钨基催化剂构建及电催化制氢性能研究进展
Research Progress in the Construction of Tungsten Based Catalysts and Their Electro Catalytic Performance for Hydrogen Production
DOI: 10.12677/JAPC.2023.123022, PDF, HTML, XML, 下载: 156  浏览: 531  国家自然科学基金支持
作者: 赵文武, 王敏敏*:南通大学化学化工学院,江苏 南通
关键词: 钨基电催化剂析氧反应析氢反应高电化学活性高稳定性Tungsten Based Electrocatalyst Oxygen Evolution Reaction Hydrogen Evolution Reaction High Electrochemical Activity High Stability
摘要: 作为一种具有较高质能密度的清洁能源,氢能由于其燃烧后无污染的特点受到了人们的广泛关注,在制备氢能的众多途径中,电解水制氢以其原料来源广泛、不受反应地域限制等众多优点受到了研究人员的广泛研究。因此,开发出一种具有高效、高稳定性同时成本低廉、原料来源广泛的催化剂是很有必要的。本文介绍了通过采取杂原子掺杂、构建异质结等策略来提高钨基电催化剂电解水的性能。
Abstract: As a kind of clean energy with high mass energy density, hydrogen energy has been widely concerned by people because of its pollution-free characteristics after combustion. Among the many ways to prepare hydrogen energy, electrolytic water hydrogen production has been widely studied by researchers because of its wide source of raw materials and many advantages such as being free from the restriction of reaction region. Therefore, it is necessary to develop a catalyst with high efficiency, high stability, low cost and wide source of raw materials. This paper introduces how to improve the performance of tungsten-based electrocatalyst for water electrolysis by adopting heteroatom doping and heterojunction construction.
文章引用:赵文武, 王敏敏. 钨基催化剂构建及电催化制氢性能研究进展[J]. 物理化学进展, 2023, 12(3): 205-221. https://doi.org/10.12677/JAPC.2023.123022

1. 引言

随着第二次工业革命的开始,以内燃机为代表的先进生产力开始逐渐登上历史舞台,从一方面来说,它们的出现极大地促进了社会生产力的发展,影响了世界的方方面面,另一方面,它不仅带来了巨大的生产力,同时也带来了各种恶劣的污染,这些污染了水源、空气,给当时的人们带去了数不尽的痛楚。随着科学进步的不断发展,能源危机也逐渐开始暴露在人们的视线当中。当今世界,人们正在积极地寻找一种化石燃料的替代品,以缓解当今世界资源紧张和恶劣的环境污染的局面。

氢气不仅具备高热值的优点,同时其燃烧后的产物为水,对环境无污染,当前制备氢气除了传统的电解水制氢外,还有采用诸如石油裂解副产物制氢、煤气化技术以及甲烷重整技术等方法,但这些方法在社会接受程度方面并不能让人满意 [1] ,另一方面,考虑到电能作为一种可再生能源,同时我国的海水资源储量丰富,通过采取电解水制氢的方式展现出了很大的可行性。

水裂解的总反应由阴极的析氢反应(Hydrogen Evolution Reaction, HER)与阳极的析氧反应(Oxygen Evolution Reaction, OER)这两个半反应共同组成,在研究人员的研究下,其中,析氢(Pt/C)、析氧(RuO2、IrO2)是目前公认开发出的最优的贵金属电催化剂 [2] [3] ,然而由于其来源稀少、价格昂贵等因素,它们并不适合应用于大规模的实际的生产生活中,同时,非贵金属(WOx, WSx)电催化剂资源储量丰富、价格低廉,但由于其较低的电催化活性 [4] ,也并不适用于实际的大规模工业化生产。因此,研发出一种基于非贵金属的具备高活性、高稳定性等优秀性能的电催化剂是非常具有前景的。从我国的资源来看,在储量、产量以及出口量方面,钨都位居于世界的首位。作为我国的优势资源之一,以钨为原料的深加工工艺却并不成熟,对于具有高附加价值的钨产品仍依赖于进口 [5] [6] [7] ,因此,研究出一种具备高电化学活性,高稳定性等优点的钨基电催化剂是很有必要的。

2. 电解水反应及其机理概述

2.1. 析氢反应机理

在电解液中,通过对电极施加外加电压,在电催化剂的作用下,就会将电能转化为化学能,负极产生氢气,征集产生氧气,它的总的化学反应方程式为:

2 H 2 O = 2 H 2 + O 2

根据前面的介绍我们可知,这样的一个总反应是由两个半反应组成的,对于析氢反应而言,它的半反应方程式为:

2 H 2 O + 2 e = H 2 + 2 OH

从式中我们可以看出,对于析氢反应而言,它的整个反应过程仅涉及二电子转移,它的反应步骤及其方程式如下:

Volmer步骤:

H + ( aq ) + e + H ads *

在第一步Volmer步骤中,氢的吸附来源于酸性介质中解离的水分子而不是氢质子。随后,H*通过Tafel步骤或Heyrovsky步骤合成H2。对于给定的电催化剂,反应机理强烈地依赖于其化学和电子性质,整个反应的相应速率决定步骤由线性扫描伏安(LSV)极化曲线的Tafel斜率表示,显然,无论催化剂是什么,无论HER如何发生,反应路径中总会有H*。因此,催化剂表面的氢结合能(HBE)对预测和描述HER的性能起着至关重要的作用,被认为是表征HER在酸性条件下的唯一指标。

与酸性HER反应不同,碱性HER反应还涉及到水分子的吸附解离和OH吸附等重要因素,说明了碱性HER反应的复杂性。由于碱性电解质中缺乏足够的质子,碱性HER吸附的氢通常被认为来自于水解离,因此水解离的额外步骤可能是碱性条件下HER动力学缓慢的原因。

第二步含有两种反应机理:Tafel步骤和Heyrovsky步骤。Tafel步骤就是将两个相邻的 H ads * 相结合形成氢气:

2H ads * H 2 + 2

Heyrovsky步骤则是将单个的 H ads * 与电解质中的H+和来自外部的电子相结合形成氢气:

H ads * + H + ( aq ) + e H 2 +

其中*代表氢吸附位点,整个析氢过程路线示意图为图1

Figure 1. Schematic diagram of HER route: (a) in acidic electrolyte; (b) in alkaline electrolyte [8]

图1. HER路线示意图:(a) 在酸性电解质中;(b) 在碱性电解质中 [8]

根据前面的介绍,由于碱性电解质中缺乏足够的质子,碱性HER吸附的氢通常被认为来自于水解离,因此水解离的额外屏障可能是碱性条件下HER动力学缓慢的原因。如图2所示,以具有显式电子结构的不同金属(Pt和Ru)为例,Pt电极的最佳氢吸附自由能( Δ G H )接近于0,然而较大的水解离势垒阻碍了碱性HER性能 [9] 。相反的,Ru具有较低的水解离屏障,但由于具有较强的氢吸附,导致HER活性较差。因此,在碱性条件下,优异的HER活性通常取决于以下因素:适当的氢和/或氧的吸附/解吸能,以及较低的水解离能。

Figure 2. Gibbs free energy diagram of alkaline HER on different surfaces including reactant initial state, intermediate state, final state, and an additional transition state representing water dissociation [9]

图2. 碱性HER在不同表面上的吉布斯自由能图,包括反应物初始态、中间态、最终态以及代表水解离的附加过渡态 [9]

2.2. 析氧反应机理

与析氢反应相比,析氧反应作为一个四电子转移的反应,反应机理相对复杂,目前研究OER的一般都是基于碱性电解质条件下,它的一般反应步骤如下:

OH + OH ads + e

OH ads + OH O ads + H 2 O+e

O ads + O ads 2 + O 2

O ads + OH OOH ads + e

OOH ads + OH +O 2 +H 2 O + e

在碱性电介质中,析氧反应从氢氧根离子开始,然后经历两个主要的反应过程进行析氧 [10] 。首先电解液中的氢氧根离子失去电子吸附在催化剂活性位点表面( OH ads ),接着 OH ads OH 相互作用,失去一个电子得到了单纯的吸附氧( O ads ),接下来在碱性条件下, O ads O 2 有两种不同的途径:第一种途径是两个 O ads 直接耦合形成 O 2 ,另一种则是 O ads 接着与 OH 进行结合形成 OOH ads ,之后 OOH ads 进一步的质子耦合电子转移导致了 O 2 的产生和自由活性位点的再生。

整个析氧反应的示意图如图3,其中M表示金属催化剂,包括过度金属与贵金属:

Figure 3. Schematic diagram of OER route [11]

图3. OER路线示意图 [11]

与单HER不同,OER过程中存在多个中间体(如O*、OH*和OOH*),导致很难理解OER的决定速率步骤,也难以确定OER的反应描述符。因此,深入了解电极与反应中间体之间的相互作用对于提高OER活性是必不可少的。

密度泛函理论(DFT)计算提供了对单个反应步骤和每个步骤的反应机理的简单洞察,DFT计算表明,由两个中间体吸附能的偏差决定的连续步骤的反应能组成的自由能图揭示了热力学不利步骤。由自由能图可知,反应步骤的最高自由能决定了定速步骤,该定速步骤可由测得的Tafel斜率值得到。到目前为止,一些描述符,包括反应步骤的能量( Δ G O Δ G HO )、M-OH键能和某些电子结构参数(d轨道占据、eg轨道填充和op波段中心),已经被用来预测或评价OER活性。其中,以 Δ G O Δ G HO ( Δ G O Δ G HO ) 之差作为析氧活性的通用描述符,其中O*与表面有两个键,而HO*只有一个键 [12] 。也就是说,当一个表面与氧结合得太强烈时,这种潜力就会受到O*生成HOO*的限制。否则,电势受到HO*氧化成O*的限制。因此,具有合适氧结合能的理想催化剂,由于 Δ G O Δ G HO 的优化值,可以获得优异的活性催化剂。如图4所示,以 Δ G O Δ G HO 为描述符,构建了包括钙钛矿、尖晶石、金红石和过渡金属氧化物在内的多种金属氧化物的OER火山曲线。

Figure 4. OER volcano plot for metal oxides using Δ G O Δ G HO as descriptor [13]

图4. OER火山图的金属氧化物使用 Δ G O Δ G HO 作为描述符 [13]

3. 电化学性质测试

3.1. 循环伏安法(CV)

作为电化学性质测试几种最重要的方法之一 [14] [15] [16] [17] ,循环伏安法(Cyclic Voltammetry, CV)具备能够让科研人员在短时间内定位材料发生氧化还原反应的电位,进而判断氧化还原的程度的功能。为了让电极能够在合适的电势范围内交替发生不同的氧化还原反应,从而进一步得到电流–电势曲线,我们可以通过改变扫描速率,控制电极电势随着时间以三角形波进行一次或者多次反复扫描得到。

3.2. 线性伏安扫描(LSV)

作为伏安法技术之一,线性伏安扫描(Linear Sweep Voltammetry, LSV)能够在电解池的辅助电极与工作电极之间施加单次或多次,速率在0.001 V~0.1 V之间的线性电位扫描 [18] [19] [20] 。通过进行LSV测试,我们可以得到材料的峰电流与被测材料浓度之间一般呈现出线性关系的曲线关系。

3.3. 塔菲尔(Tafel)斜率

通过对材料进行塔菲尔(Tafel)分析,可以帮助研究人员判断需要改变电极电势的程度,以达到一定的电流,Tafel斜率描述了过电位(η)和电流密度(j)之间的关系,其公式为:

η = a + b log ( j )

其中b代表塔菲尔斜率,Tafel图像是通过将过电势与电流密度的对数作图得出 [21] [22] [23] ,通过将线性曲线延长与η轴相交,即Tafel方程η = 0时,得到交换电流密度(j0),它表示从平衡状态开始时体系产生电子的能力,当处于平衡状态下时,则j0越大,则代表着电极材料的内在活性越高。

但由于Tafel斜率明确的定义,这一点就将Tafel曲线限制在用于分析不复杂的电催化反应。

3.4. 电子转换频率(TOF)

电子转换频率(TOF) [24] ,这一概念最早起源于1966年,Michel Boudart为了评价酶催化化学反应速率及其转化效率,引入了单位时间内单个活性位点的转化数的概念,这一概念即TOF,它表示了催化剂的本征活性,衡量了催化剂催化反应的速率。TOF用公式表达如下:

TOF = I / 2 nF ( HER )

TOF = I / 4 nF ( OER )

式中,I为电流,n为反应电子数,F为法拉第常数(96485 C mol−1),TOF公式表明了单位时间内,单位质量催化剂的生成量。

3.5. 交流阻抗(EIS)

交流阻抗(Electrochemical Impedance Spectroscopy, EIS) [25] [26] 指的是当电极系统受到一个正弦波形电压(电流)的交流讯号的扰动时,会产生一个相应的电流(电压)响应讯号,由这些讯号可以得到电极的阻抗或导纳,一系列频率的正弦波讯号产生的阻抗频谱,称为电化学阻抗谱。

3.6. 稳定性

一般情况下,研究人员对所制备的电催化剂测试稳定性的方法有以下三种:1) 恒定电流密度下观测电压或过电势的稳定性 [25] [27] 。2) 恒定电压下测定电流密度的稳定性。3) 在对材料进行1000圈CV测试后,再进行的LSV测试,若所得的图像与进行10圈CV测试后的LSV图像图基本能够完全重合,则证明材料的稳定性良好。

4. 钨基电催化剂的介绍及性能优化策略

钨作为一种金属元素,它在自然界中主要是以六价阳离子的形式存在,其离子半径小、极化能力强,易形成络阴离子 [28] [29] ,由于钨原子晶格属性和典型的电子结构的共同作用 [6] [7] ,这使得钨基催化剂的表面对于反应物分子具有很强的吸附性能,在研究人员对于钨基电催化剂的研究当中,如Zou等人研究的WSe2 [30] 、Sunil,R. Kadam等人研究出的Ni-WSe2 [31] 用作于高效的析氢反应,Yang等人研究出的WS2运用在全解水方面 [32] 等,这些研究都向我们展现出钨基电催化剂卓越的电催化性能。

为了提高钨基电催化剂的性能,我们通常会采取以下手段进行优化:

4.1. 异质结构的构筑

在异质结催化剂中,电子可以在异质结构界面上重新排列以修饰活性位点,不同活性位点的协同作用可以促进反应动力学 [33] [34] 。异质结催化剂通常比单组分催化剂表现出更好的电解水活性。异质结催化剂的优点如下:首先,异质结界面的晶格应变可以暴露出较高的活性位点。其次,异质结构催化剂的形态设计具有多样性 [35] ,可以通过设计多孔或多层结构来提高比表面积和催化活性位点。第三,异质结催化剂中各组分之间的电荷转移或互补氧化还原特性,由于协同效应,可以促进化学反应过程中的活性和效率 [36] [37] [38] 。Zhang [39] [40] [41] [42] 等人指出,异质结构和界面可以作为修饰电子结构的有效手段。

例如,Hong [43] 等人通过用一种简单的自上而下的方法成功合成了WS2-W异质结材料,得益于所制备的WS2具有丰富的缺陷以及外露边缘,并且WS2与W之间具有良好的电接触,这些因素使得WS2-W异质结材料表现出较高的HER活性。它的起始过电位较小,约为30 mV,同时还具有较低的Tafel斜率,约为45.5 mV/dec,在电流密度达到10 mA/cm2时,其过电位约为108 mV,同时所制备出的WS2-W异质结材料具有优异的稳定性。图5显示了(a) WO3和(b) WS2纳米片在W箔上的SEM图像,(c)显示了WS2/W的SEM侧面图,(d)显示了WS2边缘的TEM图像,(e)~(f)显示了WS2基面HRTEM图像。

Figure 5. SEM image of (a) WO3 and (b) WS2 nanosheets on W foil. (c) Side-view SEM image of WS2/W. (d) TEM image of edges of WS2. (e)~(f) HRTEM images of the basal plane of WS2 [43]

图5. (a) WO3和(b) WS2纳米片在W箔上的SEM图像。(c) WS2/W的SEM侧面图。(d) WS2边缘的TEM图像。(e)~(f) WS2基面HRTEM图像 [43]

为了进一步提高钨的电解水催化性能,研究人员会通过采取将钨基材料与镍基材料进行结合的方法,其制备出的复合材料的性能能够优于单纯的钨基或镍基催化剂。比如,Guo [44] 等人通过多步合成的方法,成功地在泡沫镍上合成除了典型的W18O49/NiWO4异质结,在电化学氧化还原的过程中,触发了W18O49的非晶化,这一现象显著地增强了界面相互作用,从而使得制备出的W18O49/NiWO4异质结复合材料具有丰富的活性位点。得益于非晶–晶复合材料、不饱和W (IV)位点、丰富的氧空位和高活性的NiOOH,活性电催化剂表现出了优异的电催化活性,在电流密度为10 mA/cm2时,其过电位约为1.53 V,并且展现出了至少保持100 h的优秀稳定性。

图6中,(a)为NiWO4/NF、W18O49/NF和W18O49/NiWO4/NF的XRD谱图,(b)、(c)表明了W18O49/NiWO4表现出典型的纳米片阵列结构,(d)和(e)为纳米线的HRTEM图像,(f)展示出了纳米片骨架的HRTEM图像(在图4(c)中被标记为黄色部分),晶格条纹分别分布在NiWO4和W18O49的(−111)和(010)晶面上,并且NiWO4和W18O49之间存在着明显的边界。

Figure 6. (a) XRD patterns of NiWO4/NF, W18O49/NF and W18O49/NiWO4/NF. (b) SEM, (c) TEM, and (d)~(f) HRTEM images of W18O49/NiWO4/NF [44]

图6. (a) NiWO4/NF、W18O49/NF和W18O49/NiWO4/NF的XRD谱图。(b) W18O49/NiWO4/NF的SEM图像。(c) W18O49/NiWO4/NF的TEM图像。(d)~(f) W18O49/NiWO4/NF的HRTEM图像 [44]

4.2. 杂原子掺杂

作为提高催化剂最常用,也是最有效的方法之一,通过向材料中掺杂金属或非金属,比如S、Se、O、P、C等元素来改变电子结构,进而产生大量的活性位点,从而使得电催化剂的吸附能以及电催化性能得到一个明显的提高 [45] [46] [47] 。阴离子掺杂除了可以调整电子结构外,还具有有效增加活性位和提高电导率等优点。材料中良好的导电性和较多的活性位点可以提高产氢效率 [48] 。金属阳离子的掺杂与阴离子的掺杂在电催化水裂解中同样也发挥了重要作用。最近的研究报导中表明,通过掺杂阳离子,可以调节电子结构,进而优化吸附能,从而有效地提高催化剂的本征活性 [49] 。

例如,Zheng [50] 等人为了提高无贵金属催化剂在碱性电介质中的催化性能,通过在氧化钨催化剂中掺杂Co离子,所获得的催化剂(Co-WO)在电流密度达到10 mA/cm2时,其过电位约为30 mV,Tafel斜率约为32 mV/dec,这表明了所制备出的催化剂展现出良好的HER催化活性。结果表明,通过Co的掺杂导致的带隙减小和电导率提高,进一步增强了HER过程中的电荷转移能力。图7(a)~(c)为制备的材料的SEM图像,(d)为它们的XRD谱图,图8(a)~(e)展示了Co掺杂后催化剂的性能,(e)为制备的催化剂与近期报道相关的催化剂之间性能的比较。

Figure 7. SEM images of (a) WO, (b) Co-WO, (c) Fe-WO. (d) XRD pattern of WO, Co-WO and Fe-WO [50]

图7. (a) WO,(b) Co-WO,(c) Fe-WO的SEM图像。(d) WO、Co-WO和Fe-WO的XRD谱图 [50]

Figure 8. (a) Polarization curves, (b) corresponding Tafel plots and (c) EIS for WO, Co-WO, and Fe-WO samples; (d) differences in current density plotted against scan rates, showing the extraction of the Cdl values for WO, Co-WO, and Fe-WO; (e) chronoamperometric measurement of WO and Co-WO at an overpotential of −200 mV vs RHE, for 15 h (without iR-corrected); (f) comparisons of overpotential (at 10 mA cm−2) of the related recently reported catalysts [50]

图8. WO、Co-WO和Fe-WO样品的(a) 极化曲线,(b) 相应的Tafel图和(c) EIS;(d) 电流密度与扫描速率的差异,显示了WO,Co-WO和Fe-WO的Cdl值的提取;(e) 在−200 mV vs RHE过电位下测量WO和Co-WO,持续15小时(未进行iR校正);(f) 比较最近报道的相关催化剂的过电位(在10 mA cm−2) [50]

4.3. 缺陷工程

作为提高非贵金属基电催化剂性能的主要手段之一,缺陷工程受到了研究人员的广泛关注,为了在催化剂中引入缺陷,我们可以已通过采取碱蚀刻、离子辐射、紫外线臭氧处理等手段 [51] [52] [53] 。由于缺陷的存在会在价带和导带间产生额外的能级,同时强烈地中断催化物晶体结构中的局部态密度 [54] [55] ,正是由于这些缺陷位点的存在,催化剂的活性位点数量得以增加,同时传质过程也得以促进,进而提高了催化剂的性能。

Cao [56] 等人通过采用高能Fe13+离子辐照技术照射WS2表面的方法,不仅将Fe2+和Fe3+作为Fe掺杂剂引入到WS2中,同时还制造了多空位(W空位、S空位或W和S空位共存)来增加电催化活性位点的数量,具有较高的电流密度、较低的起始过电位和良好的酸性电解质稳定性。图9(a)和图9(b)表明Fe13+离子辐照对生长在CC上的WS2形貌几乎没有影响,图9(c)表明了W、S和Fe均匀地分布在WS2基体中,图9(d)显示了Fe13+-8E13的高分辨率TEM (HRTEM)图像,特别的,在WS2晶格中观察到一些不存在的原子,导致晶格中出现了小孔,如图黄色虚线所示。这显著地证实了Fe13+离子辐照的WS2纳米球在基面上形成了缺陷(包括W、S或多空位)。图9(e)和图9(f)分别是WS2/CC、Fe13+-8E13和Fe13+-5E14样品的XRD和Raman光谱。

Figure 9. TEM images of (a) WS2/CC, (b) Fe13+-8E13. (c)~(d) EDX mapping and HRTEM images of Fe13+-8E13. (e)~(f) XRD and Raman spectra of WS2/CC, Fe13+-8E13, and Fe13+-5E14 samples [56]

图9. (a) WS2/CC,(b) Fe13+-8E13的TEM图像。(c)~(d) Fe13+-8E13的元素扫描和HRTEM图像。(e)~(f) WS2/CC、Fe13+-8E13和Fe13+-5E14样品的XRD和Raman光谱 [56]

除了上面讲到的几种方法外,通过采取杂原子的掺杂的方式同样有可能会引发缺陷。Wu [57] 等人通过采取在300 ℃下简便的自放热还原策略,成功地制备具了有丰富W空位的超细WP纳米颗粒,W空位可以激活邻近的P原子和桥位作为HER的活性位,但也会改变电子分布,从而降低WP的电导率。经过测试可以看出,所制备的电催化剂在酸性溶液中具有非常优秀的HER性能,同时具备较小的Tafel斜率(52  mV dec−1),比大多数WP基催化剂都要小。图10(a)~(c)清楚地显示了制备的WP催化剂的不同结晶度,(d)~(f)表明了所有样品的HRTEM中可以看到大量的点缺陷。

Figure 10. (a)~(c) HRTEM images of A-WP, LC-WP and C-WP, respectively, and (d)~(f) images of the region enclosed by the red square of (a)~(c), respectively [57]

图10. (a)~(c)分别为A-WP、LC-WP和C-WP的HRTEM图像,(d)~(f)分别为(a)~(c)红色方框所包围区域的图像 [57]

4.4. 其他改性策略

除了以上介绍的集中常见的增强催化剂活性的方法外,如图11所示,以下介绍的策略在近些年的研究中也被广泛地运用于改良电催化剂中:

相工程,通过调节和控制相的种类和类型来改变本征电催化活性,主要集中在以下几个方面:1) 设计和构建纯非晶相,纯非晶相由于其成键无序,成键能较弱,且存在较多悬空键,因此在所制备的电催化材料中将会含有丰富的缺陷 [58] [59] [60] ,这些缺陷的存在使得催化剂更有利于OH*的吸附和OOH*的形成,因此,在OER催化性能方面,非晶相的表现通常优于晶体相;2) 将非晶相转化为晶相;3) 设计和调节同素异形体。与界面工程相比,Zheng [61] 等人指出相工程和界面工程都需要以不同晶格结构的结合或转化为前提。然而,这两种战略有着明显不同的关注点。具体来说,相工程关注的是无定形到结晶的转变,以及同素异形体或晶体的设计和调控 [62] [63] 同时,与结构合作相比,Zhang等人指出,界面工程关注的是强耦合关系的组成部分,这种关系通常通过界面带来的强电子相互作用来发挥作用 [39] [40] 。

结构协同是将将两种或两种以上不同的材料组合在一起,可以有效地克服单一材料的缺点,同时又能吸收每种材料的独特性能 [64] 。

应变工程 [65] [66] [67] ,在电催化剂中,应变一般限于弹性应变,包括拉伸应变和压缩应变,这些应变在去除应力后可以恢复 [65] 。Li [65] 等人也总结了电催化剂中诱导应变的方法,如形态调制、晶格失配和控制底物等。

自功能化,在近几年的相关研究中报道的自功能化行为是HER或OER过程中的自氧化 [68] [69] [70] [71] ,在HER或OER过程中,超薄氧化物或氢氧化物可以在过渡金属基催化剂表面原位形成,可以提供丰富的活性位点,也可以作为进一步氧化的保护屏障。此外,中间活性物质的吸附和解吸也会受到影响 [72] [73] [74] 。因此,设计或工程上合理的自功能化被认为是提高电化学性能和耐久性的新策略。

Figure 11. Modification strategies for high efficiency water decomposition of electrocatalysts are commonly used [75]

图11. 电催化剂高效水分解常用改性策略 [75]

5. 总结与展望

电解水制氢技术因具有替代传统化石燃料和生产清洁能源的可能性而受到越来越多的关注。然而考虑到由于贵金属电催化剂其来源稀少,导致成本昂贵等因素,限制了贵金属催化剂并不适合大规模地应用于工业化生产中,另一方面,由于非贵金属催化剂本身的催化活性并不高,因此我们需要研发出一种兼具有原料易得成本低廉,同时具备良好的催化性能以及稳定性的非贵金属催化剂,由于我国钨资源储备位于世界首位,但对于高附加价值的钨产品却依赖于进口,因此,研发出一种新型的钨基电催化剂能够很好地改善这一现状,为未来的氢能大规模工业化生产应用奠定下了基础。

致谢

国家自然科学基金(22075152, 22073052)、江苏省自然科学基金(BK20190918)。

NOTES

*通讯作者。

参考文献

[1] Wang, C. and Xu, Y. (2022) New Energy Utilization Rate and Coal Energy Economic Development Based on the Fuzzy Network Algorithm. Computational Intelligence and Neuroscience, 2022, Article ID: 1752090.
https://doi.org/10.1155/2022/1752090
[2] Du, C.F., Liang, Q., Dangol, R., Zhao, J., Ren, H., Madhavi, S. and Yan, Q. (2018) Layered Trichalcogenidophosphate: A New Catalyst Family for Water Splitting. Nano-Micro Letters, 10, Article No. 67.
https://doi.org/10.1007/s40820-018-0220-6
[3] Zhu, C., Shi, Q., Feng, S., Du, D. and Lin, Y. (2018) Single-Atom Catalysts for Electrochemical Water Splitting. ACS Energy Letters, 3, 1713-1721.
https://doi.org/10.1021/acsenergylett.8b00640
[4] Buvat, G., Eslamibidgoli, M.J., Youssef, A.H., Garbarino, S., Ruediger, A., Eikerling, M. and Guay, D. (2020) Effect of IrO6 Octahedron Distortion on the OER Activity at (100) IrO2 Thin Film. ACS Catalysis, 10, 806-817.
https://doi.org/10.1021/acscatal.9b04347
[5] Griffith, K.J., Wiaderek, K.M., Cibin, G., Marbella, L.E. and Grey, C.P. (2018) Niobium Tungsten Oxides for High-Rate Lithium-Ion Energy Storage. Nature, 559, 556-563.
https://doi.org/10.1038/s41586-018-0347-0
[6] Gyoeroek, M., Kaiser, A., Sukuba, I., Urban, J., Hermansson, K. and Probst, M. (2016) Surface Binding Energies of Beryllium/Tungsten Alloys. Journal of Nuclear Materials, 472, 76-81.
https://doi.org/10.1016/j.jnucmat.2016.02.002
[7] Ratanaphan, S., Boonkird, T., Sarochawikasit, R., Beladi, H., Barmak, K. and Rohrer, G.S. (2017) Atomistic Simulations of Grain Boundary Energies in Tungsten. Materials Letters, 186, 116-118.
https://doi.org/10.1016/j.matlet.2016.09.104
[8] Fu, Q., Han, J., Wang, X., Xu, P., Yao, T., Zhong, J., Zhong, W., Liu, S., Gao, T., Zhang, Z., et al. (2021) 2D Transition Metal Dichalcogenides: Design, Modulation, and Challenges in Electrocatalysis. Advanced Materials, 33, Article ID: 1907818.
https://doi.org/10.1002/adma.201907818
[9] Zheng, Y., Jiao, Y., Zhu, Y., Li, L.H., Han, Y., Chen, Y., Jaroniec, M. and Qiao, S.Z. (2016) High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst. Journal of the American Chemical Society, 138, 16174-16181.
https://doi.org/10.1021/jacs.6b11291
[10] Bockris, J.O.M. and Otagawa, T. (1983) Mechanism of Oxygen Evolution on Perovskites. The Journal of Physical Chemistry, 87, 2960-2971.
https://doi.org/10.1021/j100238a048
[11] Li, Y., Zhou, L. and Guo, S. (2021) Noble Metal-Free Electrocatalytic Materials for Water Splitting in Alkaline Electrolyte. EnergyChem, 3, Article ID: 100053.
https://doi.org/10.1016/j.enchem.2021.100053
[12] Song, J., Wei, C., Huang, Z.F., Liu, C., Zeng, L., Wang, X. and Xu, Z.J. (2020) A Review on Fundamentals for Designing Oxygen Evolution Electrocatalysts. Chemical Society Reviews, 49, 2196-2214.
https://doi.org/10.1039/C9CS00607A
[13] Seh, Z.W., Kibsgaard, J., Dickens, C.F., Chorkendorff, I., Nørskov, J.K. and Jaramillo, T.F. (2017) Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science, 355, eaad4998.
https://doi.org/10.1126/science.aad4998
[14] Avcı, O., Tepeli Büyüksünetçi, Y. and Anık, Ü. (2023) Electrochemical Determination of Hemoglobin by the İmmobilization of the Analyte into a Carbon Felt Electrode (CFE) Using Cyclic Voltammetry (CV). Analytical Letters, 56, 870-880.
https://doi.org/10.1080/00032719.2022.2109045
[15] Beheshti, M., Kakooei, S., Ismail, M.C. and Shahrestani, S. (2020) Investigation of CO2 Electrochemical Reduction to Syngas on Zn/Ni-Based Electrocatalysts Using the Cyclic Voltammetry Method. Electrochimica Acta, 341, Article ID: 135976.
https://doi.org/10.1016/j.electacta.2020.135976
[16] Wu, X., Wang, R. and Li, Y. (2022) A Thin-Layer Diffusion Model-Based Intelligent Cyclic Voltammetry Analysis Method to Capture Electrochemical Parameters in Flow Batteries. Electrochimica Acta, 433, Article ID: 141267.
https://doi.org/10.1016/j.electacta.2022.141267
[17] Nasir, S.N.S., Sidek, N., Kadir, M.F.Z. and Manan, N.S.A. (2019) Electrochemical Behavior of NH4VO3 in Glyceline DES Studied by Cyclic Voltammetry Method. Ionics, 25, 4981-4990.
https://doi.org/10.1007/s11581-019-03054-w
[18] Saqib, M., Dorozhko, E.V., Barek, J., Vyskocil, V., Korotkova, E.I. and Shabalina, A.V. (2021) A Laser Reduced Graphene Oxide Grid Electrode for the Voltammetric Determination of Carbaryl. Molecules, 26, Article 5050.
https://doi.org/10.20944/preprints202107.0213.v1
[19] Zuo, X., Xu, C. and Xin, H. (1997) Simulation of Voltammogram on Rough Electrode. Electrochimica Acta, 42, 2555-2558.
https://doi.org/10.1016/S0013-4686(96)00448-3
[20] Tan, H.W., Ramesh, S. and Liew, C.W. (2019) Electrical, Thermal, and Structural Studies on Highly Conducting Additive-Free Biopolymer Electrolytes for Electric Double-Layer Capacitor Application. Ionics, 25, 4861-4874.
https://doi.org/10.1007/s11581-019-03017-1
[21] Exner, K.S. (2019) Beyond the Traditional Volcano Concept: Overpotential-Dependent Volcano Plots Exemplified by the Chlorine Evolution Reaction over Transition-Metal Oxides. The Journal of Physical Chemistry C, 123, 16921-16928.
https://doi.org/10.1021/acs.jpcc.9b05364
[22] Survila, A., Kanapeckaite, S. and Mažeika, K. (2018) Double Current Maxima Formed under Linear Potential Sweep Conditions in Acetic Acid Solutions at pH < 2.5. Russian Journal of Electrochemistry, 54, 33-42.
https://doi.org/10.1134/S1023193518010081
[23] Zhu, S., Lei, J., Zhang, L. and He, J. (2020) CoO/NF Nanowires Promote Hydrogen and Oxygen Production for Overall Water Splitting in Alkaline Media. International Journal of Hydrogen Energy, 45, 8031-8040.
https://doi.org/10.1016/j.ijhydene.2020.01.085
[24] Yang, L., Zhu, X., Xiong, S., Wu, X., Shan, Y. and Chu, P.K. (2016) Synergistic WO3∙2H2O Nanoplates/WS2 Hybrid Catalysts for High-Efficiency Hydrogen Evolution. ACS Applied Materials & Interfaces, 8, 13966-13972.
https://doi.org/10.1021/acsami.6b04045
[25] Wang, J., Wei, X., Wang, X., Song, W., Zhong, W., Wang, M., Ju, J. and Tang, Y. (2021) Plasmonic Au Nanoparticle@Ti3C2Tx Heterostructures for Improved Oxygen Evolution Performance. Inorganic Chemistry, 60, 5890-5897.
https://doi.org/10.1021/acs.inorgchem.1c00302
[26] Theerthagiri, J., Lee, S.J., Murthy, A.P., Madhavan, J. and Choi, M.Y. (2020) Fundamental Aspects and Recent Advances in Transition Metal Nitrides as Electrocatalysts for Hydrogen Evolution Reaction: A Review. Current Opinion in Solid State and Materials Science, 24, Article ID: 100805.
https://doi.org/10.1016/j.cossms.2020.100805
[27] Wang, J., Zhang, M., Yang, G., Song, W., Zhong, W., Wang, X., Wang, M., Sun, T. and Tang, Y. (2021) Heterogeneous Bimetallic Mo-NiPx/NiSy as a Highly Efficient Electrocatalyst for Robust Overall Water Splitting. Advanced Functional Materials, 31, Article ID: 2101532.
https://doi.org/10.1002/adfm.202101532
[28] Yang, G., Wang, Y., Peng, F., Bergara, A. and Ma, Y. (2016) Gold as a 6p-Element in Dense Lithium Aurides. Journal of the American Chemical Society, 138, 4046-4052.
https://doi.org/10.1021/jacs.5b11768
[29] Fan, C., Liu, C., Peng, F., Tan, N., Tang, M., Zhang, Q., Wang, Q., Li, F., Wang, J., Chen, Y., et al. (2017) Phase Stability and Incompressibility of Tungsten Boride (WB) Researched by in-situ High Pressure X-Ray Diffraction. Physica B: Condensed Matter, 521, 6-12.
https://doi.org/10.1016/j.physb.2017.06.028
[30] Zou, M., Zhang, J., Zhu, H., Du, M., Wang, Q., Zhang, M. and Zhang, X. (2015) A 3D Dendritic WSe2 Catalyst Grown on Carbon Nanofiber Mats for Efficient Hydrogen Evolution. Journal of Materials Chemistry A, 3, 12149-12153.
https://doi.org/10.1039/C5TA02538A
[31] Kadam, S.R., Enyashin, A.N., Houben, L., Bar-Ziv, R. and Bar-Sadan, M. (2020) Ni-WSe2 Nanostructures as Efficient Catalysts for Electrochemical Hydrogen Evolution Reaction (HER) in Acidic and Alkaline Media. Journal of Materials Chemistry A, 8, 1403-1416.
https://doi.org/10.1039/C9TA10990K
[32] Yang, Y., Fei, H., Ruan, G., Li, Y. and Tour, J.M. (2015) Vertically Aligned WS2 Nanosheets for Water Splitting. Advanced Functional Materials, 25, 6199-6204.
https://doi.org/10.1002/adfm.201502479
[33] Li, A., Chang, X., Huang, Z., Li, C., Wei, Y., Zhang, L., Wang, T. and Gong, J. (2016) Thin Heterojunctions and Spatially Separated Cocatalysts To Simultaneously Reduce Bulk and Surface Recombination in Photocatalysts. Angewandte Chemie International Edition, 55, 13734-13738.
https://doi.org/10.1002/anie.201605666
[34] Wu, A., Xie, Y., Ma, H., Tian, C., Gu, Y., Yan, H., Zhang, X., Yang, G. and Fu, H. (2018) Integrating the Active OER and HER Components as the Heterostructures for the Efficient Overall Water Splitting. Nano Energy, 44, 353-363.
https://doi.org/10.1016/j.nanoen.2017.11.045
[35] Kim, D., Zhang, Z. and Yong, K. (2018) Synergistic Doping Effects of a ZnO: N/BiVO4: Mo Bunched Nanorod Array Photoanode for Enhancing Charge Transfer and Carrier Density in Photoelectrochemical Systems. Nanoscale, 10, 20256-20265.
https://doi.org/10.1039/C8NR06630B
[36] Liang, J., Yu, Q., Yang, X., Zhang, T. and Li, J. (2018) A Systematic Theoretical Study on FeOx-Supported Single-Atom Catalysts: M1/FeOx for CO Oxidation. Nano Research, 11, 1599-1611.
https://doi.org/10.1007/s12274-017-1775-0
[37] Carmo, M., Fritz, D.L., Mergel, J. and Stolten, D. (2013) A Comprehensive Review on PEM Water Electrolysis. International Journal of Hydrogen Energy, 38, 4901-4934.
https://doi.org/10.1016/j.ijhydene.2013.01.151
[38] Park, S., Shao, Y., Liu, J. and Wang, Y. (2012) Oxygen Electrocatalysts for Water Electrolyzers and Reversible Fuel Cells: Status and Perspective. Energy & Environmental Science, 5, 9331-9344.
https://doi.org/10.1039/c2ee22554a
[39] Tang, C., Wang, H.F. and Zhang, Q. (2018) Multiscale Principles to Boost Reactivity in Gas-Involving Energy Electrocatalysis. Accounts of Chemical Research, 51, 881-889.
https://doi.org/10.1021/acs.accounts.7b00616
[40] Wang, H. and Dai, H. (2013) Strongly Coupled Inorganic-Nano-Carbon Hybrid Materials for Energy Storage. Chemical Society Reviews, 42, 3088-3113.
https://doi.org/10.1039/c2cs35307e
[41] Tang, C., Zhong, L., Zhang, B., Wang, H.F. and Zhang, Q. (2018) 3D Mesoporous van der Waals Heterostructures for Trifunctional Energy Electrocatalysis. Advanced Materials, 30, Article ID: 1705110.
https://doi.org/10.1002/adma.201705110
[42] Wang, B., Tang, C., Wang, H.F., Chen, X., Cao, R. and Zhang, Q. (2019) A Nanosized CoNi Hydroxide@Hydroxy- sulfide Core—Shell Heterostructure for Enhanced Oxygen Evolution. Advanced Materials, 31, Article ID: 1805658.
https://doi.org/10.1002/adma.201805658
[43] Li, J., Hong, W., Jian, C., Cai, Q. and Liu, W. (2019) Seamless Tungsten Disulfide-Tungsten Heterojunction with Abundant Exposed Active Sites for Efficient Hydrogen Evolution. Applied Catalysis B: Environmental, 244, 320-326.
https://doi.org/10.1016/j.apcatb.2018.11.042
[44] Hai, G., Huang, J., Cao, L., Kajiyoshi, K., Wang, L. and Feng, L. (2021) Hierarchical W18O49/NiWO4/NF Heterojunction with Tuned Composition and Charge Transfer for Efficient Water Splitting. Applied Surface Science, 562, Article ID: 150145.
https://doi.org/10.1016/j.apsusc.2021.150145
[45] Chandrasekaran, S., Yao, L., Deng, L., Bowen, C., Zhang, Y., Chen, S., Lin, Z., Peng, F. and Zhang, P. (2019) Recent Advances in Metal Sulfides: From Controlled Fabrication to Electrocatalytic, Photocatalytic and Photoelectrochemical Water Splitting and Beyond. Chemical Society Reviews, 48, 4178-4280.
https://doi.org/10.1039/C8CS00664D
[46] Liu, B., Li, H., Cao, B., Jiang, J., Gao, R. and Zhang, J. (2018) Few Layered N, P Dual-Doped Carbon-Encapsulated Ultrafine MoP Nanocrystal/MoP Cluster Hybrids on Carbon Cloth: An Ultrahigh Active and Durable 3D Self-Supported Integrated Electrode for Hydrogen Evolution Reaction in a Wide pH Range. Advanced Functional Materials, 28, Article ID: 1801527.
https://doi.org/10.1002/adfm.201801527
[47] Kim, J., Jung, H., Jung, S.M., Hwang, J., Kim, D.Y., Lee, N., Kim, K.S., Kwon, H., Kim, Y.T., Han, J.W., et al. (2021) Tailoring Binding Abilities by Incorporating Oxophilic Transition Metals on 3D Nanostructured Ni Arrays for Accelerated Alkaline Hydrogen Evolution Reaction. Journal of the American Chemical Society, 143, 1399-1408.
https://doi.org/10.1021/jacs.0c10661
[48] Ye, L., Chen, S., Li, W., Pi, M., Wu, T. and Zhang, D. (2015) Tuning the Electrical Transport Properties of Multilayered Molybdenum Disulfide Nanosheets by Intercalating Phosphorus. The Journal of Physical Chemistry C, 119, 9560-9567.
https://doi.org/10.1021/jp5128018
[49] Wang, D.Y., Gong, M., Chou, H.L., Pan, C.J., Chen, H.A., Wu, Y., Lin, M.C., Guan, M., Yang, J., Chen, C.W., et al. (2015) Highly Active and Stable Hybrid Catalyst of Cobalt-Doped FeS2 Nanosheets—Carbon Nanotubes for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 137, 1587-1592.
https://doi.org/10.1021/ja511572q
[50] Xu, W., Ni, X.M., Zhang, L.J., Yang, F., Peng, Z., Huang, Y.F. and Liu, Z. (2022) Tuning the Electronic Structure of Tungsten Oxide for Enhanced Hydrogen Evolution Reaction in Alkaline Electrolyte. ChemElectroChem, 9, e202101300.
https://doi.org/10.1002/celc.202101300
[51] Sun, C., Wang, P., Wang, H., Xu, C., Zhu, J., Liang, Y., Su, Y., Jiang, Y., Wu, W., Fu, E., et al. (2019) Defect Engineering of Molybdenum Disulfide through Ion Irradiation to Boost Hydrogen Evolution Reaction Performance. Nano Research, 12, 1613-1618.
https://doi.org/10.1007/s12274-019-2400-1
[52] Kang, S., Koo, J.J., Seo, H., Truong, Q.T., Park, J.B., Park, S.C., Jung, Y., Cho, S.P., Nam, K.T., Kim, Z.H., et al. (2019) Defect-Engineered MoS2 with Extended Photoluminescence Lifetime for High-Performance Hydrogen Evolution. Journal of Materials Chemistry C, 7, 10173-10178.
https://doi.org/10.1039/C9TC02256B
[53] Wang, Y., Qiao, M., Li, Y. and Wang, S. (2018) Tuning Surface Electronic Configuration of NiFe LDHs Nanosheets by Introducing Cation Vacancies (Fe or Ni) as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. Small, 14, Article ID: 1800136.
https://doi.org/10.1002/smll.201800136
[54] Hong, J., Hu, Z., Probert, M., Li, K., Lv, D., Yang, X., Gu, L., Mao, N., Feng, Q., Xie, L., et al. (2015) Exploring Atomic Defects in Molybdenum Disulphide Monolayers. Nature Communications, 6, Article No. 6293.
https://doi.org/10.1038/ncomms7293
[55] Zhou, W., Zou, X., Najmaei, S., Liu, Z., Shi, Y., Kong, J., Lou, J., Ajayan, P.M., Yakobson, B.I. and Idrobo, J.C. (2013) Intrinsic Structural Defects in Monolayer Molybdenum Disulfide. Nano Letters, 13, 2615-2622.
https://doi.org/10.1021/nl4007479
[56] Cao, D., Zhang, T., Zeng, J., Cai, L., Pu, X., Qian, J., Gao, D. and Liu, J. (2021) Fe13+-Ion Irradiated WS2 with Multi-Vacancies and Fe Dopants for Hydrogen Evolution Reaction. FlatChem, 27, Article ID: 100247.
https://doi.org/10.1016/j.flatc.2021.100247
[57] Zhang, X., Guo, T., Liu, T., Lv, K., Wu, Z. and Wang, D. (2019) Tungsten Phosphide (WP) Nanoparticles with Tunable Crystallinity, W Vacancies, and Electronic Structures for Hydrogen Production. Electrochimica Acta, 323, Article ID: 134798.
https://doi.org/10.1016/j.electacta.2019.134798
[58] Li, L., Sau, C., Fanni, T., Li, J., Viitanen, T., Christophe, F., Palumbo, F., Raffo, L., Huttunen, H., Takala, J., et al. (2019) An Integrated Hardware/Software Design Methodology for Signal Processing Systems. Journal of Systems Architecture, 93, 1-19.
https://doi.org/10.1016/j.sysarc.2018.12.010
[59] Lv, C., Yan, C., Chen, G., Ding, Y., Sun, J., Zhou, Y. and Yu, G. (2018) An Amorphous Noble-Metal-Free Electrocatalyst That Enables Nitrogen Fixation under Ambient Conditions. Angewandte Chemie International Edition, 57, 6073-6076.
https://doi.org/10.1002/anie.201801538
[60] Chang, K., Hai, X., Pang, H., Zhang, H., Shi, L., Liu, G., Liu, H., Zhao, G., Li, M. and Ye, J. (2016) Targeted Synthesis of 2H- and 1T-Phase MoS2 Monolayers for Catalytic Hydrogen Evolution. Advanced Materials, 28, 10033-10041.
https://doi.org/10.1002/adma.201603765
[61] Zhou, X., Liu, X., Zhang, J., Zhang, C., Yoo, S.J., Kim, J.G., Chu, X., Song, C., Wang, P., Zhao, Z., et al. (2020) Highly-Dispersed Cobalt Clusters Decorated onto Nitrogen-Doped Carbon Nanotubes as Multifunctional Electrocatalysts for OER, HER and ORR. Carbon, 166, 284-290.
https://doi.org/10.1016/j.carbon.2020.05.037
[62] Han, H., Choi, H., Mhin, S., Hong, Y.R., Kim, K.M., Kwon, J., Ali, G., Chung, K.Y., Je, M., Umh, H.N., et al. (2019) Advantageous Crystalline-Amorphous Phase Boundary for Enhanced Electrochemical Water Oxidation. Energy & Environmental Science, 12, 2443-2454.
https://doi.org/10.1039/C9EE00950G
[63] Li, H., Gao, Y., Wang, C. and Yang, G. (2015) A Simple Electrochemical Route to Access Amorphous Mixed-Metal Hydroxides for Supercapacitor Electrode Materials. Advanced Energy Materials, 5, Article ID: 1401767.
https://doi.org/10.1002/aenm.201401767
[64] Tang, C., Titirici, M.M. and Zhang, Q. (2017) A Review of Nanocarbons in Energy Electrocatalysis: Multifunctional Substrates and Highly Active Sites. Journal of Energy Chemistry, 26, 1077-1093.
https://doi.org/10.1016/j.jechem.2017.08.008
[65] You, B., Tang, M.T., Tsai, C., Abild-Pedersen, F., Zheng, X. and Li, H. (2019) Enhancing Electrocatalytic Water Splitting by Strain Engineering. Advanced Materials, 31, Article ID: 1807001.
https://doi.org/10.1002/adma.201807001
[66] Wang, X., Zhu, Y., Vasileff, A., Jiao, Y., Chen, S., Song, L., Zheng, B., Zheng, Y. and Qiao, S.Z. (2018) Strain Effect in Bimetallic Electrocatalysts in the Hydrogen Evolution Reaction. ACS Energy Letters, 3, 1198-1204.
https://doi.org/10.1021/acsenergylett.8b00454
[67] Liu, F., Liu, C. and Zhong, X. (2019) Enhancing Electrocatalysis for Hydrogen Production Over CoP Catalyst by Strain: A Density Functional Theory Study. Physical Chemistry Chemical Physics, 21, 9137-9140.
https://doi.org/10.1039/C9CP00128J
[68] Yang, C., Gao, M.Y., Zhang, Q.B., Zeng, J.R., Li, X.T. and Abbott, A.P. (2017) In-Situ Activation of Self-Supported 3D Hierarchically Porous Ni3S2 Films Grown on Nanoporous Copper as Excellent pH-Universal Electrocatalysts for Hydrogen Evolution Reaction. Nano Energy, 36, 85-94.
https://doi.org/10.1016/j.nanoen.2017.04.032
[69] Luo, Y., Liu, Y., Wu, L., Ma, X., Liu, Q., Huang, F., Zhang, X., Zhang, Y., Zhang, J., Luo, H., et al. (2019) CUL7 E3 Ubiquitin Ligase Mediates the Degradation of Activation-Induced Cytidine Deaminase and Regulates the Ig Class Switch Recombination in B Lymphocytes. The Journal of Immunology, 203, 269-281.
https://doi.org/10.4049/jimmunol.1900125
[70] Han, H., Kim, K.M., Choi, H., Ali, G., Chung, K.Y., Hong, Y.R., Choi, J., Kwon, J., Lee, S.W., Lee, J.W., et al. (2018) Parallelized Reaction Pathway and Stronger Internal Band Bending by Partial Oxidation of Metal Sulfide—Graphene Composites: Important Factors of Synergistic Oxygen Evolution Reaction Enhancement. ACS Catalysis, 8, 4091-4102.
https://doi.org/10.1021/acscatal.8b00017
[71] Hong, Y.R., Mhin, S., Kim, K.M., Han, W.S., Choi, H., Ali, G., Chung, K.Y., Lee, H.J., Moon, S.I., Dutta, S., et al. (2019) Electrochemically Activated Cobalt Nickel Sulfide for an Efficient Oxygen Evolution Reaction: Partial Amorphization and Phase Control. Journal of Materials Chemistry A, 7, 3592-3602.
https://doi.org/10.1039/C8TA10142F
[72] Zhu, K., Zhu, X. and Yang, W. (2019) Application of in situ Techniques for the Characterization of NiFe-Based Oxygen Evolution Reaction (OER) Electrocatalysts. Angewandte Chemie International Edition, 58, 1252-1265.
https://doi.org/10.1002/anie.201802923
[73] Zhu, Y., Wang, J., Chu, H., Chu, Y.C. and Chen, H.M. (2020) In Situ/Operando Studies for Designing Next-Generation Electrocatalysts. ACS Energy Letters, 5, 1281-1291.
https://doi.org/10.1021/acsenergylett.0c00305
[74] Li, X., Wang, H.Y., Yang, H., Cai, W., Liu, S. and Liu, B. (2018) In Situ/Operando Characterization Techniques to Probe the Electrochemical Reactions for Energy Conversion. Small Methods, 2, Article ID: 1700395.
https://doi.org/10.1002/smtd.201700395
[75] Yan, Y., Wang, P., Lin, J., Cao, J. and Qi, J. (2021) Modification Strategies on Transition Metal-Based Electrocatalysts for Efficient Water Splitting. Journal of Energy Chemistry, 58, 446-462.
https://doi.org/10.1016/j.jechem.2020.10.010