CTD-ILD的研究进展
Advances in CTD-ILD Research
摘要: 间质性肺病(ILDs)是一组主要影响肺实质、间质的异质性肺疾病,主要的异常特征是炎症细胞和间充质细胞的病理性积累。结缔组织疾病(CTD)是一种广泛的影响不同器官的系统性自身免疫性疾病。由于感染、药物毒性、淋巴细胞增生性疾病或肿瘤疾病,肺部可主要或继发地受到影响,与免疫功能正常的人群相比,这些疾病在CTD患者中更常见。间质性肺疾病(ILD)可发生于所有的结缔组织疾病(CTD),CTD-ILD是一种导致肺间质异常或肺纤维化的系统性自身免疫性疾病的集合,是导致患者病情加重和死亡的主要原因之一,其中类风湿性关节炎的ILD总患病率为11%,系统性硬化症为47%,特发性炎性肌炎为41%,原发性Sjogren综合征为17%,混合性结缔组织病为56%,系统性红斑狼疮为6%,通常间质性肺炎是类风湿性关节炎中最常见的ILD类型(总患病率为46%),而非特异性间质性肺炎是所有其他CTD亚型中最常见的ILD类型(总患病率范围为27%~76%)。CTD-ILD是近年来ILD领域进展很大的领域,越来越多该方面的研究被发表,本综述系统复习了2019年4月至2023年4月国外权威杂志中关于“CTD和CTD-ILD”方面的文献,总结了对CTD-ILD方面研究的进展。
Abstract: Interstitial lung diseases (ILDs) are a heterogeneous group of lung diseases that primarily affect the lung parenchyma and interstitium, with the main abnormalities characterized by pathological ac-cumulation of inflammatory and mesenchymal cells. Connective tissue diseases (CTDs) are a broad spectrum of systemic autoimmune diseases affecting different organs. The lungs can be affected primarily or secondarily due to infections, drug toxicity, lymphoproliferative disorders, or neo-plastic diseases, which are more common in patients with CTDs than in immunocompetent popula-tions. Interstitial lung disease (ILD) can occur in all connective tissue diseases (CTDs). CTD-ILD is a collection of systemic autoimmune disorders that result in interstitial abnormalities or pulmonary fibrosis, and is one of the leading causes of exacerbation and death in patients. The overall preva-lence of ILD is 11% in rheumatoid arthritis, 47% in systemic sclerosis, idiopathic inflammatory myositis 41%, primary Sjogren’s syndrome 17%, mixed connective tissue disease 56%, and sys-temic lupus erythematosus 6%. Usually, interstitial pneumonia is the most common type of ILD in rheumatoid arthritis (total prevalence 46%), and nonspecific interstitial pneumonia is the most common type of ILD among all other CTD subtypes (total prevalence range 27%~76%). CTD-ILD is an area of great progress in the field of ILD in recent years, and more and more studies in this area have been published. This review systematically reviewed the literature on “CTD and CTD-ILD” in overseas refereed journals from April 2019 to April 2023, and summarized the progress of research on CTD-ILD. The review summarizes the progress of research on CTD-ILD.
文章引用:武玲玲, 刘洪千. CTD-ILD的研究进展[J]. 临床医学进展, 2023, 13(9): 13980-139880. https://doi.org/10.12677/ACM.2023.1391955

1. CTD-ILD的诊断方法

1.1. CTD-ILD的临床诊断

间质性肺疾病(ILD)可发生于所有的结缔组织疾病(CTD),由于感染、药物毒性、淋巴细胞增生性疾病或肿瘤疾病,肺部可主要或继发地受到影响 [1] 。CTD-ILD是一种导致肺间质异常或肺纤维化的系统性自身免疫性疾病的集合 [2] ,其中类风湿性关节炎的ILD总患病率为11%,系统性硬化症为47%,特发性炎性肌炎为41%,原发性Sjogren综合征为17%,混合性结缔组织病为56%,系统性红斑狼疮为6%,通常间质性肺炎是类风湿性关节炎中最常见的ILD类型(总患病率为46%),而非特异性间质性肺炎是所有其他CTD亚型中最常见的ILD类型(总患病率范围为27%~76%) [3] 。当其出现时,发病率和死亡率会随之增高 [4] 。此时,尽早诊断就显得极为重要。参考特定CTD的国际共识分类标准(如见表1) [5] ,会对早期诊断有指导意义。在大多数CTD-ILD病例中,潜在的CTD是在诊断时确定的。然而,ILD可能是潜在CTD的唯一表现 [1] 。例如,在高达10%的类风湿性关节炎(RA)患者中,ILD是主要的疾病表现,而在临床淀粉样皮肌炎(CADM)、抗合成酶综合征和系统性硬化症(SSc)硬皮病中,ILD可能作为CTD的唯一表现持续存在 [6] 。因此,在所有ILD患者中,根据病史和临床检查评估CTD的细微和非典型特征至关重要。表1列出了与主要CTD相关的临床体征和症状。在实践中,应运用合理的筛查方法,包括询问是否存在炎症性关节疼痛或僵硬、雷诺氏现象(特别是最近发作的)、皮疹、干燥症状(眼睛和/或口干)或骨骼肌症状(如近端无力和肌痛),同时检查滑膜炎、皮肤体征和近端肌肉力量。如果症状或体征难以解释,或正在考虑要进行进一步的调查,可以进行风湿病学检查。

Table 1. Major CTD-related clinical signs and symptoms

表1. 主要CTD相关的临床体征和症状

AIP,急性间质性肺炎;CTD,结缔组织疾病;DAD弥漫性肺泡损伤;FB,滤泡性细支气管炎;GI,胃肠;IIM,特发性炎症性肌病;LIP,淋巴细胞性间质性肺炎;MALT,黏液相关淋巴组织;MCTD,混合型结缔组织疾病;NSIP,非特异性间质性肺炎;OP,机化性肺炎;PAH,肺动脉高压;RA,类风湿性关节炎;SjS,干燥综合征;SLE,系统性红斑狼疮;SSc,系统性硬化症;UIP,普通间质性肺炎。

1.2. 血清学和影像学

诊断疑似CTD不可或缺的一步是检测自身抗体,并且与临床评估密切相关。某些自身抗体谱是特定CTD的特征表现或强烈提示(如表2) [5] ,可以结合临床表现评估其他器官受累情况,并有助于确定预后和治疗效果。例如类风湿因子和抗瓜氨酸肽抗体是类风湿性关节炎(RA)的特异性血清学标记物,RA-ILD患者的血清阳性一定程度上反映了病情的变化,可根据其来评估该类患者对药物的敏感程度以及改善病人的预后 [7] 。在此基础上,近来有研究表明,血清阳性非CTD-ILD患者的FVC下降率和无移植生存率与血清阴性非CTD-ILD相似,与血清阴性的非CTD-ILD相比,RA-ILD的FVC下降速度较慢,PF-ILD较少,肺移植或死亡的可能性较低,这就表明了非CTD-ILD的血清阳性与改善预后或治疗反应无关,为鉴别CTD-ILD与非CTD-ILD提供了重要的价值 [7] 。特定的血清学标记物也可以提示疾病的发生和发展状态,评估病人的预后,近来有专家表明血清钙蛋白酶活性和HMGB1水平可能是SSc-ILD的独立危险因素和SSc患者的新生物标志物 [8] ,这就为SSc患者将来可能合并ILD提供了有价值的预防标志。而血清HE4和Krebsvonlengen-6 (KL-6)水平在UIP-CTD患者中的血清和肺标本中表达明显升高 [9] ,可作为评估UIP-CTD患者疾病严重程度和预测预后的生物标志物 [10] 。

Table 2. Most common autoantibody associations in major CTDs

表2. 主要CTD中最常见的自身抗体关联

Ab,抗体;ANA,抗核抗体;CCP,环瓜氨酸肽;CTD,结缔组织疾病;dsDNA,双链DNA;ENA,可提取核抗原;ILD间质性肺疾病;IMNM,免疫介导的坏死性肌炎;NXP,核基质蛋白;PAH,肺动脉高压;PM,多发性肌炎;RA,类风湿性关节炎;RA-ILD,类风湿性关节炎相关的间质性肺疾病;RF,类风湿性关节炎因子;RNP,核糖核蛋白;SAE严重不良事件。

高分辨率计算机断层扫描(HRCT)是目前评估疑似CTD-ILD是否有病变的最有价值的影像学检查,几乎可以出现所有CTD-ILD的影像学表现,其中非特异性间质性肺炎(NSIP)是最常见的 [11] 。HRCT在前期诊断方面的作用确实不容置疑,但对于疾病的严重程度、疾病对药物的反应及预后方面有一定的局限。近来有专家研究通过血清学联合影像学来评估患者的严重程度,并得出了可观的成果:等人的研究证明血清B细胞活化因子(BAFF)和KL-6水平和肺超声(LUS) B线系数量与CTD-ILD的严重程度和表型低至中度相关 [12] ,其中有关肺超声的最新研究发现,不同肺肋间隙(LIS)有不同的肺超声(LUS)评分系统,通过在短时间内扫描14个LIS,可以具有非常高的灵敏度和特异性 [13] 。这项研究表明了,在未来的CTD-ILD治疗中,血清学、影像学和超声生物标志物结合可能会发挥不可估量的作用。正如Hoffmann等人的研究,证明了DLCO联合胸部X线是发现风湿病患者早期肺部表现的潜在筛查工具,在DLCO结合胸部X线的高敏感性的基础上,所有DLCO降低(<80%)或/和可疑胸部X线表现的患者都应进行肺部HRCT检查,以检测肺部炎症活动并排除其他肺部鉴别诊断。除此之外,胸部CT也是诊断及评价ILD的重要手段,具有胸部CT上典型的蜂窝状影像学表现的ILD亚型的死亡率更高 [11] 。Jiang等人最近的研究发现,胸部计算机断层扫描(CT)的放射组学方法可以评估CTD-ILD患者的疾病严重程度,放射组学特征的列线图模型在预测CTD-ILD患者的性别–年龄–生理学(GAP)分期上具有更好的性能 [14] 。

正电子发射断层扫描(PET)和单光子发射计算机断层扫描(SPECT)两者都是非侵入性诊断工具,用于评估个体患者的分子特征,具有应用个性化治疗的潜力,目前也已经成为了改善ILD管理的有前途的分子成像技术 [15] 。

1.3. 支气管镜检查和灌洗

支气管肺泡灌洗液(BAL)支气管镜检查可能适用于不明原因放射性肺浸润的CTD-ILD患者。对BAL细胞组成和微生物培养物的分析有助于区分可能的鉴别诊断,包括感染、出血和药物诱导的嗜酸性粒细胞浸润 [16] 。使用ELISA法检测支气管肺泡灌洗液中转化生长因子β (TGF-β1)、表面活性剂蛋白A、蛋白D (SP-A、SP-D)、白细胞介素8 (IL-8)、趋化因子1 (CXCL1)的浓度,发现IL-8和TGF-β1浓度在CTD-ILD患者中明显升高 [17] 。

Hata等人近来研究利用细胞计数技术对IPF、CTD-ILD和结节病患者支气管肺泡灌洗液(BALF)细胞中的巨噬细胞、B细胞和T细胞进行表型分析。通过采用无偏和人工分类的方法,对每种疾病中过表达的骨髓细胞、B细胞和T细胞亚群进行了功能表征,从而鉴定出可能影响疾病进展的细胞。并且证明了CTD-ILDs和IPF AEx患者中FCRL5+ B细胞增加,CTD-ILDs患者中PD1+ TIGIT+ CD57+ CD8+ T细胞水平升高 [16] 。

Mucin 5AC (MUC5AC)和Mucin 5B (MUC5B)是气道粘蛋白的主要成分。MUC5AC和MUC5B启动子区及相关支气管肺泡灌洗液中MUC5AC和MUC5B的表达水平与结缔组织病相关间质性肺疾病(CTD-ILD)有关。近来有研究表明,MUC5AC与ILD的发生发展相关,其水平对CTD-ILD具有明确的诊断价值,并可作为其严重程度的指标,是预测ILD进展的潜在生物标志物,在将来可能作为CTD-ILD患者早期发现和治疗的生物标志物靶点 [18] 。而MUC5B则与ILD的诊断和严重程度相关 [18] 。

1.4. 甲襞视频毛细管镜检查(Nailfold Videocapillaroscopy)

甲襞视频毛细血管镜(NVC)是一种方便、无创的图像技术,可以直接检查微血管形态。该检查主要用于有雷诺现象的患者,或临床怀疑为系统性硬化症(SSc)的患者,以确认是否存在SSc典型的血管病变。微血管受损伤可能与其他CTDs也有一定的关系,如皮肌炎和抗氨基乙酸tRNA合成酶综合征(ARS)。所以风湿病学家越来越多地使用NVC来评估有细微或重叠CTD特征的患者。NVC异常被认为是潜在CTD的高度指示,所以越来越多地用于分辨ILD患者的特征和临床怀疑潜在的CTD。除了应用IPAF标准外,IPAF定义变量的分布以及NVC检查有助于确定更多同质的自身免疫性IP表型亚群,以及这些亚群与临床诊断之外的潜在相关性 [19] 。

1.5. 肺球模型(Pulmosphere Model)

肺球是多细胞型多细胞三维结构,具有侵入性,再现了患者体内环境。通过支气管活检产生肺球的能力,这是传统外科肺活检的一种侵入性更小的替代方法,是一种实用的“精准治疗”方法。肺球由从肺组织中获得的多种类型细胞组成,其中大部分由成纤维细胞组成。三维肺气球模型显示了对每个个体的侵袭性,在一项国外权威研究中表明,与对照组相比,ILD肺球的侵袭性更大。这一特性可用于测试对抗纤维化药物等药物的反应 [20] 。3D肺球模型在重新利用抗侵袭/增殖药物和测试新型抗纤维化药物分子治疗ILD方面有着非常重要且前途无量的用途。它还可以帮助进一步了解ILDs的病理生物学,可以作为开发ILDs和其他慢性肺部疾病的个性化治疗方法和药物开发的平台 [20] 。

2. CTD-ILD的治疗方法

免疫抑制是CTD-ILD药物治疗的主要方法,旨在减少炎症,最大限度地减少已建立的纤维化进展和肺功能的永久性丧失。一般的作用机制是干扰炎症级联的关键途径,包括B细胞和T细胞功能,并抑制促炎细胞因子,在开始免疫抑制治疗之前,建议筛查活性/潜伏微生物和器官功能障碍,因为新感染或再激活感染(例如结核病和肝炎)会使副作用的风险大大增加。免疫抑制治疗的强度应根据个体CTD、ILD表现的敏锐度、治疗预期和患者因素而定。例如,IIM和系统性红斑狼疮(SLE)中所见的快速进展性ILD通常表现为OP或弥漫性肺泡损伤(DAD)的放射学模式,表现主要是炎症过程 [21] 。在这种情况下,可能需要使用脉冲静脉注射(IV)甲基强的松龙、IV环磷酰胺或利妥昔单抗进行强化免疫抑制,以期逆转炎症并将永久性肺损伤降到最低。相比之下,SSc-ILD可能进展更慢,其治疗目标主要是低剂量维持治疗以达到稳定而不是改善。

利妥昔单抗(Rituximab, RTX)是一种抗cd20b淋巴细胞消耗单抗,是治疗CTD-ILD的有效选择,具有令人满意的安全性,被认为是难治性CTD-ILD患者的一种安全的替代治疗方法。有研究通过随机试验来评估利妥昔单抗与其他药物治疗CTD-ILD的疗效,根据基于PFT的改善和稳定率评估,RTX被发现是治疗CTD-ILD的有效选择,即使在那些对其他常规治疗无效的患者中也是如此。RTX在不同的CTD-ILD患者中的治疗效果也不同。Xu, L., F. Wang研究表明,IIM-CTD (非ass)或ASS-ILD患者对利妥昔单抗的反应优于其他CTD-ILD患者 [22] 。在副作用方面,大多数患者对RTX的耐受性良好。同时,有另一项研究表明,利妥昔单抗和环磷酰胺均可改善CTD-ILD患者的FVC和生活质量。与环磷酰胺相比,利妥昔单抗治疗可以有更少的不良事件和皮质类固醇暴露 [23] 。对于需要静脉治疗的CTD-ILD患者,利妥昔单抗应被视为环磷酰胺的替代治疗方案,因此,利妥昔单抗应被视为严重或快速进展的CTD-ILD患者的治疗选择 [24] 。

有专家指出可用吡非尼酮联合免疫抑制剂治疗CTD-ILD,但疗效在各亚型之间存在差异,SSc和IIM患者FVC%明显改善,尤其是SSc-uip和IIM-非uip患者。在RA中,非uip和较低基线DLCo%的患者亚群从PFD中获益最多 [25] 。这就证明了,吡非尼酮联合免疫抑制剂治疗是SSc、IIM和RA患者的合适选择 [25] 。另有病例报告显示环孢素A和吡非尼酮成功治疗难治性间质性肺疾病的儿童SLE,吡非尼酮可能是对难治性CTD-ILD儿童患者免疫抑制剂的有效补充治疗 [26] 。然而,需要进一步的临床试验包括更多的患者来评估这种联合治疗难治性CTD-ILD的有效性和安全性。

雷公藤红素是一种有效的蛋白酶体抑制剂,有很好的抗肿瘤、抑制免疫反应、抗炎作用 [27] [28] 。有研究表明,雷公藤红素用于治疗CTD-ILD的潜在分子生物学机制可能与抑制PI3K/Akt、细胞凋亡、TNF-α信号通路有关 [29] 。雷公藤红素联合常规治疗更有利于患者症状改善、肺功能改善和实验室指标改善,但是该结论仍然需要更多的研究来证实。

中药联合CTX可能是临床治疗CTD-ILD更有效的策略。对于CTD-ILD患者,与单独CTX相比,中西医结合CTX可提高临床有效率,改善肺功能和HRCT积分,降低ESR水平,ae发生率未增加。中药理论上可以缓解呼吸道症状,减轻炎症,改善肺功能,对CTD-ILD有显著的治疗效果 [27] 。未来我们还需要更大规模、更多多中心的随机对照试验来客观、全面地评价中西医结合治疗CTD-ILD患者的有效性和安全性。

巴利西替尼是RA的常见治疗选择,其机制被发现是通过JAK/STAT信号通路减弱了肺泡上皮细胞的上皮–间充质转化 [30] ,这一发现可能对临床实践具有重要意义,其是否可以用于对CTD-ILD的治疗及其疗效需要大量的研究来发掘与证实。

CTD肺移植

结缔组织病相关间质性肺病(CTD-ILD)和特发性肺纤维化(IPF)肺移植后的长期结果相似 [31] 。然而,与IPF患者相比,CTD-ILD患者是否存在原发性移植物功能障碍(PGD)、拔管延迟或移植后指数住院时间更长的风险尚不清楚 [32] 。研究表明,对于符合肺移植转诊和清单标准的CTD患者,应尽早转诊至LTx中心,术前应改善和优化与生存相关的危险因素。随着全球LTx的增加,CTD患者的LTx有望在未来增加 [33] 。由于CTD的异质性,有必要进行更多的数据收集,通过对CTD亚组中每种疾病的前瞻性和多中心研究,对OA文章进行比较和分析,确定与亚组生存率相关的预后和危险因素,有助于选择更合适CTD [33] 。

3. CTD-ILD的预后

血清学、影像学及BAL相关检查都可以预测CTD-ILD的疾病进展,也存在很多反映预后的重要标志,除上述之外,有最新研究表明,维生素D缺乏与CTD-ILD和肺功能降低有关,CTD-ILD患者维生素D水平较低在治疗后肺功能改善的CTD-ILD患者中,维生素D水平升高与ΔFVC (%)、ΔFEV1 (%)和ΔDLCO-SB (%)呈正相关。维生素D是一个独立的预后因素,危险比为0.869 (95% CI 0.772~0.977, P = 0.019)。提示治疗期间维生素D水平的变化可能预测疾病进展。持续的维生素D水平可能是预后的一个重要的血清生物标志物 [34] 。

年龄较大、吸烟、纤维化程度增加和低基线DLCO与预后不良相关,而定期肺功能评估与更好的生存率相关,INBUILD、ATS/ERS/JRS/ALAT 2022和简化的PF标准显示了类似的预测 [35] [36] 。

致 谢

感谢我的指导老师刘老师对我的教导,感谢我的家人和朋友在此期间对我的包容、关爱和鼓励!

NOTES

*通讯作者。

参考文献

[1] Spagnolo, P., Distler, O., Ryerson, C.J., Tzouvelekis, A., Lee, J.S., Bonella, F., Bouros, D., Hoffmann-Vold, A.M., Crestani, B. and Matteson, E.L. (2021) Mechanisms of Progressive Fibrosis in Connective Tissue Disease (CTD)-Associated Interstitial Lung Diseases (ILDs). Annals of the Rheumatic Diseases, 80, 143-150.
https://doi.org/10.1136/annrheumdis-2020-217230
[2] Cerro Chiang, G. and Parimon, T. (2023) Understanding Interstitial Lung Diseases Associated with Connective Tissue Disease (CTD-ILD): Genetics, Cellular Pathophysiology, and Biologic Drivers. International Journal of Molecular Sciences, 24, Article 2405.
https://doi.org/10.3390/ijms24032405
[3] Joy, G.M., Arbiv, O.A., Wong, C.K., Lok, S.D., Adderley, N.A., Dobosz, K.M., Johannson, K.A. and Ryerson, C.J. (2023) Prevalence, Imaging Patterns and Risk Factors of Interstitial Lung Disease in Connective Tissue Disease: A Systematic Review and Meta-Analysis. European Respiratory Review, 32, Article ID: 220210.
https://doi.org/10.1183/16000617.0210-2022
[4] Jee, A.S. and Corte, T.J. (2019) Current and Emerging Drug Therapies for Connective Tissue Disease-Interstitial Lung Disease (CTD-ILD). Drugs, 79, 1511-1528.
https://doi.org/10.1007/s40265-019-01178-x
[5] Jee, A.S., Sheehy, R., Hopkins, P., Corte, T.J., Grainge, C., Troy, L.K., Symons, K., Spencer, L.M., Reynolds, P.N., Chapman, S., de Boer, S., Reddy, T., Holland, A.E., Chambers, D.C., Glaspole, I.N., Jo, H.E., Bleasel, J.F., Wrobel, J.P., Dowman, L., Parker, M.J.S., Wilsher, M.L., Goh, N.S.L., Moodley, Y. and Keir, G.J. (2021) Diagnosis and Management of Connective Tissue Disease-Associated Interstitial Lung Disease in Australia and New Zealand: A Position Statement from the Thoracic Society of Australia and New Zea-land. Respirology, 26, 23-51.
https://doi.org/10.1111/resp.13977
[6] Oldham, J.M., Lee, C.T., Wu, Z., Bowman, W.S., Pugashetti, J.V., Dao, N., Tonkin, J., Seede, H., Echt, G., Adegunsoye, A., Chua, F., Maher, T.M., Garcia, C.K., Strek, M.E., Newton, C.A. and Molyneaux, P.L. (2022) Lung Function Trajectory in Progressive Fibrosing Interstitial Lung Disease. European Respiratory Journal, 59, Article ID: 2101396.
https://doi.org/10.1183/13993003.01396-2021
[7] Zheng, B., Donohoe, K., Hambly, N., Johannson, K.A., As-sayag, D., Fisher, J.H., Manganas, H., Marcoux, V., Khalil, N., Kolb, M. and Ryerson, C.J. (2022) Clinical Relevance of Rheumatoid Factor and Anti-Citrullinated Peptides in Fibrotic Interstitial Lung Disease. Respirology, 27, 854-862.
https://doi.org/10.1111/resp.14301
[8] Zheng, J.N., Li, Y., Yan, Y.M., Yu, Y., Shao, W.Q. and Wang, Q. (2020) Increased Serum Calpain Activity Is Associated with HMGB1 Levels in Systemic Sclerosis. Arthritis Research & Ther-apy, 22, Article No. 110.
https://doi.org/10.1186/s13075-020-02195-y
[9] Lee, J.S., Lee, E.Y., Ha, Y.J., Kang, E.H., Lee, Y.J. and Song, Y.W. (2019) Serum KL-6 Levels Reflect the Severity of Interstitial Lung Disease Associated with Connective Tissue Disease. Arthritis Research & Therapy, 21, Article No. 58.
https://doi.org/10.1186/s13075-019-1835-9
[10] Meng, K., Tian, M., Gui, X., Xie, M., Gao, Y., Shi, S., Zhao, T., Xiao, Y., Cai, H. and Ding, J. (2022) Human Epididymis Protein 4 Is Associated with Severity and Poor Prognosis of Connective Tissue Disease-Associated Interstitial Lung Disease with Usual Interstitial Pneumonia Pattern. International Immunopharmacology, 108, Article ID: 108704.
https://doi.org/10.1016/j.intimp.2022.108704
[11] Hoffmann, T., Oelzner, P., Franz, M., Teichgräber, U., Renz, D., Förster, M., Böttcher, J., Kroegel, C., Schulze, P.C., Wolf, G. and Pfeil, A. (2022) Assessing the Diagnostic Value of a Potential Screening Tool for Detecting Early Interstitial Lung Disease at the Onset of Inflammatory Rheumatic Diseases. Arthritis Research & Therapy, 24, Article No. 107.
https://doi.org/10.1186/s13075-022-02786-x
[12] Wang, Y., Xie, X., Zheng, S., Du, G., Chen, S., Zhang, W., Zhuang, J., Lin, J., Hu, S., Zheng, K., Mikish, A., Xu, Z., Zhang, G., Gargani, L., Bruni, C., Hoffmann-Vold, A.M., Matucci-Cerinic, M. and Furst, D.E. (2022) Serum B-Cell Activating Factor and Lung Ultrasound B-Lines in Connective Tissue Disease Related Interstitial Lung Disease. Frontiers in Medi-cine, 9, Article 1066111.
https://doi.org/10.3389/fmed.2022.1066111
[13] Xie, H.Q., Zhang, W.W., Sun, S., Chen, X.M., Yuan, S.F., Gong, Z.H. and Liu, L. (2019) A Simplified Lung Ultrasound for the Diagnosis of Interstitial Lung Disease in Connective Tissue Disease: A Meta-Analysis. Arthritis Research & Therapy, 21, Article No. 93.
https://doi.org/10.1186/s13075-019-1888-9
[14] Jiang, X., Su, N., Quan, S., E, L. and Li, R. (2023) Computed Tomography Radiomics-Based Prediction Model for Gender-Age-Physiology Staging of Connective Tissue Dis-ease-Associated Interstitial Lung Disease. Academic Radiology.
https://doi.org/10.1016/j.acra.2023.01.038
[15] Broens, B., Duitman, J.W., Zwezerijnen, G.J.C., Nossent, E.J., van der Laken, C.J. and Voskuyl, A.E. (2022) Novel Tracers for Molecular Imaging of Interstitial Lung Disease: A State of the Art Review. Autoimmunity Reviews, 21, Article ID: 103202.
https://doi.org/10.1016/j.autrev.2022.103202
[16] Hata, K., Yanagihara, T., Matsubara, K., Kunimura, K., Suzuki, K., Tsubouchi, K., Eto, D., Ando, H., Uehara, M., Ikegame, S., Baba, Y., Fukui, Y. and Okamoto, I. (2023) Mass Cy-tometry Identifies Characteristic Immune Cell Subsets in Bronchoalveolar Lavage Fluid from Interstitial Lung Diseases. Frontiers in Immunology, 14, Article 1145814.
https://doi.org/10.3389/fimmu.2023.1145814
[17] Rzepka-Wrona, P., Skoczyński, S. and Barczyk, A. (2022) Are There Differences in Inflammatory and Fibrotic Pathways between IPAF, CTD-ILDs, and IIPs? A Single-Center Pilot Study. International Journal of Molecular Sciences, 23, Article 15205.
https://doi.org/10.3390/ijms232315205
[18] Weng, L., Liu, W., Wang, L., Wu, Z., Liu, D., Lin, Y., Song, S., Yu, C., Chen, Y., Chen, J. and Ge, S. (2022) Serum MUC5AC Protein Levels Are Correlated with the Development and Se-verity of Connective Tissue Disease-Associated Pulmonary Interstitial Lesions. Frontiers in Immunology, 13, Article 987723.
https://doi.org/10.3389/fimmu.2022.987723
[19] Romero-Bueno, F.I., Rodríguez-Nieto, M.J., Palacios Miras, C., Martínez Estupiñán, L., Martínez-Becerra, M.J., Vegas Sánchez, M.C., Cedeño Díaz, O.M. and Sánchez-Pernaute, O. (2023) Fine-Tuning Characterization of Patients with Interstitial Pneumonia and an Underlying Autoimmune Disease in Real-World Practice: We Get Closer with Nailfold Videocapillaroscopy. Frontiers in Medicine, 10, Article 1057643.
https://doi.org/10.3389/fmed.2023.1057643
[20] Dsouza, K.G., Surolia, R., Kulkarni, T., Li, F.J., Singh, P., Zeng, H., Stephens, C., Kumar, A., Wang, Z. and Antony, V.B. (2023) Use of a Pulmosphere Model to Evaluate Drug Antifi-brotic Responses in Interstitial Lung Diseases. Respiratory Research, 24, Article No. 96.
https://doi.org/10.1186/s12931-023-02404-7
[21] Graham, J., Bauer Ventura, I., Newton, C.A., Lee, C., Boctor, N., Pugashetti, J.V., Cutting, C., Joerns, E., Sandhu, H., Chung, J.H., Garcia, C.K., Kadoch, M., Noth, I., Adegunsoye, A., Strek, M.E. and Oldham, J.M. (2020) Myositis-Specific Antibodies Identify A Distinct Interstitial Pneumonia with Au-toimmune Features Phenotype. European Respiratory Journal, 56, Article ID: 2001205.
https://doi.org/10.1183/13993003.01205-2020
[22] Xu, L., Wang, F. and Luo, F. (2022) Rituximab for the Treat-ment of Connective Tissue Disease-Associated Interstitial Lung Disease: A Systematic Review and Meta-Analysis. Frontiers in Pharmacology, 13, Article 1019915.
https://doi.org/10.3389/fphar.2022.1019915
[23] Maher, T.M., Tudor, V.A., Saunders, P., Gibbons, M.A., Fletch-er, S.V., Denton, C.P., Hoyles, R.K., Parfrey, H., Renzoni, E.A., Kokosi, M., Wells, A.U., Ashby, D., Szigeti, M. and Molyneaux, P.L. (2023) Rituximab versus Intravenous Cyclophosphamide in Patients with Connective Tissue Dis-ease-Associated Interstitial Lung Disease in the UK (RECITAL): A Double-Blind, Double-Dummy, Randomised, Con-trolled, Phase 2b Trial. The Lancet Respiratory Medicine, 11, 45-54.
[24] Liossis, S.C. and Bounia C.A., (2022) Treat-ing Autoimmune-Related Interstitial Lung Disease with B Cell Depletion. Frontiers in Medicine, 9, Article 937561.
https://doi.org/10.3389/fmed.2022.937561
[25] Wang, J., Wang, X., Qi, X., Sun, Z., Zhang, T., Cui, Y. and Shu, Q. (2022) The Efficacy and Safety of Pirfenidone Combined with Immunosuppressant Therapy in Connective Tissue Disease-Associated Interstitial Lung Disease: A 24-Week Prospective Controlled Cohort Study. Frontiers in Medicine, 9, Article 871861.
https://doi.org/10.3389/fmed.2022.871861
[26] Deng, L., Chen, Y., Hu, X., Zhou, J. and Zhang, Y. (2021) Case Report: Successful Treatment of Refractory Interstitial Lung Disease with Cyclosporine A and Pirfenidone in a Child with SLE. Frontiers in Immunology, 12, Article 708463.
https://doi.org/10.3389/fimmu.2021.708463
[27] Yin, X., Zhao, S., Xiang, N., Chen, J., Xu, J. and Zhang, Y. (2023) Efficacy and Safety of Chinese Herbal Medicines Combined with Cyclophosphamide for Connective Tissue Dis-ease-Associated Interstitial Lung Disease: A Meta-Analysis of Randomized Controlled Trials. Frontiers in Pharmacolo-gy, 14, Article 1064578.
https://doi.org/10.3389/fphar.2023.1064578
[28] Li, Y., Zhu, W., He, H., Garov, Y.A., Bai, L., Zhang, L., Wang, J., Wang, J. and Zhou, X. (2021) Efficacy and Safety of Tripterygium Wilfordii Hook. F for Connective Tissue Dis-ease-Associated Interstitial Lung Disease: A Systematic Review and Meta-Analysis. Frontiers in Pharmacology, 12, Ar-ticle 691031.
https://doi.org/10.3389/fphar.2021.691031
[29] Zhu, W., Wang, Y., Liu, C., Wu, Y., Li, Y. and Wang, Y. (2022) Connective Tissue Disease-Related Interstitial Lung Disease Is Alleviated by Tripterine through Inhibition of the PI3K/Akt, Apoptosis, and TNF-α Signalling Pathways. Frontiers in Pharmacology, 13, Article 990760.
https://doi.org/10.3389/fphar.2022.990760
[30] Liu, Y., Hu, M., Fan, G., Xing, N. and Zhang, R. (2022) Effect of Baricitinib on the Epithelial-Mesenchymal Transition of Alveolar Epithelial Cells Induced by IL-6. International Im-munopharmacology, 110, Article ID: 109044.
https://doi.org/10.1016/j.intimp.2022.109044
[31] Tomassetti, S., Ravaglia, C., Puglisi, S., Wells, A.U., Ryu, J.H., Bosi, M., Dubini, A., Piciucchi, S., Girelli, F., Parronchi, P., Lavorini, F., Rosi, E., Luzzi, V., Cerinic, M.M. and Poletti, V. (2023) Clinical Implications of Interstitial Pneumonia with Autoimmune Features Diagnostic Criteria in Idiopathic Pulmonary Fibrosis: A Case Control Study. Frontiers in Medicine, 10, Article 1087485.
https://doi.org/10.3389/fmed.2023.1087485
[32] Natalini, J.G., Diamond, J.M., Porteous, M.K., Lederer, D.J., Wille, K.M., Weinacker, A.B., Orens, J.B., Shah, P.D., Lama, V.N., McDyer, J.F., Snyder, L.D., Hage, C.A., Singer, J.P., Ware, L.B., Cantu, E., Oyster, M., Kalman, L., Christie, J.D., Kawut, S.M. and Bernstein, E.J. (2021) Risk of Pri-mary Graft Dysfunction following Lung Transplantation in Selected Adults with Connective Tissue Disease-Associated Interstitial Lung Disease. The Journal of Heart and Lung Transplantation, 40, 351-358.
https://doi.org/10.1016/j.healun.2021.01.1391
[33] Zhang, N., Liu, S., Zhang, Z., Liu, Y., Mi, L. and Xu, K. (2023) Lung Transplantation: A Viable Option for Connective Tissue Disease? Arthritis Care & Research.
https://doi.org/10.1002/acr.25133
[34] Gao, Y., Zhao, Q., Qiu, X., Zhuang, Y., Yu, M., Dai, J., Cai, H. and Yan, X. (2020) Vitamin D Levels Are Prognostic Factors for Connective Tissue Disease Associated Interstitial Lung Disease (CTD-ILD). Aging, 12, 4371-4378.
https://doi.org/10.18632/aging.102890
[35] Chiu, Y.H., Koops, M.F.M., Voortman, M., van Es, H.W., Langezaal, L.C.M., Welsing, P.M.J., Jamnitski, A., Wind, A.E., van Laar, J.M., Grutters, J.C. and Spierings, J. (2023) Prognostica-tion of Progressive Pulmonary Fibrosis in Connective Tissue Disease-Associated Interstitial Lung Diseases: A Cohort Study. Frontiers in Medicine, 10, Article 1106560.
https://doi.org/10.3389/fmed.2023.1106560
[36] Nagy, A., Nagy, T., Kolonics-Farkas, A.M., Eszes, N., Vincze, K., Barczi, E., Tarnoki, A.D., Tarnoki, D.L., Nagy, G., Kiss, E., Maurovich-Horvat, P., Bohacs, A. and Müller, V. (2021) Autoimmune Progressive Fibrosing Interstitial Lung Disease: Predictors of Fast Decline. Frontiers in Pharmacology, 12, Article 778649.
https://doi.org/10.3389/fphar.2021.778649