系统免疫炎症指数与泌尿系恶性肿瘤预后关系的研究进展
Research Progress on the Relationship between Systemic Immune Inflammation Index and Prognosis of Malignant Tumors in the Urinary System
DOI: 10.12677/ACM.2023.1381904, PDF, HTML, XML, 下载: 304  浏览: 463 
作者: 崔刘龙:青海大学研究生院,青海 西宁;陈国俊:青海大学附属医院泌尿外科,青海 西宁
关键词: 系统免疫炎症指数泌尿系统肿瘤病理特征预后Systemic Immune Inflammation Index Urinary System Tumor Pathological Characteristics Prognosis
摘要: 全身炎症反应在促进肿瘤进展中起重要作用。系统免疫炎症指数(systemic immune inflammation index, SII)作为一种全身炎症反应的评价指标,被认为是结直肠癌、胃癌、乳腺癌等多种癌症预后的独立危险因素,可以预测多种恶性肿瘤患者的生存情况。近年来其与泌尿系恶性肿瘤预后间相关性的研究也得到广泛开展。本文对近年来SII与泌尿系恶性肿瘤预后之间关系的临床研究进行综述,旨在为临床判断泌尿系统恶性肿瘤患者的预后转归提供帮助。
Abstract: Systemic inflammatory response plays an important role in promoting tumor progression. The sys-temic immune inflammation index (SII), as an evaluation index of systemic inflammatory reaction, is considered as an independent risk factor for the prognosis of colorectal cancer, gastric cancer, breast cancer and other cancers, and can predict the survival of patients with various malignant tumors. In recent years, research on the correlation between it and the prognosis of malignant tu-mors in the urinary system has also been widely carried out. This article reviews the clinical studies on the relationship between SII and the prognosis of urinary system malignancies in recent years, in order to provide help for clinical judgment of the prognosis of patients with urinary system ma-lignancies.
文章引用:崔刘龙, 陈国俊. 系统免疫炎症指数与泌尿系恶性肿瘤预后关系的研究进展[J]. 临床医学进展, 2023, 13(8): 13622-13629. https://doi.org/10.12677/ACM.2023.1381904

1. 引言

癌症具有快速发展和致命倾向,在全球范围内癌症是人类排名第二名的死亡原因 [1] 。目前在中国癌症已成为死亡原因之首,据国家卫生统计局估计,2000年至2020年中国4大死因是癌症、心脏病、脑血管疾病和呼吸系统疾病 [2] 。大多数临床已知的癌症患者预后都比较差,临床研究学者一直致力于找寻可以准确预测癌症患者预后的有效指标。目前临床上主要应用的预测指标有病理组织分型、分级和分期,但这些指标只能通过有创操作或者手术方能获得,有些经手术后获得病理证实为晚期恶性肿瘤,就己经错过最佳临床治疗时机。现如今尽管恶性肿瘤在早期诊断和治疗方面取得了显著进展(如手术、放疗、化疗、免疫治疗),但由于其自身特性,治疗后往往会发生局部复发或远处转移,预后仍然很差。因此,寻找一种或几种非侵入性的简便且可靠的预测肿瘤患者预后的评估指标就显得尤为重要。研究表明,机体的慢性炎症通过炎症细胞、炎症细胞因子、炎症信号分子等多种方式介导参与了肿瘤的生长、浸润、转移等过程 [3] 。炎症通过复杂的调控机制增加癌症风险并影响癌症分期,引发初始基因突变或表观遗传机制,促进癌症的发生、发展和转移 [4] 。

基于此,系统免疫炎症指数(SII)应运而生,SII由HU等 [5] 提出,可作为肝细胞性肝癌(HCC)患者总生存期(HR, 2.10: 95% CI, 1.14~3.85; P = 0.017)和无复发生存期(HR, 1.92: 95% CI, 1.04~3.54; P = 0.037)的独立预测因子。SII的计算公式为中性粒细胞计数 × 血小板计数/淋巴细胞计数,它综合了循环中三种免疫细胞,更全面地反应出机体的炎症与免疫反应的平衡。此后,大量研究证实SII与结直肠癌、胃癌、乳腺癌等多种恶性肿瘤的临床病理特征和预后相关 [6] [7] [8] 。SII对泌尿系统肿瘤的预后评估作用已被大量研究证实 [9] [10] ,现对SII在泌尿系统肿瘤预后评估中的研究进展进行归纳总结,以期在泌尿系统肿瘤的诊疗过程中为临床医师提供帮助。

2. SII在肿瘤中的作用机制

研究表明,宿主体内炎症反应通过多种炎性细胞因子参与了癌变,在外周则表现为循环血中白细胞和血小板计数的变化 [11] 。SII的各组分均参与了肿瘤的发生、发展与转移。当宿主体内抗瘤与促瘤反应的动态平衡被打破时,外周血中炎症细胞发生变化,表现为中性粒细胞和血小板计数的增多、淋巴细胞计数的减少。研究表明,中性粒细胞在肿瘤的发生、发展甚至转移都起着至关重要的作用。中性粒细胞通过髓过氧化物酶(MPO)产生的活性氧(ROS) [12] ,通过诱导型一氧化氮合酶(iNOS)产生的NO、microRNAs和MMP9引起DNA损伤和基因突变 [13] [14] ,从而诱导肿瘤的发生。中性粒细胞通过白细胞介素-1受体拮抗剂(IL-1RA)消除衰老,从而促进肿瘤的进展 [15] 。此外,中性粒细胞还可以释放MMP9、HMGB1、TNF和组织蛋白酶G等细胞因子,为远处器官的转移做好准备 [16] [17] [18] 。研究发现,血小板除了有助于血栓形成发挥止血作用外,活化的血小板还可以促进肿瘤的发生发展。血小板被激活后,血小板的α颗粒释放出大量调节肿瘤微环境的因子,如血管内皮生长因子(VEGF)和成纤维细胞生长因子(FGF),从而刺激肿瘤血管的生成 [19] 。血小板和循环肿瘤细胞(CTC)之间的相互作用还能促进肿瘤的转移,CTC诱导血小板活化,活化的血小板聚集并保护CTC免受自然杀伤细胞的影响从而促进肿瘤细胞的转移 [20] [21] 。相比之下,淋巴细胞通过促进细胞毒性细胞死亡、抑制肿瘤细胞增殖和转移,从而在肿瘤防御中发挥着重要作用 [22] 。淋巴细胞特别是肿瘤浸润淋巴细胞可诱导肿瘤细胞凋亡,并通过特异性细胞免疫和体液免疫将其清除,这对宿主的免疫防御和免疫监测至关重要 [23] [24] 。淋巴细胞数量减少可能是肿瘤抑制的结果,与致癌反应受损有关 [25] 。

3. SII在泌尿系肿瘤中的研究进展

3.1. SII与膀胱癌

膀胱癌是常见的泌尿系统恶性肿瘤之一,在世界范围内,其发病率位列全球男性肿瘤发病谱的第6位,女性第10位,2020年全球估计有573,278例新发病例和212,536例死亡病例 [26] 。根据浸润深度,膀胱癌可分为肌层浸润性膀胱癌(muscle invasive bladder cancer, MIBC)和非肌层浸润性膀胱癌(Non-muscle invasive bladder cancer, NMIBC)。研究表明,膀胱癌新发患者中约75%最初表现为NMIBC [27] ,经尿道膀胱肿瘤切除术(TURBT)是其主要治疗方法,尽管对肿瘤组织进行了完全切除和辅助治疗,5年复发风险也在30%~80% [28] 。对于MIBC,首选治疗方案为根治性膀胱切除术(RC),尽管术后根据患者个体疾病复发和进展的风险进行膀胱灌注治疗或免疫治疗,MIBC患者的5年生存率约为50% [29] 。因此临床医师应积极寻找有效的血清生物标志物,帮助评估膀胱癌患者的预后,进而提高患者生存质量并改善预后。

李攀等 [30] 对行TURB的NMIBC患者的SII研究发现,术前SII与病理T分期、肿瘤数量及冠心病有关(X2 = 5.546, P = 0.01; X2 = 4.435, P = 0.037; X2 = 3.867, P = 0.039);在预后方面,单因素分析结果显示,高SII (≥340.57)与患者术后复发有关(P = 0.001),多因素分析结果显示,SII是患者术后无复发生存率(RFS)的独立危险因素(P = 0.001)。高SII的无复发生存率明显低于低SII (60.5% ± 2.9% vs 76.5% ± 2.5%, P < 0.001)。Gorgel等 [31] 对191例行RC的MIBC患者的临床资料进行了回顾性研究,平均随访时间为37 ± 6.7个月,结果显示SII ≥ 843 × 109/L的患者往往具有较差的癌症特异性生存期(CSS)和总生存期(OS) (P < 0.001, P = 0.04),术前SII升高可能是接受RC的MIBC患者的独立预后因素。Liu等 [32] 回顾性分析183例接受治疗膀胱内卡介苗(BCG)免疫治疗的NMIBC患者,中位随访时间为30个月,分为卡介苗应答组121例和卡介苗无应答组62例。根据ROC选取SII最佳临界值514.47 (P < 0.001),分为高SII组(SII ≥ 514.47)和低SII组(SII < 514.47)。卡介苗应答组的SII平均值为408.66,卡介苗无应答组的SII平均值为567.89,两组之间存在显著差异(P < 0.001)。在预后方面,高SII组表现出较差的RFS (P = 0.009)。由此可见,治疗前评估SII值可作为预测卡界苗反应是否有用的工具,可以预测NMIBC患者接受卡介苗治疗后的癌症进展情况。从以上研究可以看出,SII与膀胱癌患者预后密切相关,高水平SII意味着预后不良,但以上研究均为回顾性研究,且样本量偏小,需要进一步更大样本量的前瞻性研究来证实。

3.2. SII与肾癌

肾细胞癌(RCC)是泌尿系统第三大常见肿瘤,占成人恶性肿瘤的2%~3% [33] 。在诊断为早期和局部疾病的患者中,25%在根治性手术切除后出现复发或转移 [34] 。近年来,随着RCC治疗方法的快速发展,免疫检查点抑制剂(ICIs)、放射治疗和分子靶向治疗被广泛应用于转移性肾细胞癌(mRCC)患者中 [35] [36] ,使得RCC患者的预后得到改善,5年生存率可达75% [37] 。但是,由于药物治疗无效、局部复发和远处转移等原因,使得RCC患者的长期生存期仍不尽人意。

一项纳入了3180例肾细胞癌患者预后与系统免疫炎症指数关系的荟萃分析(无论地理区域、癌症类型和治疗方式如何)结果显示,SII水平与患者总生存期(OS)呈负相关(HR 1.81, 95% CI 1.41~2.30, P < 0.001),但与无进展生存期(PFS)/无病生存期(DFS) (P = 0.293)和CSS (P = 0.332)无关。除此之外,高水平SII也与Fuhrman分级(OR 1.80, 95% CI 1.08~3.00, P = 0.024)和较差的国际转移性肾细胞癌数据库联盟(IMDC)风险评分(OR 19.12, 95% CI 9.13~40.06, P < 0.001)相关 [38] ,这突出了SII在识别肿瘤高风险患者的临床有用性。Ozbek等 [39] 回顾性分析了176例被诊断为局限性RCC并接受根治性肾切除术的患者的临床资料,结果显示,Fuhrman分级较高(G3和G4)的患者具有较高的SII (P = 0.001)。利用受试者-工作特征曲线(ROC)计算出患者OS的SII最佳截断值为830,CSS的SII最佳截断值为850,发现高SII评分与RCC患者总生存期较差有关(P = 0.034),然而,并未发现SII与患者的CSS有显著关联(P = 0.29)。这与上述荟萃分析中的研究结果一致,关于SII与肾细胞癌患者的CSS到底有无关联,仍需要临床研究学者的进一步探究。Teishima等 [40] 研究发现,在179例接受一线酪氨酸激酶抑制剂(TKI)治疗的mRCC患者中,低水平SII组(<730)与高水平SII组(≥730)的OS存在显著差异(49.7个月vs 21.4个月,P < 0.0001)。多因素分析显示,高SII是患者OS恶化的独立预测因素。

近年来,长期使用的TKI单一疗法,如舒尼替尼、帕唑帕尼和卡博替尼,几乎完全被ICIs疗法所取代,该疗法包括ICI-ICI (伊匹木单抗加纳武利尤单抗)或TKI-ICI (阿昔替尼加帕博利珠单抗、仑伐替尼加帕博利珠单抗或卡博替尼加纳武利尤单抗) [41] ,随着基于免疫检查点抑制剂的联合疗法的加入,患者的预后得到了显著改善。一项2021年的随机临床试验荟萃分析显示,与舒尼替尼相比,ICI联合疗法的死亡风险降低了26%,完全缓解率和总缓解率更高 [42] 。Stuhler等 [43] 回顾性研究了49例接受一线伊匹单抗联合纳武利尤单抗治疗的mRCC患者。在首次影像学检查时和开始治疗前评估SII。通过绘制ROC曲线得出SII的最佳临界值,分为高SII组(≥788) 29例和低SII组(<788) 20例。采用单因素和多因素Cox回归分析评估SII的预测和预后价值。结果表明,高SII是无进展(HR 2.70, P = 0.014)和总生存期(HR 10.53, P = 0.025)恶化的独立预后因素。与高SII相比,低SII患者的临床获益率更高(80% vs 32.1%)。

从上述大量研究我们可以发现,对于肾细胞癌患者来说,无论何种治疗方式,手术治疗、分子靶向治疗亦或是免疫检查点抑制剂联合疗法,高SII均与患者不良预后相关,由此可见,SII可能是一个潜在的预测肾癌患者预后的评估指标,未来仍需大规模前瞻性研究来进一步验证。

3.3. SII与前列腺癌

前列腺癌(PCa)是威胁老年男性生命健康的常见恶性肿瘤之一,在世界范围内,其发病率位列全球男性恶性肿瘤发病谱的第2位,仅次于肺癌 [26] 。近年来,随着大范围的筛查、人口老龄化等原因,中国前列腺癌的发病率呈明显上升趋势,2019年中国前列腺癌发病率为21.17/10万,死亡率为7.50/10万 [44] 。对于低风险的局部PCa和中风险的PCa,目前临床治疗中首选的治疗方式为根治性前列腺切除术(RP)或局部放疗(RT),但即使通过RP或RT进行初始治疗后,大约30%的患者会出现生化复发(BCR) [45] ,这与肿瘤复发和转移密切相关,对患者的生存和预后产生了极大影响。此时一个潜在的补救治疗方案雄激素剥夺疗法(ADT)被广泛应用。研究表明,ADT治疗后,血清前列腺特异性抗原(PSA)在2~8年内开始再次升高,可发展为去势抵抗前列腺癌(CRPC) [46] 。现阶段对于高风险的转移性去势抵抗前列腺癌(mCRPC)预后仍然较差。

近年来出现了大量关于SII与PCa预后预测的研究。Rajwa等 [47] 以620为SII临界值,研究SII与接受RP治疗非转移性PCa患者临床病理特征及预后的关系,结果显示,术前高SII与囊外延伸(OR1.16, P = 0.041)、非器官局限性疾病(OR1.18, P = 0.002)和RP升级(OR1.23, P < 0.001)独立相关,高SII患者更可能具有不良的病理特征。通过建立术前多因素Cox回归模型发现,术前高SII与患者术后BCR相关(HR1.34, 95% CI 1.15~1.55),但建立的术后多因素回归模型的结果提示SII与BCR无关(P = 0.078)。这与2022年Wang等 [48] 得出的研究结果相似,研究者回顾性分析了291名接受RP治疗局限性前列腺癌患者的临床资料,通过ROC曲线计算出SII最佳截断值为528,利用logistic回归分析研究SII与患者病理特征的相关性,多因素分析显示术前高SII (≥528)与Gleason评分(HR1.656, 95% CI 1.00~2.742, P = 0.042)和病理T分期(HR1.478, 95% CI 0.972~3.64, P = 0.028)的不良病理特征显著相关,Cox回归分析结果显示,高SII (HR4.521, 95% CI 2.262~9.037, P < 0.001)是RP术后BCR的重要预测因子。近期的一份荟萃分析得出的结论与上述研究有些偏差,Zhang等 [49] 通过检索Web of Science、Cochrane Library、PubMed、Embase和中国国家知识基础库(CNKI)等数据库,汇集了包含8133名患者的10份研究,结果表明,在PCa人群中,高SII与较差的OS (HR2.63, 95% CI 1.87~3.70, P < 0.001)和PFS (HR2.49, 95% CI 1.30~4.77, P = 0.006)显著相关,然而,高SII与肿瘤T分期(OR1.69, 95% CI 0.86~3.33, P = 0.128)、淋巴结转移(OR1.69, 95% CI 0.69~4.16, P < 0.001)和Gleason评分(OR1.32, 95% CI 0.88~1.96, P = 0.178)无关,这与Wang等的研究结果不一致,可能与该荟萃分析研究中使用了不同的SII截断值以及各研究治疗方式不同相关,这可能导致研究之间出现异质性。一项对179例接受多西他赛治疗的mCPRC患者的研究 [50] 结果显示,SII水平与NLR (P < 0.001)和PLR (P < 0.001)相关,但与其他临床病理参数如体力状态评分ECOG PS (P = 0.379)、Gleason评分(P = 0.709)和内脏转移(P = 0.474)无显著相关性,多因素分析结果提示SII (HR2.133, 95% CI 1.163~3.913, P = 0.014)、白蛋白(HR0.540, 95% CI 0.307~0.949, P = 0.032)和纤维蛋白原(HR1.888, 95% CI 1.069~3.353, P = 0.029)证实为OS的独立预后因素。在这三个目标参数中,发现三项参数均无异常的患者预后最好,且至少有两项异常的患者预后明显差于三项参数中任何一项异常的患者(P < 0.001),三者联合应用可能提高预测效能。Neuberger等 [51] 对接受多西他赛联合ADT治疗的36名转移性激素敏感性前列腺癌(mHSPC)患者的临床病理及随访资料进行研究,以此寻找一些预测患者预后的指标。在单因素Cox回归中格拉斯哥预后评分(mGPS) (HR6.53, 95% CI 1.60~27.00, P < 0.01)、PSA (HR1.16, 95% CI 1.04~1.30, P < 0.01)和中性粒细胞–淋巴细胞比值(NLR) (HR1.31, 95% CI 1.03~1.66 P = 0.03)与OS显著相关,在多因素回归中mGPS成为OS的唯一独立预测因子。SII却没有显示出统计相关性。目前的研究表明SII是预测一些恶性肿瘤预后有效的血清生物标记物 [6] [7] [8] ,但在PCa中的预测价值未得到明确的证明。可以看出SII作为炎症参数之一,在PCa病理特征及预后相关预测方面存在一定的价值,但是需要更多的研究去证明两者之间的关系。

4. 总结与展望

在这项相对详细的综合研究中,我们发现SII作为一个反应机体免疫与炎症状态平衡的新型血清生物学标志物,SII升高与泌尿系统恶性肿瘤患者不良的生存结局和不良的病理特征的预测作用不断得到证实,并且SII由血常规计算得出,简便易行,可重复性强。因此,我们可以试图将其与病理分期、组织学分型等预后指标联合起来,建立新型的风险评估模型,帮助临床医师尽早识别出高风险泌尿系肿瘤患者,从而给予个体化治疗方案,这有利于提高患者的生存质量并改善预后。值得注意的是,由于上述这些文献多为回顾性研究,样本量偏少,潜在的发表偏倚无法避免等原因,治疗前SII在泌尿系恶性肿瘤中的预后作用需要在未来开展更多前瞻性大样本多中心的试验来进一步探索。

参考文献

[1] Wiseman, M.J. (2019) Nutrition and Cancer: Prevention and Survival. British Journal of Nutrition, 122, 481-487.
https://doi.org/10.1017/S0007114518002222
[2] Cao, M.M., et al. (2022) Current Cancer Burden in China: Epi-demiology, Etiology, and Prevention. Cancer Biology & Medicine, 19, 1121-1138.
https://doi.org/10.20892/j.issn.2095-3941.2022.0231
[3] Kitamura, T., Qian, B.Z. and Pollard, J.W. (2015) Im-mune Cell Promotion of Metastasis. Nature Reviews Immunology, 15, 73-86.
https://doi.org/10.1038/nri3789
[4] Wculek, S.K. and Malanchi, I. (2015) Neutrophils Support Lung Colonization of Metastasis-Initiating Breast Cancer Cells. Nature, 528, 413-417.
https://doi.org/10.1038/nature16140
[5] Hu, B., Yang, X.R., Xu, Y., et al. (2014) Systemic Immune-Inflammation Index Predicts Prognosis of Patients after Curative Resection for Hepatocellular Carcinoma. Clinical Cancer Research, 20, 6212-6222.
https://doi.org/10.1158/1078-0432.CCR-14-0442
[6] Chen, J.H., Zhai, E.T., Yuan, Y.J., et al. (2017) Systemic Immune-Inflammation Index for Predicting Prognosis of Colorectal Cancer. World Journal of Gastroenterology, 23, 6261-6272.
https://doi.org/10.3748/wjg.v23.i34.6261
[7] Qiu, Y., Zhang, Z. and Chen, Y. (2021) Prognostic Value of Pretreatment Systemic Immune-Inflammation Index in Gastric Cancer: A Meta-Analysis. Frontiers in Oncology, 11, Article ID: 537140.
https://doi.org/10.3389/fonc.2021.537140
[8] Zhang, Y., Sun, Y. and Zhang, Q. (2020) Prognostic Value of the Systemic Immune-Inflammation Index in Patients with Breast Cancer: A Meta-Analysis. Cancer Cell International, 20, Article No. 224.
https://doi.org/10.1186/s12935-020-01308-6
[9] Li, J., Cao, D., Huang, Y., et al. (2022) The Prognostic and Clinicopathologf:ical Significance of Systemic Immune-Inflammation Index in Bladder Cancer. Frontiers in Immunology, 13, Article ID: 865643.
https://doi.org/10.3389/fimmu.2022.865643
[10] Qi, W., Zhou, Y., Liu, Z., et al. (2022) Revealing the Prognostic and Clinicopathological Significance of Systemic Immune-Inflammation Index in Patients with Different Stage Prostate Cancer: A Systematic Review and Meta-Analysis. Frontiers in Medicine, 9, Article ID: 1052943.
https://doi.org/10.3389/fmed.2022.1052943
[11] Ohno, Y. (2019) Role of Systemic Inflammatory Response Markers in Urological Malignancy. International Journal of Urology, 26, 31-47.
https://doi.org/10.1111/iju.13801
[12] Güngör, N., Knaapen, A.M., Munnia, A., et al. (2010) Genotoxic Effects of Neutrophils and Hypochlorous Acid. Mutagenesis, 25, 149-154.
https://doi.org/10.1093/mutage/gep053
[13] Sandhu, J.K., Privora, H.F., Wenckebach, G., et al. (2000) Neutrophils, Nitric Oxide Synthase, and Mutations in the Mutatect Murine Tumor Model. The American Journal of Pathology, 156, 509-518.
https://doi.org/10.1016/S0002-9440(10)64755-4
[14] Butin-Israeli, V., Bui, T.M., Wiesolek, H.L., et al. (2019) Neutrophil-Induced Genomic Instability Impedes Resolution of Inflammation and Wound Healing. Journal of Clinical Investigation, 129, 712-726.
https://doi.org/10.1172/JCI122085
[15] Rodríguez-Berriguete, G., Sánchez-Espiridión, B., Cansino, J.R., et al. (2013) Clinical Significance of both Tumor and Stromal Expression of Components of the IL-1 and TNF-α Signaling Pathways in Prostate Cancer. Cytokine, 64, 555-563.
https://doi.org/10.1016/j.cyto.2013.09.003
[16] Deryugina, E.I., Zajac, E., Juncker-Jensen, A., et al. (2014) Tissue-Infiltrating Neutrophils Constitute the Major in Vivo Source of Angiogenesis-Inducing MMP-9 in the Tumor Microenvironment. Neoplasia, 16, 771-788.
https://doi.org/10.1016/j.neo.2014.08.013
[17] Wang, Z., Yang, C., Li, L., et al. (2020) Tumor-Derived HMGB1 Induces CD62L(dim) Neutrophil Polarization and Promotes Lung Metastasis in Triple-Negative Breast Cancer. Onco-genesis, 9, Article No. 82.
https://doi.org/10.1038/s41389-020-00267-x
[18] Morimoto-Kamata, R. and Yui, S. (2017) Insulin-Like Growth Factor-1 Signaling Is Responsible for Cathepsin G-Induced Aggregation of Breast Cancer MCF-7 Cells. Cancer Science, 108, 1574-1583.
https://doi.org/10.1111/cas.13286
[19] Olsson, A.K. and Cedervall, J. (2018) The Pro-Inflammatory Role of Plate-lets in Cancer. Platelets, 29, 569-573.
https://doi.org/10.1080/09537104.2018.1453059
[20] Liu, Y., Zhang, Y., Ding, Y., et al. (2021) Platelet-Mediated Tumor Metastasis Mechanism and the Role of Cell Adhesion Molecules. Critical Reviews in Oncology/Hematology, 167, Article ID: 103502.
https://doi.org/10.1016/j.critrevonc.2021.103502
[21] Yan, M. and Jurasz, P. (2016) The Role of Platelets in the Tumor Microenvironment: From Solid Tumors to Leukemia. Biochimica et Biophysica Acta, 1863, 392-400.
https://doi.org/10.1016/j.bbamcr.2015.07.008
[22] Marra, P., Mathew, S., Grigoriadis, A., et al. (2014) IL15RA Drives Antagonistic Mechanisms of Cancer Development and Immune Control in Lymphocyte-Enriched Triple-Negative Breast Cancers. Cancer Research, 74, 4908-4921.
https://doi.org/10.1158/0008-5472.CAN-14-0637
[23] Mantovani, A., Allavena, P., Sica, A., et al. (2008) Can-cer-Related Inflammation. Nature, 454, 436-444.
https://doi.org/10.1038/nature07205
[24] Gooden, M.J., de Bock G.H., Leffers, N., et al. (2011) The Prognostic Influence of Tumour-Infiltrating Lymphocytes in Cancer: A Systematic Review with Meta-Analysis. British Journal of Cancer, 105, 93-103.
https://doi.org/10.1038/bjc.2011.189
[25] Ray-Coquard, I., Cropet, C., Van Glabbeke, M., et al. (2009) Lympho-penia as a Prognostic Factor for Overall Survival in Advanced Carcinomas, Sarcomas, and Lymphomas. Cancer Re-search, 69, 5383-5391.
https://doi.org/10.1158/0008-5472.CAN-08-3845
[26] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Can-cer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[27] Peng, D., Gong, Y.Q., Hao, H., et al. (2017) Preoperative Prognostic Nu-tritional Index Is a Significant Predictor of Survival with Bladder Cancer after Radical Cystectomy: A Retrospective Study. BMC Cancer, 17, Article No. 391.
https://doi.org/10.1186/s12885-017-3372-8
[28] Kang, M., Jeong, C.W., Kwak, C., et al. (2017) Preoperative Neutrophil-Lymphocyte Ratio Can Significantly Predict Mortality Outcomes in Patients with Non-Muscle Invasive Bladder Cancer Undergoing Transurethral Resection of Bladder Tumor. Oncotarget, 8, 12891-12901.
https://doi.org/10.18632/oncotarget.14179
[29] Kamoun, A., de Reyniès, A., Allory, Y., et al. (2020) A Consensus Molecular Classification of Muscle-Invasive Bladder Cancer. European Urology, 77, 420-433.
https://doi.org/10.1016/j.eururo.2019.09.006
[30] 李攀, 王博文一, 洪星磊, 等. 术前系统免疫炎症指数对非肌层浸润性膀胱癌预后的评估价值[J]. 肿瘤基础与临床, 2022, 35(1): 23-27.
[31] Gorgel, S.N., Akin, Y., Koc, E.M., et al. (2020) Retrospective Study of Systemic Immune-Inflammation Index in Muscle Invasive Bladder Cancer: In-itial Results of Single Centre. International Urology and Nephrology, 52, 469-473.
https://doi.org/10.1007/s11255-019-02325-9
[32] Liu, P., Chen, S., Gao, X., et al. (2022) Preoperative Sarcopenia and Systemic Immune-Inflammation Index Can Predict Response to Intravesical Bacillus Calmette-Guerin Instillation in Patients with Non-Muscle Invasive Bladder Cancer. Frontiers in Immunology, 13, Article ID: 1032907.
https://doi.org/10.3389/fimmu.2022.1032907
[33] Zhou, Y., Zhang, Y., Li, W., et al. (2020) TCEAL2 as a Tumor Suppressor in Renal Cell Carcinoma Is Associated with the Good Prognosis of Patients. Cancer Management and Re-search, 12, 9589-9597.
https://doi.org/10.2147/CMAR.S271647
[34] Hammers, H.J., Plimack, E.R., Infante, J.R., et al. (2017) Safety and Efficacy of Nivolumab in Combination with Ipilimumab in Metastatic Renal Cell Carcinoma: The CheckMate 016 Study. Journal of Clinical Oncology, 35, 3851-3858.
https://doi.org/10.1200/JCO.2016.72.1985
[35] Ljungberg, B., Al-biges, L., Abu-Ghanem, Y., et al. (2019) European Association of Urology Guidelines on Renal Cell Carcinoma: The 2019 Update. European Urology, 75, 799-810.
https://doi.org/10.1016/j.eururo.2019.02.011
[36] Unverzagt, S., Moldenhauer, I., Nothacker, M., et al. (2017) Immunotherapy for Metastatic Renal Cell Carcinoma. Cochrane Database of Systematic Reviews, 5, D11673.
https://doi.org/10.1002/14651858.CD011673.pub2
[37] Siegel, R.L., Miller, K.D. and Jemal, A. (2020) Cancer Statistics, 2020. CA: A Cancer Journal for Clinicians, 70, 7-30.
https://doi.org/10.3322/caac.21590
[38] Jin, M., Yuan, S., Yuan, Y., et al. (2021) Prognostic and Clinicopatholog-ical Significance of the Systemic Immune-Inflammation Index in Patients with Renal Cell Carcinoma: A Meta-Analysis. Frontiers in Oncology, 11, Article ID: 735803.
https://doi.org/10.3389/fonc.2021.735803
[39] Ozbek, E., Be-siroglu, H., Ozer, K., et al. (2020) Systemic Immune Inflammation Index Is a Promising Non-Invasive Marker for the Prognosis of the Patients with Localized Renal Cell Carcinoma. International Urology and Nephrology, 52, 1455-1463.
https://doi.org/10.1007/s11255-020-02440-y
[40] Teishima, J., Inoue, S., Hayashi, T., et al. (2020) Impact of the Systemic Immune-Inflammation Index for the Prediction of Prognosis and Modification of the Risk Model in Patients with Metastatic Renal Cell Carcinoma Treated with First-Line Tyrosine Kinase Inhibitors. Canadian Urological Associa-tion Journal, 14, E582-E587.
https://doi.org/10.5489/cuaj.6413
[41] Bedke, J., Albiges, L., Capitanio, U., et al. (2021) The 2021 Updated Euro-pean Association of Urology Guidelines on Renal Cell Carcinoma: Immune Checkpoint Inhibitor-Based Combination Therapies for Treatment-Naive Metastatic Clear-Cell Renal Cell Carcinoma Are Standard of Care. European Urology, 80, 393-397.
https://doi.org/10.1016/j.eururo.2021.04.042
[42] Massari, F., Rizzo, A., Mollica, V., et al. (2021) Immune-Based Combinations for the Treatment of Metastatic Renal Cell Carcinoma: A Meta-Analysis of Randomised Clinical Trials. European Journal of Cancer, 154, 120-127.
https://doi.org/10.1016/j.ejca.2021.06.015
[43] Stühler, V., Herrmann, L., Rausch, S., et al. (2022) Role of the Systemic Immune-Inflammation Index in Patients with Metastatic Renal Cell Carcinoma Treated with First-Line Ipili-mumab plus Nivolumab. Cancers (Basel), 14, Article No. 2972.
https://doi.org/10.3390/cancers14122972
[44] 蔡会龙, 原伟光, 刘思奇, 等. 1990年和2019年中国前列腺癌疾病负担及危险因素研究[J]. 临床泌尿外科杂志, 2022, 37(10): 749-752.
[45] Dong, L., Su, Y., Zhu, Y., et al. (2022) The European Association of Urology Biochemical Recurrence Risk Groups Predict Findings on PSMA PET in Patients with Biochemically Recurrent Prostate Cancer after Radical Prostatectomy. Journal of Nuclear Medicine, 63, 248-252.
https://doi.org/10.2967/jnumed.121.262411
[46] Schwarzenboeck, S.M., Rauscher, I., Bluemel, C., et al. (2017) PSMA Ligands for PET Imaging of Prostate Cancer. Journal of Nuclear Medicine, 58, 1545-1552.
https://doi.org/10.2967/jnumed.117.191031
[47] Rajwa, P., Schuettfort, V.M., D’Andrea, D., et al. (2021) Impact of Systemic Immune-Inflammation Index on Oncologic Outcomes in Patients Treated with Radical Prostatectomy for Clinically Nonmetastatic Prostate Cancer. Urologic Oncology, 39, 719-785.
https://doi.org/10.1016/j.urolonc.2021.05.002
[48] Wang, S., Yang, X., Yu, Z., et al. (2022) The Values of Sys-temic Immune-Inflammation Index and Neutrophil-Lymphocyte Ratio in Predicting Biochemical Recurrence in Patients with Localized Prostate Cancer after Radical Prostatectomy. Frontiers in Oncology, 12, Article ID: 907625.
https://doi.org/10.3389/fonc.2022.907625
[49] Zhang, B. and Xu, T. (2023) Prognostic Significance of Pretreat-ment Systemic Immune-Inflammation Index in Patients with Prostate Cancer: A Meta-Analysis. World Journal of Surgi-cal Oncology, 21, Article No. 2.
https://doi.org/10.1186/s12957-022-02878-7
[50] Man, Y.N. and Chen, Y.F. (2019) Systemic Im-mune-Inflammation Index, Serum Albumin, and Fibrinogen Impact Prognosis in Castration-Resistant Prostate Cancer Patients Treated with First-Line Docetaxel. International Urology and Nephrology, 51, 2189-2199.
https://doi.org/10.1007/s11255-019-02265-4
[51] Neuberger, M., Skladny, J., Goly, N., et al. (2022) Baseline Modified Glasgow Prognostic Score (mGPS) Predicts Radiologic Response and Overall Survival in Metastatic Hor-mone-Sensitive Prostate Cancer Treated with Docetaxel Chemotherapy. AntiCancer Research, 42, 1911-1918.
https://doi.org/10.21873/anticanres.15668