一类包含恐惧效应的比率依赖型捕食者-食饵模型的 Hopf 分支
Hopf Bifurcation of a Rate-Dependent Type Predator-Prey Model with Fear Effects
DOI: 10.12677/PM.2023.137220, PDF, 下载: 162  浏览: 232 
作者: 王博:西北师范大学数学与统计学院,甘肃 兰州
关键词: 恐惧因子Michaelis-MIenten 模型平衡点稳定性Hopf 分支Fear Effect Michaelis-Menten Model Equilibrium Points Stability Hopf Bifurcation
摘要: 在本文中,研究一类带比率依赖型功能反应的捕食者-食饵模型,模型中考虑了捕食者被线性捕获和食饵对捕食者的反捕食行为。主要讨论食饵恐惧对系统动力学的影响。首先分析平衡点的存在性和稳定性。其次以恐惧因子k 为分支参数,给出 Hopf 分支存在的条件,并且利用中心流形定理分析 Hopf 分支的方向及分支周期解的稳定性。最后,运用 MATLAB 软件进行数值模拟以支持所得结论。
Abstract: In this paper, we investigate the dynamics of a ratio-dependent predator prey model, and considering the linear capture of the predator and the antipredation behavior of a prey toward a predator. Therefore, our aim focuses on the impact of prey fear on the predation system. Firstly, we discuss the local asymptotic stability and the existence of the equilibrium points. Secondly, taking the fear effect k as the bifurcation parameter to give the condition of the existence of Hopf bifurcation, and using the canonical theory and the central manifold theorem to analyze the direction of Hopf bifurcation and the stability of periodic solution of bifurcation. Finally, MATLAB software is used for numerical simulation to support our conclusions.
文章引用:王博. 一类包含恐惧效应的比率依赖型捕食者-食饵模型的 Hopf 分支[J]. 理论数学, 2023, 13(7): 2125-2135. https://doi.org/10.12677/PM.2023.137220

参考文献

[1] Volkeltigoe, M. (1992) The Origins and Evolution of Predator-Prey Theory. Ecology, 73, 1530-1535.
https://doi.org/10.2307/1940005
[2] Freedman, H.I. (1980) Deterministic Mathematical Models in Population Ecology. Biometrics, 22, 219-236.
[3] May, R.M. (1974) Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton, NJ.
[4] Wang, W.M., Liu, Q.X. and Jin, Z. (2007) Spatiotemporal Complexity of a Ratio-Dependent Predator-Prey System. Physical Review E, 75, Article 051913.
https://doi.org/10.1103/PhysRevE.75.051913
[5] Arditi, R., Ginzburg, L.R. and Akcakaya, H.R. (1991) Variation in Plankton Densities among Lakes: A Case for Ratio Dependent Predation Models. The American Naturalist, 138, 1287-1296.
https://doi.org/10.1086/285286
[6] Ginzburg, L.R. and Akakaya, H.R. (1992) Consequences of Ratio Dependent Predation for Steady State Properties of Ecosystems. Ecology, 73, 1536-1543.
https://doi.org/10.2307/1940006
[7] Akcakaya, H.R., Arditi, R. and Ginzburg, L.R. (1995) Ratio Dependent Predation: An Abstraction That Works. Ecology, 76, 995-1004.
https://doi.org/10.2307/1939362
[8] Cosner, C., Deangelis, D.L., Ault, J.S. and Olson, D.B. (1999) Effects of Spatial Grouping on the Functional Response of Predators. Theoretical Population Biology, 56, 65-75.
https://doi.org/10.1006/tpbi.1999.1414
[9] Kumar, D. and Chakrabarty, S.P. (2015) A Comparative Study of Bioeconomic Ratio- Dependent Predator-Prey Model with and without Additional Food to Predators. Nonlinear Dynamics, 80, 23-38.
https://doi.org/10.1007/s11071-014-1848-5
[10] Berezovskaya, F., Karev, G. and Arditi, R. (2001) Parametric Analysis of the Ratio-Dependent Predator-Prey Model. Journal of Mathematical Biology, 43, 221-246.
https://doi.org/10.1007/s002850000078
[11] Hsu, S.B., Hwang, T.W. and Kuang, Y. (2001) Global Analysis of the Michaelis-Menten- Type Ratio-Dependent Predator-Prey System. Journal of Mathematical Biology, 42, 489-506.
https://doi.org/10.1007/s002850100079
[12] Jost, C., Arino, O. and Arditi, R. (1999) About Deterministic Extinction in Ratio-Dependent Predator-Prey Models. Bulletin of Mathematical Biology, 61, 19-32.
https://doi.org/10.1006/bulm.1998.0072
[13] Kuang, Y. (1999) Rich Dynamics of Gause-Type Ratio-Dependent Predator-Prey System. Fields Institute Communications, 21, 325-337.
https://doi.org/10.1090/fic/021/27
[14] Yang, K. and Beretta, E. (1998) Global Qualitative Analysis of a Ratio-Dependent Predator-Prey System. Journal of Mathematical Biology, 36, 389-406.
https://doi.org/10.1007/s002850050105
[15] Xiao, D.M. and Jennings, L.S. (2005) Bifurcations of A Ratio-Dependent Predator-Prey System with Constant Rate Harvesting. SIAM Journal on Applied Mathematics, 65, 737-753.
https://doi.org/10.1137/S0036139903428719
[16] Makinde, O.D. (2007) Solving Ratio-Dependent Predator-Prey System with Constant Effort Harvesting Using Adomian Decomposition Method. Applied Mathematics and Computation, 186, 17-22.
https://doi.org/10.1016/j.amc.2006.07.083
[17] Gao, X.Y., Ishag, S., Fu, S.M., Li, W.J. and Wang, W.M. (2020) Bifurcation and Turing Pattern Formation in a Diffusive Ratio-Dependent Predator-Prey Model with Predator Harvesting. Nonlinear Analysis, 51, Article 102962.
https://doi.org/10.1016/j.nonrwa.2019.102962
[18] Creel, S. and Christianson, D. (2008) Relationships between Direct Predation and Risk Effects. TREE, 23, 194-201.
https://doi.org/10.1016/j.tree.2007.12.004
[19] Zanette, L.Y. and Clinchy, M. (2011) Perceived Predation Risk Reduces the Number of Off-spring Songbirds Produce per Year. Science, 334, 1398-1401.
https://doi.org/10.1126/science.1210908
[20] Wang, X., Zanette, L. and Zou, X. (2016) Modelling the Fear Effect in Predator-Prey Interactions. Journal of Mathematical Biology, 73, 1179-1204.
https://doi.org/10.1007/s00285-016-0989-1
[21] Upadhyay, R. and Mishra, S. (2018) Population Dynamic Consequences of Fearful Prey in a Spatiotemporal Predator-Prey System. Mathematical Biosciences and Engineering, 16, 338-372.
https://doi.org/10.3934/mbe.2019017
[22] Hale, J.K. and Kocak, H. (1991) Dynamics and Bifurcations. Springer-Verlag, Berlin.
https://doi.org/10.1007/978-1-4612-4426-4
[23] Hassard, B.D., Kazarinoff, N.D. and Wan, Y.H. (1981) Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge.