BMSCs-Exos对环磷酰胺诱导的大鼠精原细胞损伤的修复作用
Repair Effect of BMSCs-Exos on Cyclophosphamide-Induced Rat Germ Cell Injury
DOI: 10.12677/ACM.2023.1371706, PDF, HTML, XML, 下载: 147  浏览: 296  科研立项经费支持
作者: 佴 震, 麦选诚*:云南省第一人民医院生殖医学科,云南 昆明;昆明理工大学医学院附属医院,云南 昆明
关键词: 骨髓来源的间充质干细胞外泌体非阻塞性无精子症精原细胞环磷酰胺Bone Marrow-Derived Mesenchymal Stem Cells Exosomes Non-Obstructive Azoospermia Spermatogonia Cyclophosphamide
摘要: 目的:非阻塞性无精子症(NOA)是男性不孕症的严重问题,目前医学上缺乏有效的治疗方法。骨髓来源的间充质干细胞(BMSCs)具有多能分化能力和旁分泌效应,并参与组织修复和再生。本研究旨在探讨BMSCs外泌体(BMSCs-exos)对环磷酰胺诱导的精原细胞凋亡的抑制和改善细胞增殖的作用,为临床上应用间充质干细胞外泌体治疗细胞化疗损伤提供前期实验基础,并为后续进一步研究其机制奠定前期基础。方法:取大鼠股骨骨髓,使用流式细胞术培养,并使用成骨及成脂诱导培养鉴定BMSCs。然后使用超速离心法获取并收集BMSC细胞外泌体。通过透射电子显微镜、Western blotting和纳米流式检测蛋白标记分析鉴定BMSCs-exos。将大鼠处死后收集培养生精细胞,然后进行瑞氏–姬姆萨染色证实培养的细胞确为精原细胞,将精原细胞经过不同浓度的环磷酰胺(CTX)的处理,CCK8筛选出最佳CTX处理浓度12 uM,然后再将精原细胞进行分组处理:精原细胞组正常培养(Control对照组)、化疗损伤组(CTX组)和化疗损伤 + 外泌体干预组(CTX + BMSCs-exosomes组),之后对3组细胞进行增殖和凋亡检测。结果:对3组细胞进行的细胞凋亡率检测结果显示,细胞凋亡率:CTX组 > CTX + BMSCs-exosomes组 > Control对照组;细胞增殖能力:Control对照组 > CTX + BMSCs-exosomes组 > CTX组。结论:CTX化疗药物可以增加大鼠生精细胞的凋亡,BMSCs-exos可以抑制大鼠生精细胞的凋亡,增强细胞的增殖。该研究为临床上无精症的治疗提供一定的参考,也为临床上应用间充质干细胞外泌体治疗细胞化疗损伤提供前期实验基础,并为后续进一步研究其机制奠定前期基础。
Abstract: Objective: Non-obstructive azoospermia (NOA) is a serious problem in male infertility, and there is currently no effective treatment in medicine. Bone marrow-derived mesenchymal stem cells (BMSCs) have multipotent differentiation ability and paracrine effects, and participate in tissue re-pair and regeneration. This study aims to explore the inhibitory effect of BMSCs-exosomes on cy-clophosphamide-induced germ cell apoptosis and the improvement of cell proliferation, providing a preliminary experimental basis for the clinical application of mesenchymal stem cell exosomes in the treatment of chemotherapy-induced cell damage, and laying a preliminary foundation for fur-ther research on its mechanism. Methods: Rat bone marrow was taken, cultured using flow cytome-try, and identified as BMSCs using osteogenic and adipogenic induction culture. Then, ultracentrif-ugation was used to obtain and collect BMSC extracellular vesicles. BMSCs-exos were identified by transmission electron microscopy, Western blotting, and nanoflow cytometry protein marker anal-ysis. After rats were killed, cultured germ cells were collected and confirmed by Rhys-Jones staining to be germ cells. The germ cells were treated with different concentrations of cyclophosphamide (CTX), and the optimal CTX treatment concentration was screened by CCK8 as 12 uM. Then the germ cells were divided into three groups: normal culture (Control group), chemotherapy damage group (CTX group), and chemotherapy damage + exosome intervention group (CTX + BMSCs-exosomes group). The proliferation and apoptosis of the three groups of cells were detected. Results: The re-sults of cell apoptosis rate detection of the three groups of cells showed that the cell apoptosis rate was CTX group > CTX + BMSCs-exosomes group > Control group; Cell proliferation ability: Control group > CTX + BMSCs-exosomes group > CTX group. Conclusion: Cyclophosphamide chemotherapy drugs can increase the apoptosis of rat germ cells. BMSCs-exos can inhibit the apoptosis of rat germ cells and enhance cell proliferation. This study provides a certain reference for the treatment of azoospermia in clinical practice, provides a preliminary experimental basis for the clinical applica-tion of mesenchymal stem cell exosomes in the treatment of chemotherapy-induced cell damage, and lays a preliminary foundation for further research on its mechanism.
文章引用:佴震, 麦选诚. BMSCs-Exos对环磷酰胺诱导的大鼠精原细胞损伤的修复作用[J]. 临床医学进展, 2023, 13(7): 12171-12186. https://doi.org/10.12677/ACM.2023.1371706

1. 研究背景

据世卫组织评估,每8对夫妇中就有1对存在生殖障碍,我国不孕症的发病率约15%,不孕患者已超过5000万,其中男性因素约占50%。不育症 [1] (infertility)是指育龄期男性婚后有正常性生活,未采取任何避孕措施,同居1年而女方未受孕。其中非梗阻性无精子症(non-obstructive azoospermia, NOA),是指外周精液无精子,并且行睾丸穿刺活检后发现睾丸内无精子生成,是不育症中最严重种类型 [2] 精子发生功能障碍可能与精原干细胞(spermatogonia stem cells, SSCs)的增殖、分化和减数分裂失调有关 [3] 。

现有的以药物、显微取精手术及辅助生殖技术为主的治疗手段,只能为少数非梗阻性无精子症患者提供了有效的治疗手段 [4] [5] ,但对于大部分非梗阻性无精子症的患者来说,目前医学上缺乏特效的治疗方案,大多数患者只能通过人类精子库进行供精人工授精或供精试管婴儿治疗。然而这些夫妇更期望获得自己遗传学上的后代 [6] ,因此探寻更为有效而安全的方式,对治疗非梗阻性无精子症具有重要的意义。在另外一方面男性肿瘤患者治疗同时,化疗药物和射线也可能导致不同程度的精液参数异常甚至出现不可逆的无精子症。目前为了缓解化疗和放疗对精子发生的毒理过程和保护睾丸生精功能的相关研究提示应用激素抑制法可能会有保护和修复放化疗后的精子发生功能的作用但尚有争议 [7] ,其他的补救措施如预先冷冻保存精原细胞或睾丸组织,在肿瘤治愈后再行自体移植 [8] ,不能阻止化疗药物和射线对生精功能损害过程,也不能恢复肿瘤治疗对生精微环境的破坏,可能会影响移植后的精原细胞向精子分化 [9] [10] 。所以寻找能够保护肿瘤治疗中睾丸细胞和影响精子发生的微环境的治疗策略,减少化疗和放疗对患者生精功能的损害,具有十分重要意义。

干细胞治疗是医学领域的重要部分,干细胞移植在血液、神经、心血管、消化等多系统、组织修复、免疫性疾病等方面都己有了较大的突破,为许多过去难以治疗的疾病提供了治疗希望。间充质干细胞(mesenchymal stem cells, MSCs)是成体干细胞家族中的重要组成部分,来源于胚胎发育早期的中胚层和外胚层,在相关条件诱导下可定向分化为成骨细胞 [11] 、内皮细胞 [12] 、脂肪细胞 [11] 、肝细胞 [13] 、心肌细胞 [14] 等,具有多能性、低免疫原性、免疫调节功能和损伤趋化性等特点 [15] [16] [17] [18] 。目前全球关于干细胞的临床研究多达5000余项,覆盖神经系统、内分泌系统、自身免疫系统、消化系统等多种疾病。然而,MSCs移植面临的致瘤性、免疫源性等问题成为其临床应用的阻碍。MSC-EXOs是间充质干细胞分泌的脂质双分子层包裹的纳米外泌体,能够起到与干细胞相似的生理作用,同时突破干细胞治疗的许多问题 [19] [20] ,如减少心肌缺血-再灌注损伤、促进脑卒中后神经系统恢复、促进创面愈合等。并且,MSC-EXO作为一种无细胞治疗策略,可以避免干细胞移植所带来的免疫源性、移植后不可控性等问题,这为MSC-EXO的广泛应用带来了巨大的优势。例如应用间充质干细胞外泌体比直接移植或输注干细胞更加安全、快捷与高效,能更好地发挥干细胞的治疗潜能。据报道,MSC-EXOs已在多种疾病的治疗中发挥作用,例如参与卒中后神经与血管的重塑 [21] 、药物性肝损伤的肝再生 [22] 、骨骼肌再生 [23] 、皮肤创伤愈合 [24] 、骨折愈合 [25] 和软骨再生等 [26] [27] 。这一系列的研究表明了MSCs-EXOs广泛的治疗效果,为间充质干细胞外泌体治疗化疗损伤带来了曙光。环磷酰胺(cyclophosphamide, CTX)是氮芥类衍生物,属细胞周期非特异性药物,通过线粒体释放细胞色素c来激活凋亡通路,从而诱导DNA损伤 [28] [29] ,导致精子生成障碍 [30] [31] 。

精子发生(Spermatogenesis)是由精原干细胞(Spermatogonial Stem Cells, SSCs)经过严格调控的自我更新和分化成为成熟精子的过程。同时,精子发生是一个复杂、精密调控的过程,一旦发生异常将会导致无精症、弱精症和少精症等症状,引起雄性不育 [32] ,目前,雄性不育的发病机制还不清楚,治疗效果不理想,尚需对其原因、机制及治疗手段等进行更加深入的研究,国内外关于间充质干细胞来源的外泌体对生精细胞化疗损伤的实验研究鲜有报道。因此,本研究旨在探讨间充质干细胞来源的外泌体(mesenchymal stem cellderived exosomes, MSC-EXOs)是否对睾丸精原细胞化疗损伤有治疗作用,为无精症的治疗提供一种新型的治疗手段。

2. 实验方法

2.1. BMSCs细胞分离培养及鉴定

2.1.1. BMSCs分离培养

取一月龄大鼠,取出骨髓,在15 ml离心管中加入5 ml左右淋巴细胞分离液,将骨髓加入到分离液上,1700 rpm,离心20 min,取第二层(乳白色)细胞于新的15 ml离心管中,补加8 ml左右PBS;1300 rpm,离心10 min;细胞沉淀用DMEM/F12培养基重悬,将其接种于T-25瓶中,37℃,5% CO2培养箱中培养;48 h半换液,96 h全换液,培养7天左右细胞有明显集落,培养10天左右细胞快速增殖。细胞生长至约80%融合时按1:3进行传代。

2.1.2. 骨髓间充质干细胞(BMSCs)的鉴定

1) 骨髓间充质干细胞(BMSCs)免疫表型鉴定

当细胞汇合度长至80%以上时,用0.25%的胰酶消化成单细胞悬液,1000 rpm离心5 min;用Cell Staining Buffer重悬成细胞密度至1 × 107/ml,取100 ul约1 × 106个细胞入EP管,并于EP管内分别加入5 ul APC anti-mouse CD34 Antibody,5 ul FITC anti-mouse CD90.2 Antibody;5 ul PE/Cyanine7 anti-mouse/rat CD29 Antibody,5 ul PerCP-eFluor™ 710 CD45,混匀室温避光孵育30 min;加1.5 ml 1× wash buffer,洗涤两次;补加400 ul Cell Staining Buffer流式上机。

2) 骨髓间充质干细胞(BMSCs)成骨诱导分化和成脂诱导分化

取90%融合的骨髓间充质干细胞,更换成骨诱导培养基(成骨诱导分化基础培养基175 ml,专用胎牛血清20 ml,谷氨酰胺2 ml,双抗2 ml,抗坏血酸400 μl,β-甘油磷酸钠2 ml,地塞米松20 μl)及成脂诱导培养基(成脂分化培养基A液:成脂诱导分化基础培养基A 175 ml,专用胎牛血清20 ml,谷氨酰胺2 ml,双抗2 mL,胰岛素400 μl,IBMX 200 ul,罗格列200 ul,地塞米松200 μl;成脂诱导分化培养基B液:成脂诱导分化基础培养基B 175 ml,胎牛血清20 ml,双抗2 ml,谷氨酰胺2 ml,胰岛素400 g):每2~3天换液1次,培养约14~21天,注意观察细胞形态变化,根据细胞钙盐结晶析出和钙质结节形成的情况,决定终止细胞诱导的时间,分别进行茜素红染色和油红O染色鉴定。

茜素红染色:PBS清洗细胞样品;10%福尔马林固定10~30 min;吸去固定液,PBS清洗样本两次;滴加茜素红染色液,覆盖样本,染色1~5 min;吸去染色液,PBS洗涤两次;镜下观察,钙成积阳性细胞呈现橘红色,拍照;油红O染色:移除细胞培养基,用PBS洗两次,加油红O固定液定20~30 min;弃去固定液,用蒸馏水洗2次;加入60%异丙醇浸洗5 min;弃去60%异丙醇后加入新配制好的油红O染色液,浸染10~20 min;弃去染色液,水洗2~5次,直到无多余染液;加入Mayer苏木素染色液,复染核1~2 min,弃去染液后水洗2~5次;加入油红O缓冲液1 min,弃去;加入蒸馏水覆盖细胞并在显微镜下观察,拍照。

2.2. BMSCs细胞外泌体提取

在37℃中速融样本;将样本移动至一个新的离心管内,2000×g,4℃,30min离心;小心的将上清液移至新的离心管中,10,000×g,4℃,45 min再次离心,以去除较大的囊泡;取上清,经0.45 μm滤膜过滤,收集过滤液;将过滤液移至新的离心管中,选择超速转子,4℃,100,000×g离心70 min;去除上清,用10 ml预冷的1 × PBS重悬后,选择超速转子,再次4℃,100,000×g,超速离心70 min;去除上清,用100 μl预冷的1 × PBS重悬,取20 μl电镜,10 μl粒径,20 μl荧光,剩余外泌体于−80℃冻存。

2.3. BMSCs细胞外泌体鉴定

2.3.1. 外泌体样品透射电镜观察

将外泌体取出10 μl;吸取样品10 μl滴加于铜网上沉淀1 min,滤纸吸去浮液;醋酸双氧铀10 μl滴加于铜网上沉淀1 min,滤纸吸去浮液;常温干燥数分钟;100 kv进行电镜检测成像;获得透射电镜成像结果。

2.3.2. 外泌体粒径检测

将外泌体取出10 μl稀释到30 μl;先用标准品进行仪器性能测试合格后方可进行外泌体样品上样,注意需进行梯度稀释避免样本堵塞进样针;待样本完成检测即可获得仪器检测外泌体的粒径和浓度信息。

2.3.3. Western blot鉴定外泌体蛋白

取30 ug外泌体蛋白,以4:1的比例与5×上样缓冲液混匀,在沸水浴中煮5 min后冷却至室温;上样并进行SDS-PAGE电泳,转膜后,取出PVDF膜,清洗5 min。1 × TBST浸湿裁剪后的条带置于封闭液(5%脱脂奶粉)中,室温,摇床上封闭40 min;一抗4℃孵育过夜,用TBST洗3次,每次15 min;洗膜后,加入辣根过氧化物酶标记的二抗(1:5000稀释),室温并摇床孵育40 min;TBST洗3次,每次5 min;使用ECL Western Blotting Substrate试剂盒,显影、拍照保存。ImageJ软件扫描各蛋白条带的灰度值,去除背景后,用目标条带灰度除以内参条带灰度值即可。

2.3.4. 纳米流式检测外泌体蛋白标记

将20 μl外泌体稀释至600 μl,取30 μl稀释外泌体分别加入20 μl荧光标记的抗体(CD9、CD81),混匀,避光,37℃孵育30 min;加入1 ml预冷的PBS,选择超速转子,4℃,110,000×g,超速离心70 min;小心去除上清,加入1 ml预冷的PBS,选择超速转子,再次4℃,110,000×g,超速离心70 min;小心去除上清,用50 μl预冷的1 × PBS重悬;先用标准品进行仪器性能测试合格后方可进行外泌体样品上样,注意需进行梯度稀释避免样本堵塞进样针;待样本完成检测即可获得NanoFCM仪器检测蛋白指标结果。

2.4. 外泌体对生精细胞化疗损伤的治疗作用

2.4.1. 睾丸生精细胞培养

取出生后10 d的健康雄性大鼠,体重19~25 g,脱劲处死后无菌收集双侧睾丸,置于盛有HBSS的培养皿中,用眼科剪镊仔细剥除脂肪垫、附睾、馨鼓膜,用眼科剪将组织剪至淤泥状,将淤泥状组织转移至无菌培养皿中,加入组织10倍体积的1 mg/ml IV胶原酶溶液,用吸管反复吹打混匀,放入37℃培养箱中消化15 min,取出再次用吸管反复吹打混匀,将上清去除,向组织中加入含20 ug/ml DNase + 0.25%胰蛋白酶,用吸管反复吹打混匀,放入37℃培养箱中消化10 min,加入含FBS的培养基终止消化,经400目,200目细胞筛过滤,收集于离心管中,800 rpm,离心5 min,去除上清,加完全培养基重悬细胞,接种于培养瓶中。

2.4.2. 化疗药物环磷酰胺处理损伤,CCK8检测筛选最佳浓度

按照终浓度为0、1、2、4、6、12、24、48 uM环磷酰胺处理细胞48 h,每孔中加入10 ul CCK-8溶液(注意不要在孔中生成气泡),放回培养箱中避光孵育2 h,用酶标仪在450 nm处检测96孔板中各孔的OD值。CCK8检测具体方法如下:制备细胞悬液:取对数生长期细胞,按照每孔铺8000个细胞接种96孔板中,每组5个重复,按照终浓度为0、1、2、4、6、12、24、48 uM环磷酰氨处理细胞48 h;用基础培养基按10:1稀释CCK8试剂,将96孔板取出,去除培养板中的细胞上清,每孔加入100 ul稀释过的CCK8溶液(注意不要在孔中生成气泡);放回培养箱中避光孵育2 h,用酶标仪在450 nm处检测96孔板中各孔的OD值。根据CCK8检测结果,最终选择12uM的化疗药物CTX作为最佳处理浓度。

2.4.3. 分组处理:正常睾丸生精细胞组,化疗损伤组,化疗损伤 + 外泌体干预组

按照3个组进行处理,正常睾丸生精细胞组正常培养、化疗损伤组加化疗药物12 umol/L处理48 h,化疗损伤 + 外泌体干预组加化疗药物12 umol/L处理48 h后加外泌体处理48 h,收集细胞做凋亡检测,收集细胞转移细胞液至EP管,1000 rpm离心5 min,弃上清;加入1 ml预冷的PBS漂洗两次后弃上清;转移用1× binding buffer重悬的100 ul细胞悬液(105个细胞)至离心管,加入5 ul的Annexin V-FITC和5 ul的PI,混匀后室温避光孵育15 min;再加入300 ul的1× binding buffer,一小时内上机检测。

1) 细胞凋亡检测

将贴壁细胞消化后,转移细胞液至EP管,1000 rpm离心5 min,弃上清;加入1 ml预冷的PBS漂洗两次后弃上清,用1 × binding buffer (10 × binding buffer用双蒸水稀释)将细胞重悬至1 × 106/ml;转移100 ul细胞悬液(105个)至离心管,加入5 ul的Annexin V-PE和5 ul的7-AAD,混匀后室温避光孵育15 min;再加入300 ul的1 × binding buffer,1小时内上机检测。

2) 细胞增殖检测

制备细胞悬液:0.25%胰酶消化收集细胞,用培养上清将细胞重悬计数,按4 × 104个细胞分别接种96孔板中,每组5重复,共接种4个96孔板,放回培养箱继续培养(0 h,24 h,48 h,72 h和96 h各测一次);用基础培养基按10:1稀释CCK8试剂,将96孔板取出,去除培养板中的细胞上清,每孔加入100 ul稀释过的CCK8溶液(注意不要在孔中生成气泡);设置空白对照孔,在另外3个孔中加入100 ul稀释过的CCK8溶液;放回培养箱中避光孵育2 h,用酶标仪在450 nm处检测96孔板中各孔的OD值。

3. 研究结果

3.1. 骨髓间充质干细胞(BMSCs)分离、培养和鉴定

从细胞培养图中可以看出,骨髓间充质干细胞呈长梭形,说明该细胞可能是间充质干细胞,见图1

Figure 1. Culture of bone marrow mesenchymal stem cells (100 ×)

图1. 骨髓间充质干细胞培养(100×)

3.2. 骨髓间充质干细胞(BMSCs)鉴定

骨髓间充质干细胞鉴定采用了流式细胞仪检测间充质干细胞特异性表面标志物和间充质干细胞成脂成骨分化。流式细胞仪分析表明,间充质干细胞特异性标志物CD29和CD44呈阳性表达,见图2(a)和图2(c),而造血干细胞标志物CD34和CD45呈阴性表达。该实验结果表明该细胞符合间充质干细胞的特征。

Figure 2. Identification of bone marrow mesenchymal stem cells. (a)-(d) represent flow cytometry analysis of surface antigens on bone marrow mesenchymal stem cells. (a) and (c) show positive expression of specific markers CD29 and CD44 on bone marrow mesenchymal stem cells. (b) and (d) show negative expression of CD34 and CD45. (e) presents Alizarin Red staining (200× magnification) of bone marrow mesenchymal stem cells under osteogenic induction culture. (f) displays Oil Red O staining (200× magnification) of bone marrow mesenchymal stem cells under adipogenic induction culture

图2. 骨髓间充质干细胞鉴定。(a)-(d)为流式细胞术检测骨髓间充质干细胞的表面抗原;(a)和(c)为骨髓间充质干细胞特异性标志物CD29和CD44呈阳性表达;(b)和(d)为CD34和CD45呈阴性表达;(e)为骨髓间充质干细胞成骨诱导培养茜素红染色(200×);(f)为成脂诱导培养油红O染色(200×)

成骨诱导茜素红染色显示呈阳性,见图2(e)。成脂诱导21 d后,油红O染色呈阳性反应,形成了一定数量的鲜红色的脂滴,见图2(f)。

3.3. BMSCs细胞外泌体提取及鉴定

电镜观察确实在BMSCs细胞外泌体提取物中看到了外泌体,见图3(a),证明外泌体提取成功。外泌体平均粒径检测结果为74.16 nm,见图3(b)、图3(c)和图3(e),符合外泌体的大小特征。蛋白免疫印迹法检测结果显示,BMSCs细胞外泌体中检测到了CD63和Tsg101蛋白的表达,见图3(d),说明外泌体提取成功。纳米流式检测外泌体表面蛋白表达结果显示,外泌体表面标记蛋白均有明显的表达,说明外泌体提取成功,进一步证实了提取的纳米级囊泡为外泌体。

Figure 3. Identification of extracellular vesicles in BMSCs. (a) shows extracellular vesicles under electron microscopy; (b) illustrates the schematic diagram of extracellular vesicle particle size; (c) represents the concentration diagram; (d) displays the Western blot detection of CD63 and Tsg101 expression; (e) presents the results of extracellular vesicle particle size detection; (f) shows the positive expression rate of surface proteins on extracellular vesicles detected by nanoflow cytometry

图3. BMSCs细胞外泌体鉴定。(a)为电镜下的外泌体;(b)为外泌体粒径示意图;(c)为浓度示意图;(d)为Western blot检测CD63和Tsg101的表达;(e)为外泌体粒径检测结果;(f)为纳米流式检测外泌体表面蛋白表达阳性率

3.4. CCK8筛选化疗药物环磷酰胺处理损伤最佳浓度

精原细胞培养图片显示,细胞呈圆形或稍椭圆形。胞核较大,呈圆形,居中或稍偏一侧,占细胞2/3以上,见图4(a),结合瑞氏–姬姆萨染色结果,说明该细胞是精原细胞。另外,CCK8检测化疗药物环磷酰胺CTX处理造成精原细胞损伤的最佳浓度为12 uM。

Figure 4. CCK-8 screening of optimal concentration for treatment of cyclophosphamide-induced damage. Caption: (a) Shows the isolation and cultivation of rat spermatogenic cells (100×); (b) presents the Wright-Giemsa staining of rat spermatogenic cells; (c) displays the CCK-8 assay for screening the optimal concentration of cyclophosphamide

图4. CCK8筛选化疗药物环磷酰胺处理损伤最佳浓度。(a)为大鼠精原细胞分离培养(100×);(b)为大鼠精原细胞瑞氏-姬姆萨染色;(c)为CCK8检测筛选环磷酰胺最佳浓度

3.5. BMSCs外泌体对精原细胞CTX化疗损伤的治疗作用

将培养的精原细胞分成精原细胞正常组Control组、CTX组和CTX + BMSCs-exosomes组。对3组细胞进行的细胞凋亡率检测结果显示,CTX组的细胞凋亡率比对照组Control组显著升高,CTX + BMSCs-exosomes组的细胞凋亡率比CTX组显著降低,见图5、见图7(b),该结果说明CTX化疗处理可以提高精原细胞凋亡率,骨髓间充质干细胞外泌体处理可以显著缓解CTX化疗处理引起的细胞凋亡情况。另外,对3组细胞进行的细胞增殖能力检测结果显示,CTX组的细胞增殖能力比对照组Control组显著降低,CTX + BMSCs-exosomes组的细胞增殖能力比CTX组显著升高,见图6、见图7(c),该结果说明CTX化疗处理可以显著降低精原细胞增殖能力,骨髓间充质干细胞外泌体处理可以显著缓解CTX化疗处理引起的细胞增殖能力下降。

4. 讨论

在此,我们的研究发现骨髓间充质干细胞来源的外泌体(BMSCs-exos)可通过旁分泌促进环磷酰

Figure 5. Apoptosis detection of three cell groups

图5. 3组细胞的凋亡检测

胺影响的大鼠生精细胞修复。近年来基于外泌体的治疗已被作为一种新型治疗选择应用于各种病理状况,包括不孕症和再生医学领域 [33] - [38] 。给予的外泌体可以被细胞吞噬,因此可以在亚细胞和分子水平广泛改变细胞的生物学功能 [39] 。与细胞疗法相比,基于外泌体的疗法有许多优势,包括较高的稳定性和便利的储存性、较低的免疫排斥可能、无肿瘤风险和易于到达伤口部位 [40] [41] 。

在过去的研究中,已经证明了外泌体在精子成熟、活动性以及细胞膜完整性和功能方面的作用 [42] - [45] 。外泌体在精子功能中的治疗效应可能有不同的机制。例如,外泌体可以在附睾运动期间向精子转移不同的细胞因子,如山梨醇脱氢酶、醛还原酶和巨噬细胞迁移抑制因子,从而导致精子特异性

Figure 6. Proliferation detection of three cell groups

图6. 3组细胞的增殖检测

阳离子通道的激活和顶体反应、精子膜完整性和化学诱导移动 [46] 。

一些研究表明,通过外泌体传递一些蛋白质,如质膜Ca + 2 ATP酶4 (PMCA4),丙氨酸–色氨酸–天冬氨酸粘附素(AWN),猪精浆蛋白-I (PSP-1),热休克蛋白A8 (HSPA8),HSP70,输卵管糖蛋白1 (OVGP1)和富含半胱氨酸的分泌性蛋白3 (Crisp-3)可以调节提高的精子抗氧化能力,早期顶峰化,精子运动性,膜完整性以及改善受精能力 [43] [44] [45] 。然而,据我们所知没有研究调查外泌体对生精细胞的影响。因此考虑到外泌体的潜在修复作用,我们在当前实验中证实了外泌体在大鼠生精细胞中的再生潜力。

Figure 7. Therapeutic effects of extracellular vesicles derived from bone marrow mesenchymal stem cells on chemotherapy-induced damage in spermatogenic cells. (a) Shows the grouping and cultivation of spermatogenic cells; (b) Presents the statistical results of apoptotic rates in each group of spermatogenic cells; (c) displays the results of proliferative capacity in each group of spermatogenic cells

图7. 骨髓间充质干细胞外泌体对精原细胞化疗损伤的治疗作用。(a)为精原细胞分组培养图;(b)为各组精原细胞凋亡率结果统计图;(c)为各组精原细胞增殖能力结果统计图

环磷酰胺Cyclophosphamide是一种抗癌药物,被广泛用于建立NOA无精症大鼠模型,主要通过诱导氧化应激损伤,影响不同发育阶段改变精子细胞中的基因表达来发挥其作用 [30] [31] 。迄今为止,多项研究已证明,脐带间充质干细胞(MSCs)的移植,包括骨髓间充质干细胞(BMSCs)和脂肪间充质干细胞(ADSCs),能够恢复无精症动物的生育能力 [47] [48] [49] 。然而,多数干细胞,例如ESCs、iPSCs和SSCs [50] [51] [52] ,被认为是逐渐分化为生殖细胞的候选细胞,但它们的来源有限。此外,也应该考虑到伦理问题和肿瘤形成的风险。

MSCs可以通过两种可能的机制恢复生育能力。首先,MSCs通过适当的诱导被转化为生殖细胞。弱证据表明MSCs能分化为生殖细胞 [50] 。然而,理论上,MSCs的分化能力比ESCs或iPSCs低得多,使得MSCs难以分化为生殖细胞。其次,MSCs可以分泌促生育因子来刺激内源性精细胞干细胞的增殖和分化,或恢复生殖微环境。MSCs通过分泌细胞因子,如GDNF,FGF2,VEGF [53] 和携带各种miRNAs的外源体 [54] 促进组织修复。间充质干细胞很可能通过间接的旁分泌机制促进生殖 [55] 。与先前的研究相似,本研究的数据表明,外泌体能促进环磷酰胺损伤的大鼠生精细胞恢复,这表明MSCs可能通过旁分泌效应而不是分化来促进内源性生殖的恢复。

此外,基于间充质干细胞外泌体的治疗近年来在国内外引起了极大的热度。与细胞疗法相比,外泌体具有许多优势,包括无肿瘤风险,不受免疫排斥,易于到达伤口,高稳定性和不担心血管阻塞 [56] [57] [50] [51] 。MSC通过分泌外泌体减少心肌缺血/再灌注损伤 [58] 。最近的研究表明,MSC外泌体可以调节接受细胞的蛋白质表达,并通过miRNA转移修改细胞特征 [59] 。我们的数据表明骨髓间充质干细胞来源的外泌体(BMSCs-exos)可通过旁分泌促进环磷酰胺影响的大鼠生精细胞修复。可能的机制可能在于BMSCs-exos中丰富的miRNA,miRNA在精原干细胞的维护和分化中起重要作用 [60] 。并最终导致生殖恢复。

本研究目前存在一些局限性需要注意,首先本研究对象为BMSCs-exos对环磷酰胺诱导的大鼠精原细胞损伤的修复作用,人类精原细胞在化疗中的受损过程可能与大鼠存在差异;第二化疗损伤只是导致精原细胞损伤的其中一种因素,BMSCs-exos对其他因素导致的精原细胞损伤是否有较好的修复作用需后续进一步研究来证明;第三关于外泌体是如何促进生精细胞增殖及抑制其凋亡,需要进一步研究以分析其miRNA详细调控机制。针对本研究目前的局限性,后续可对研究中的三组精原细胞分别进行基因表达量测定,筛选出表达存在明显差异的关键基因。并且获取其他因素导致的非梗阻性无精子症人类患者的精原细胞,对之前筛选出的关键基因进行表达量测定,进一步明确关键基因在非梗阻性无精子症中的作用价值,为后续明确外泌体对生精细胞的影响机制的相关研究提供支持,并为治疗NOA提供新的思路及方向。

基金项目

国家卫生健康委员会西部孕前优生重点实验室;云南省人类辅助生殖技术研究创新团队(2017HC009);云南省生殖妇产疾病临床医学中心(zx2019-01-01):2020LCZXKF-SZ14。

NOTES

*通讯作者。

参考文献

[1] Vander Borght, M. and Wyns, C. (2018) Fertility and Infertility: Definition and Epidemiology. Clinical Biochemistry, 62, 2-10.
https://doi.org/10.1016/j.clinbiochem.2018.03.012
[2] Miyamoto, T., Minase, G., Okabe, K., Ueda, H., and Sengoku, K. (2015) Male Infertility and Its Genetic Causes. Journal of Obstetrics and Gynaecology Research, 41, 1501-1505.
https://doi.org/10.1111/jog.12765
[3] Iammarrone, E., Balet, R., Lower, A.M., Gillott, C. and Grudzinskas, J.G. (2003) Male Infertility. Best Practice & Research Clinical Obstetrics & Gynaecology, 17, 211-229.
https://doi.org/10.1016/S1521-6934(02)00147-5
[4] Minhas, S., Bettocchi, C., Boeri, L., Capogrosso, P., Car-valho, J., Cilesiz, N.C., Cocci, A., Corona, G., Dimitropoulos, K., Gül, M., Hatzichristodoulou, G., Jones, T.H., Kadi-oglu, A., Martínez Salamanca, J.I., Milenkovic, U., Modgil, V., Russo, G.I., Serefoglu, E.C., Tharakan, T., Verze, P. and Salonia, A. (2021) European Association of Urology Guidelines on Male Sexual and Reproductive Health: 2021 Update on Male Infertility. European Urology, 80, 603-620.
https://doi.org/10.1016/j.eururo.2021.08.014
[5] 洪伟, 王莹, 朱琳, 等. 显微镜下睾丸切开取精术在非梗阻性无精子症助孕治疗中的应用[J]. 陆军军医大学学报, 2023, 45(3): 251-256.
https://doi.org/10.16016/j.2097-0927.202208194
[6] Ishii, T. (2014) Potential Impact of Human Mitochondrial Replacement on Global Policy Regarding Germline Gene Modification. Reproductive BioMedicine Online, 29, 150-155.
https://doi.org/10.1016/j.rbmo.2014.04.001
[7] Shetty, G. and Meistrich, M.L. (2005) Hormonal Approaches to Preservation and Restoration of Male Fertility after Cancer Treatment. JNCI Monographs, 2005, 36-39.
https://doi.org/10.1093/jncimonographs/lgi002
[8] Orwig, K.E. and Schlatt, S. (2005) Cryopreservation and Transplantation of Spermatogonia and Testicular Tissue for Preservation of Male Fertility. JNCI Monographs, 2005, 51-56.
https://doi.org/10.1093/jncimonographs/lgi029
[9] Meistrich, M.L. (2013) Effects of Chemotherapy and Radiotherapy on Spermatogenesis in Humans. Fertility and Sterility, 100, 1180-1186.
https://doi.org/10.1016/j.fertnstert.2013.08.010
[10] Qu, N., Itoh, M. and Sakabe, K. (2019) Effects of Chemo-therapy and Radiotherapy on Spermatogenesis: The Role of Testicular Immunology. International Journal of Molecular Sciences, 20, Article No. 957.
https://doi.org/10.3390/ijms20040957
[11] Lee, C.C., Christensen, J.E., Yoder, M.C. and Tarantal, A.F. (2010) Clonal Analysis and Hierarchy of Human Bone Marrow Mesenchymal Stem and Progenitor Cells. Experimental Hema-tology, 38, 46-54.
https://doi.org/10.1016/j.exphem.2009.11.001
[12] Ikhapoh, I.A., Pelham, C.J. and Agrawal, D.K. (2015) Syner-gistic Effect of Angiotensin II on Vascular Endothelial Growth Factor-A-Mediated Differentiation of Bone Mar-row-Derived Mesenchymal Stem Cells into Endothelial Cells. Stem Cell Research & Therapy, 6, Article No. 4.
https://doi.org/10.1186/scrt538
[13] Aurich, H., Sgodda, M., Kaltwasser, P., Vetter, M., Weise, A., Liehr, T., Brulport, M., Hengstler, J.G., Dollinger, M.M., Fleig, W.E. and Christ, B. (2009) Hepatocyte Differentiation of Mesen-chymal Stem Cells from Human Adipose Tissue in Vitro Promotes Hepatic Integration in Vivo. Gut, 58, 570-581.
https://doi.org/10.1136/gut.2008.154880
[14] Makino, S., Fukuda, K., Miyoshi, S., Konishi, F., Kodama, H., Pan, J., Sano, M., Takahashi, T., Hori, S., Abe, H., Hata, J., Umezawa, A. and Ogawa, S. (1999) Cardiomyocytes Can Be Generated from Marrow Stromal Cells in Vitro. Journal of Clinical Investigation, 103, 697-705.
https://doi.org/10.1172/JCI5298
[15] Gerson, S.L. (1999) Mesenchymal Stem Cells: No Longer Second Class Marrow Citizens. Nature Medicine, 5, 262-264.
https://doi.org/10.1038/6470
[16] Samiec, M., Opiela, J., Lipiński, D. and Romanek, J. (2015) Trichostatin A-Mediated Epigenetic Transformation of Adult Bone Marrow-Derived Mesen-chymal Stem Cells Biases the in Vitro Developmental Capability, Quality, and Pluripotency Extent of Porcine Cloned Embryos. BioMed Research International, 2015, Article ID: 814686.
https://doi.org/10.1155/2015/814686
[17] Kisiel, A.H., Mcduffee, L.A., Masaoud, E., et al. (2012) Isolation, Characterization, and in Vitro Proliferation of Canine Mesenchymal Stem Cells Derived from Bone Marrow, Adipose Tissue, Muscle, and Periosteum. American Journal of Veterinary Research, 73, 1305-1317.
https://doi.org/10.2460/ajvr.73.8.1305
[18] Pereira, R.F., Halford, K.W., O’Hara, M.D., Leeper, D.B., Sokolov, B.P., Pollard, M.D., Bagasra, O. and Prockop, D.J. (1995) Cultured Adherent Cells from Marrow Can Serve as Long-Lasting Precursor Cells for Bone, Cartilage, and Lung in Irradiated Mice. Proceedings of the National Academy of Sciences of the United States of America, 92, 4857-4861.
https://doi.org/10.1073/pnas.92.11.4857
[19] Xie, L., Mao, M., Zhou, L. and Jiang, B. (2016) Spheroid Mesenchymal Stem Cells and Mesenchymal Stem Cell-Derived Mi-crovesicles: Two Potential Therapeutic Strategies. Stem Cells and Development, 25, 203-213.
https://doi.org/10.1089/scd.2015.0278
[20] Rani, S., Ryan, A.E., Griffin, M.D. and Ritter, T. (2015) Mesenchymal Stem Cell-Derived Extracellular Vesicles: Toward Cell-Free Therapeutic Applications. Molecular Therapy, 23, 812-823.
https://doi.org/10.1038/mt.2015.44
[21] Xin, H., Li, Y., Cui, Y., et al. (2013) Systemic Administration of Exo-somes Released from Mesenchymal Stromal Cells Promote Functional Recovery and Neurovascular Plasticity after Stroke in Rats. Journal of Cerebral Blood Flow & Metabolism, 33, 1711-1715.
https://doi.org/10.1038/jcbfm.2013.152
[22] Tan, C.Y., Lai, R.C., Wong, W., et al. (2014) Mesenchymal Stem Cell-Derived Exosomes Promote Hepatic Regeneration in Drug-Induced Liver Injury Models. Stem Cell Research & Therapy, 5, Article No. 76.
https://doi.org/10.1186/scrt465
[23] Nakamura, Y., Miyaki, S., et al. (2015) Mesenchymal-Stem-Cell-Derived Ex-osomes Accelerate Skeletalmuscle Regeneration. FEBS Letters, 589, 1257-1265.
https://doi.org/10.1016/j.febslet.2015.03.031
[24] Zhang, J., Guan, J., Niu, X., et al. (2015) Exosomes Released from Human Induced Pluripotent Stem Cells-Derived MSCs Facilitate Cutaneous Wound Healing by Promoting Colla-gen Synthesis and Angiogenesis. Journal of Translational Medicine, 13, Article No. 49.
https://doi.org/10.1186/s12967-015-0417-0
[25] Furuta, T., Miyaki, S., Ishitobi, H., et al. (2016) Mesenchymal Stem Cell-Derived Exosomes Promote Fracture Healing in a Mouse Model. Stem Cells Translational Medicine, 5, 1620-1630.
https://doi.org/10.5966/sctm.2015-0285
[26] Zhang, S., Chu, W., Lai, R., et al. (2016) Human Mes-enchymal Stem Cell-Derived Exosomes Promote Orderly Cartilage Regeneration in an Immunocompetent Rat Oste-ochondral Defect Model. Asia-Pacific Journal of Sports Medicine, Arthroscopy, Rehabilitation and Technology, 6, 69.
https://doi.org/10.1016/j.asmart.2016.07.194
[27] Zhang, S., Chu, W.C., Lai, R.C., et al. (2016) Exosomes De-rived from Human Embryonic Mesenchymal Stem Cells Promote Osteochondral Regeneration. Osteoarthritis and Car-tilage, 24, 2135-2140.
https://doi.org/10.1016/j.joca.2016.06.022
[28] Helleday, T., Petermann, E., Lundin, C., Hodgson, B. and Sharma, R.A. (2008) DNA Repair Pathways as Targets for Cancer Therapy. Nature Reviews Cancer, 8, 193-204.
https://doi.org/10.1038/nrc2342
[29] Zhao, X.-J., Huang, Y.-H., Yu, Y.-C. and Xin, X.-Y. (2010) GnRh Antago-nist Cetrorelix Inhibits Mitochondria-Dependent Apoptosis Triggered by Chemotherapy in Granulosa Cells of Rats. Gy-necologic Oncology, 118, 69-75.
https://doi.org/10.1016/j.ygyno.2010.03.021
[30] Elangovan, N., Chiou, T.-J., Tzeng, W.-F. and Chu, S.-T. (2006) Cyclophosphamide Treatment Causes Impairment of Sperm and Its Fertilizing Ability in Mice. Toxicology, 222, 60-70.
https://doi.org/10.1016/j.tox.2006.01.027
[31] Ghobadi, E., Moloudizargari, M., Asghari, M.H. and Abdollahi, M. (2017) The Mechanisms of Cyclophosphamide-Induced Testicular Toxicity and the Protective Agents. Expert Opinion on Drug Metabolism & Toxicology, 13, 525-536.
https://doi.org/10.1080/17425255.2017.1277205
[32] Cannarella, R., Condorelli, R.A., Duca, Y., La Vignera, S. and Calogero, A.E. (2019) New Insights into the Genetics of Spermatogenic Failure: A Review of the Literature. Human Genetics, 138, 125-140.
https://doi.org/10.1007/s00439-019-01974-1
[33] Jing, H., He, X. and Zheng, J. (2018) Exosomes and Regenera-tive Medicine: State of the Art and Perspectives. Translational Research, 196, 1-16.
https://doi.org/10.1016/j.trsl.2018.01.005
[34] Liu, C., et al. (2020) Extracellular Vesicles Derived from Mesen-chymal Stem Cells Recover Fertility of Premature Ovarian Insufficiency Mice and the Effects on Their Offspring. Cell Transplant, 29, Article ID: 963689720923575.
https://doi.org/10.1177/0963689720923575
[35] Zhang, Q., et al. (2019) Human Amniotic Epithelial Cell-Derived Exosomes Restore Ovarian Function by Transferring MicroRNAs against Apoptosis. Molecular Therapy-Nucleic Acids, 16, 407-418.
https://doi.org/10.1016/j.omtn.2019.03.008
[36] Mobarak, H., et al. (2019) Evaluation of the Association between Exosomal Levels and Female Reproductive System and Fertility Outcome during Aging: A Systematic Review Protocol. Systematic Reviews, 8, Article No. 293.
https://doi.org/10.1186/s13643-019-1228-9
[37] Gabrielsen, J.S. and Lipshultz, L.I. (2019) Rapid Progression in Our Understanding of Extracellular Vesicles and Male Infertility. Fertility and Sterility, 111, 881-882.
https://doi.org/10.1016/j.fertnstert.2019.02.021
[38] Gimona, M., Pachler, K., Laner-Plamberger, S., Schallmoser, K. and Rohde, E. (2017) Manufacturing of Human Extracellular Vesicle-Based Therapeutics for Clinical Use. Interna-tional Journal of Molecular Sciences, 18, Article No. 1190.
https://doi.org/10.3390/ijms18061190
[39] Basu, J. and Ludlow, J.W. (2016) Exosomes for Repair, Regeneration and Rejuvenation. Expert Opinion on Biological Therapy, 16, 489-506.
https://doi.org/10.1517/14712598.2016.1131976
[40] Yu, B., Zhang, X. and Li, X. (2014) Exosomes Derived from Mesenchymal Stem Cells. International Journal of Molecular Sciences, 15, 4142-4157.
https://doi.org/10.3390/ijms15034142
[41] Zhang, X., et al. (2020) Seminal Plasma Exosomes Evoke Calcium Signals via the CatSper Channel to Regulate Human Sperm Function. BioRxiv.
[42] Du, J., et al. (2016) Boar Seminal Plasma Exosomes Maintain Sperm Function by Infiltrating into the Sperm Membrane. Oncotarget, 7, 58832-58847.
https://doi.org/10.18632/oncotarget.11315
[43] de Almeida Monteiro Melo Ferraz, M., Carothers, A., Dahal, R., Noonan, M.J. and Songsasen, N. (2019) Oviductal Extracellular Vesicles Interact with the Spermatozoon’s Head and Mid-Piece and Improves Its Motility and Fertilizing Ability in the Domestic Cat. Scientific Reports, 9, Article No. 9484.
https://doi.org/10.1038/s41598-019-45857-x
[44] de Almeida Monteiro Melo Ferraz, M., Nagashima, J.B., Noonan, M.J., Crosier, A.E. and Songsasen, N. (2020) Oviductal Extracellular Vesicles Improve Post-Thaw Sperm Function in Red Wolves and Cheetahs. International Journal of Molecular Sciences, 21, Article No. 3733.
https://doi.org/10.3390/ijms21103733
[45] Sullivan, R., Saez, F., Girouard, J. and Frenette, G. (2005) Role of Ex-osomes in Sperm Maturation during the Transit along the Male Reproductive Tract. Blood Cells, Molecules, and Diseases, 35, 1-10.
https://doi.org/10.1016/j.bcmd.2005.03.005
[46] Nayernia, K., Lee, J.H., Drusenheimer, N., Nolte, J., Wulf, G., Dressel, R., Gromoll, J. and Engel, W. (2006) Derivation of Male Germ Cells from Bone Marrow Stem Cells. Labora-tory Investigation, 86, 654-663.
https://doi.org/10.1038/labinvest.3700429
[47] Cakici, C., Buyrukcu, B., Duruksu, G., Haliloglu, A.H., Aksoy, A., Isık, A., Uludag, O., Ustun, H., Subası, C. and Karaoz, E. (2013) Recovery of Fertility in Azoospermia Rats after Injec-tion of Adipose-Tissue-Derived Mesenchymal Stem Cells: The Sperm Generation. BioMed Research International, 2013, Article ID: 529589.
https://doi.org/10.1155/2013/529589
[48] Fazeli, Z., Abedindo, A., Omrani, M.D. and Ghaderian, S.M.H. (2018) Mesenchymal Stem Cells (MSCs) Therapy for Recovery of Fertility: A Systematic Review. Stem Cell Reviews and Re-ports, 14, 1-12.
https://doi.org/10.1007/s12015-017-9765-x
[49] Zhang, D., Liu, X., Peng, J., He, D., Lin, T., Zhu, J., Li, X., Zhang, Y. and Wei, G. (2014) Potential Spermatogenesis Recovery with Bone Marrow Mesenchymal Stem Cells in an Azoospermic Rat Model. International Journal of Molecular Sciences, 15, 13151-13165.
https://doi.org/10.3390/ijms150813151
[50] Toyooka, Y., Tsunekawa, N., Akasu, R. and Noce, T. (2003) Embry-onic Stem Cells Can Form Germ Cells in Vitro. Proceedings of the National Academy of Sciences of the United States of America, 100, 11457-11462.
https://doi.org/10.1073/pnas.1932826100
[51] Fang, F., Li, Z., Zhao, Q., Li, H. and Xiong, C. (2018) Human In-duced Pluripotent Stem Cells and Male Infertility: An Overview of Current Progress and Perspectives. Human Repro-duction, 33, 188-195.
https://doi.org/10.1093/humrep/dex369
[52] Komeya, M. and Ogawa, T. (2015) Spermatogonial Stem Cells: Pro-gress and Prospects. Asian Journal of Andrology, 17, 771-775.
https://doi.org/10.4103/1008-682X.154995
[53] Spees, J.L., Lee, R.H. and Gregory, C.A. (2016) Mechanisms of Mesenchymal Stem/Stromal Cell Function. Stem Cell Research & Therapy, 7, Article No. 125.
https://doi.org/10.1186/s13287-016-0363-7
[54] Xin, H., Li, Y., Buller, B., Katakowski, M., Zhang, Y., Wang, X., Shang, X., Zhang, Z.G. and Chopp, M. (2012) Exosome-Mediated Transfer of miR-133b from Multipotent Mesenchy-mal Stromal Cells to Neural Cells Contributes to Neurite Outgrowth. Stem Cells, 30, 1556-1564.
https://doi.org/10.1002/stem.1129
[55] Yang, R.-F., Liu, T.-H., Zhao, K. and Xiong, C.-L. (2014) Enhancement of Mouse Germ Cell-Associated Genes Expression by Injection of Human Umbilical Cord Mesenchymal Stem Cells into the Testis of Chemical-Induced Azoospermic Mice. Asian Journal of Andrology, 16, 698-704.
https://doi.org/10.4103/1008-682X.129209
[56] Xin, H., Li, Y. and Chopp, M. (2014) Exosomes/miRNAs as Me-diating Cell-Based Therapy of Stroke. Frontiers in Cellular Neuroscience, 8, Article 377.
https://doi.org/10.3389/fncel.2014.00377
[57] De Jong, O.G., Van Balkom, B.W., Schiffelers, R.M., Bouten, C.V. and Verhaar, M.C. (2014) Extracellular Vesicles: Potential Roles in Regenerative Medicine. Frontiers in Immunology, 5, Article 608.
https://doi.org/10.3389/fimmu.2014.00608
[58] Lai, R.C., Arslan, F., Lee, M.M., Sze, N.S., Choo, A., Chen, T.S., Salto-Tellez, M., Timmers, L., Lee, C.N., El Oakley, R.M., Pasterkamp, G., de Kleijn, D.P. and Lim, S.K. (2010) Exo-some Secreted by MSC Reduces Myocardial Ischemia/Reperfusion Injury. Stem Cell Research, 4, 214-222.
https://doi.org/10.1016/j.scr.2009.12.003
[59] Wang, J., Hendrix, A., Hernot, S., Lemaire, M., De Bruyne, E., Van Valckenborgh, E., Lahoutte, T., De Wever, O., Vanderkerken, K. and Menu, E. (2014) Bone Marrow Stromal Cell-Derived Exosomes as Communicators in Drug Resistance in Multiple Myeloma Cells. Blood, 124, 555-566.
https://doi.org/10.1182/blood-2014-03-562439
[60] Kotaja, N. (2014) MicroRNAs and Spermatogenesis. Fertility and Sterility, 101, 1552-1562.
https://doi.org/10.1016/j.fertnstert.2014.04.025