., Demirtas, C. and Ulger, Z. (2017) Serum Markers of Inflammation and Oxidative Stress in Sar-copenia. Aging Clinical and Experimental Research, 29, 745-752.
https://doi.org/10.1007/s40520-016-0626-2
[15] Li, H., Malhotra, S. and Kumar, A. (2008) Nuclear Factor-Kappa B Signaling in Skeletal Muscle Atrophy. Journal of Molecular Medicine, 86, 1113-1126.
https://doi.org/10.1007/s00109-008-0373-8
[16] Reid, M.B. and Li, Y.P. (2001) Tumor Necrosis Factor-Alpha and Muscle Wasting: A Cellular Perspective. Respiratory Research, 2, 269-272.
[17] Kuwano, K. and Hara, N. (2000) Sig-nal Transduction Pathways of Apoptosis and Inflammation Induced by the Tumor Necrosis Factor Receptor Family. American Journal of Respiratory Cell and Molecular Biology, 22, 147-149.
https://doi.org/10.1165/ajrcmb.22.2.f178
[18] Anany, M.A., Kreckel, J., Füllsack, S., Rosenthal, A., Otto, C., Siegmund, D. and Wajant, H. (2018) Soluble TNF-Like Weak Inducer of Apoptosis (TWEAK) Enhances Poly(I:C)-Induced RIPK1-Mediated Necroptosis. Cell Death & Disease, 9, Article No. 1084.
https://doi.org/10.1038/s41419-018-1137-1
[19] Li, C.-W., Yu, K., Shyh-Chang, N., Li, G.-X., Jiang, L.-J., Yu, S.-L., Xu, L.-Y., Liu, R.-J., Guo, Z.-J., Xie, H.-Y., et al. (2019) Circulating Factors Associated with Sarcopenia During Ageing and After Intensive Lifestyle Intervention. Journal of Cachexia, Sarcopenia and Muscle, 10, 586-600.
https://doi.org/10.1002/jcsm.12417
[20] Barreiro, E. (2016) Role of Protein Carbonylation in Skeletal Muscle Mass Loss Associated with Chronic Conditions. Proteomes, 4, Article No. 18.
https://doi.org/10.3390/proteomes4020018
[21] Sepúlveda-Loyola, W., de Castro, L.A., Matsumoto, A.K., Camillo, C.A., Barbosa, D.S., Galvan, C.C.R. and Probst, V.S. (2021) NOVEL Antioxidant and Oxidant Biomarkers Related to Sarcopenia in COPD. Heart & Lung, 50, 184-191.
https://doi.org/10.1016/j.hrtlng.2020.06.001
[22] Powers, S.K., Duarte, J., Kavazis, A.N. and Talbert, E.E. (2010) Reactive Oxygen Species Are Signalling Molecules for Skeletal Mus-cle Adaptation. Experimental Physiology, 95, 1-9.
https://doi.org/10.1113/expphysiol.2009.050526
[23] Fan, J., Kou, X., Jia, S., Yang, X., Yang, Y. and Chen, N. (2016) Autophagy as a Potential Target for Sarcopenia. Journal of Cellular Physiology, 231, 1450-1459.
https://doi.org/10.1002/jcp.25260
[24] Powers, S.K., Morton, A.B., Ahn, B. and Smuder, A.J. (2016) Redox Control of Skeletal Muscle Atrophy. Free Radical Biology & Medicine, 98, 208-217.
https://doi.org/10.1016/j.freeradbiomed.2016.02.021
[25] Hyatt, H., Deminice, R., Yoshihara, T. and Powers, S.K. (2019) Mitochondrial Dysfunction Induces Muscle Atrophy during Prolonged Inactivity: A Review of the Causes and Effects. Archives of Biochemistry and Biophysics, 662, 49-60.
https://doi.org/10.1016/j.abb.2018.11.005
[26] Coen, P.M., Jubrias, S.A., Distefano, G., Amati, F., Mackey, D.C., Glynn, N.W., Manini, T.M., Wohlgemuth, S.E., Leeuwenburgh, C., Cummings, S.R., et al. (2013) Skeletal Muscle Mi-tochondrial Energetics Are Associated with Maximal Aerobic Capacity and Walking Speed in Older Adults. The Jour-nals of Gerontology: Series A, Biological Sciences and Medical Sciences, 68, 447-455.
https://doi.org/10.1093/gerona/gls196
[27] Short, K.R., Vittone, J.L., Bigelow, M.L., Proctor, D.N. and Nair, K.S. (2004) AGE and Aerobic Exercise Training Effects on Whole Body and Muscle Protein Metabolism. American Journal of physiology Endocrinology and Metabolism, 286, E92-E101.
https://doi.org/10.1152/ajpendo.00366.2003
[28] Evans, W.J. and Lexell, J. (1995) Human Aging, Muscle Mass, and Fiber Type Composition. The Journals of Gerontology: Series A, Biological Sciences and Medical Sciences, 50, 11-16.
https://doi.org/10.1093/gerona/50A.Special_Issue.11
[29] Kalyani, R.R., Corriere, M. and Ferrucci, L. (2014) Age-Related and Disease-Related Muscle Loss: The Effect of Diabetes, Obesity, and Other Diseases. The Lancet Diabe-tes & Endocrinology, 2, 819-829.
https://doi.org/10.1016/S2213-8587(14)70034-8
[30] Schakman, O., Kalista, S., Barbé, C., Loumaye, A. and Thissen, J.P. (2013) Glucocorticoid-Induced Skeletal Muscle Atrophy. The International Journal of Biochemistry & Cell Biology, 45, 2163-2172.
https://doi.org/10.1016/j.biocel.2013.05.036
[31] Bodine, S.C. and Furlow, J.D. (2015) Glucocorticoids and Skel-etal Muscle. In: Wang, J.-C. and Harris, C., Eds., Glucocorticoid Signaling. Advances in Experimental Medicine and Bi-ology, Vol. 872, Springer, New York, 145-176.
https://doi.org/10.1007/978-1-4939-2895-8_7
[32] Shah, O.J., Kimball, S.R. and Jefferson, L.S. (2000) Among Translational Effectors, p70s6K Is Uniquely Sensitive to Inhibition by Glucocorticoids. The Biochemical Journal, 347, 389-397.
https://doi.org/10.1042/bj3470389
[33] Kaluźniak-Szymanowska, A., Krzymińska-Siemaszko, R., Deskur-Śmielecka, E., Lewandowicz, M., Kaczmarek, B. and Wieczorowska-Tobis, K. (2021) Malnutrition, Sarcopenia, and Malnutrition-Sarcopenia Syndrome in Older Adults with COPD. Nutrients, 14, Article No. 44.
https://doi.org/10.3390/nu14010044
[34] Milan, G., Romanello, V., Pescatore, F., Armani, A., Paik, J.-H., Frasson, L., Seydel, A., Zhao, J., Abraham, R., Goldberg, A.L., et al. (2015) Regulation of Autophagy and the Ubiqui-tin-Proteasome System by the FoxO Transcriptional Network during Muscle Atrophy. Nature Communications, 6, Arti-cle No. 6670.
https://doi.org/10.1038/ncomms7670
[35] Wang, X., Huang, L., Jiang, S., Cheng, K., Wang, D., Luo, Q., Wu, X. and Zhu, L. (2021) Testosterone Attenuates Pulmonary Epithelial Inflammation in Male Rats of COPD Mod-el through Preventing NRF1-Derived Nf-κB Signaling. Journal of Molecular Cell Biology, 13, 128-140.
https://doi.org/10.1093/jmcb/mjaa079
[36] Boland, R. (1986) Role of Vitamin D in Skeletal Muscle Function. En-docrine Reviews, 7, 434-448.
https://doi.org/10.1210/edrv-7-4-434
[37] Langen, R.C.J., Gosker, H.R., Remels, A.H.V. and Schols, A.M.W.J. (2013) Triggers and Mechanisms of Skeletal Muscle Wasting in Chronic Obstructive Pulmonary Disease. The Interna-tional Journal of Biochemistry & Cell Biology, 45, 2245-2256.
https://doi.org/10.1016/j.biocel.2013.06.015
[38] Cruz-Jentoft, A.J., Bahat, G., Bauer, J., Boirie, Y., Bruyère, O., Cederholm, T., Cooper, C., Landi, F., Rolland, Y., Sayer, A.A., et al. (2019) Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age and Ageing, 48, 16-31.
https://doi.org/10.1093/ageing/afy169
[39] 梁丽, 刘双玉, 熊萍. 生物电阻抗法与简易五项问卷诊断社区老年人肌少症的一致性分析[J]. 广西医学, 2022, 44(3): 270-273+278.
[40] Barbosa-Silva, T.G., Menezes, A.M., Bielemann, R.M., Malmstrom, T.K. and Gonzalez, M.C. (2016) Enhancing SARC-F: Improving Sarcopenia Screening in the Clinical Practice. Journal of the American Medical Directors Association, 17, 1136-1141.
https://doi.org/10.1016/j.jamda.2016.08.004
[41] Warnken-Miralles, M.D., López-García, F., Zamora-Molina, L., Soler-Sempere, M.J., Padilla-Navas, I. and García-Pachón, E. (2021) Sarcopenia Index in Hospitalized Patients with Chronic Obstructive Pulmonary Disease Exacerbation. Medicina, 81, 323-328.
[42] Chen, L.-K., Woo, J., Assantachai, P., Auyeung, T.W., Chou, M.Y., Iijima, K., Jang, H.C., Kang, L., Kim, M., Kim, S., et al. (2020) Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. Journal of the American Medical Directors Association, 21, 300-307.
https://doi.org/10.1016/j.jamda.2019.12.012
[43] Kashani, K.B., Frazee, E.N., Kukrálová, L., Sarvottam, K., He-rasevich, V., Young, P.M., Kashyap, R. and Lieske, J.C. (2017) Evaluating Muscle Mass by Using Markers of Kidney Function: Development of the Sarcopenia Index. Critical Care Medicine, 45, e23-e29.
https://doi.org/10.1097/CCM.0000000000002013
[44] van Bakel, S.I.J., Gosker, H.R., Langen, R.C. and Schols, A. (2021) Towards Personalized Management of Sarcopenia in COPD. International Journal of Chronic Obstructive Pulmonary Disease, 16, 25-40.
https://doi.org/10.2147/COPD.S280540
[45] Hirai, K., Tanaka, A., Homma, T., Goto, Y., Akimoto, K., Uno, T., Yoshitaka, U., Miyata, Y., Inoue, H., Ohta, S., et al. (2021) Serum Creatinine/Cystatin C Ratio as a Surrogate Marker for Sarcopenia in Patients with Chronic Obstructive Pulmonary Disease. Clinical Nutrition, 40, 1274-1280.
https://doi.org/10.1016/j.clnu.2020.08.010