基因生物标志物在NMIBC复发预测的新进展
New Advances in the Prediction of NMIBC Recurrence by Genetic Biomarkers
DOI: 10.12677/ACM.2023.1361473, PDF, HTML, XML, 下载: 214  浏览: 341  科研立项经费支持
作者: 靳永胜*:延安大学附属医院泌尿外科,陕西 延安;郝亮亮, 赵家伟, 刘宇坤, 霍彦名, 钟 亮:延安大学医学院,陕西 延安;梁子龙:西安医学院研究生工作部,陕西 西安
关键词: 非肌层浸润性膀胱癌复发预测基因生物标志物Non-Muscular Invasive Bladder Cancer Recurrence Prediction Gene Biomarker
摘要: 膀胱癌是泌尿生殖系统最常见的恶性肿瘤之一,在泌尿生殖系统的发病率和复发率较高。非肌层浸润性膀胱癌是一种与高复发率和高进展相关的膀胱癌亚型。所以在泌尿外科的诊疗过程中对于非肌层浸润性膀胱癌的复发预测显得尤为重要。目前预测非肌层浸润性膀胱癌复发和进展的工具是基于临床和组织病理学标记物的评分系统,这可能导致部分患者不能获得更准确以及个性化的复诊指导。新型基因生物标志物如启动子基因、尿液mRNA、DNA甲基化水平等非侵入性复发预测方法具有高敏感性、个体化等特点而在非肌层浸润性膀胱癌复发预测中具有更大优势。
Abstract: Bladder cancer is one of the most common malignant tumors in the genitourinary system, with a high incidence and recurrence rate in the genitourinary system. Non-muscular invasive bladder cancer is a bladder cancer subtype associated with a high recurrence rate and high progression. Therefore, the prediction of recurrence of non-muscular invasive bladder cancer in the process of diagnosis and treatment of urology is particularly important. Current tools for predicting the re-currence and progression of non-muscular invasive bladder cancer are scoring systems based on clinical and histopathological markers, which may result in some patients not receiving more accu-rate and personalized follow-up guidance. Novel gene biomarkers such as promoter genes, urine mRNA, DNA methylation levels and other non-invasive recurrence prediction methods have the characteristics of high sensitivity and personalization, and have greater advantages in the predic-tion of recurrence of non-muscle layer invasive bladder cancer.
文章引用:靳永胜, 郝亮亮, 赵家伟, 刘宇坤, 霍彦名, 钟亮, 梁子龙. 基因生物标志物在NMIBC复发预测的新进展[J]. 临床医学进展, 2023, 13(6): 10534-10541. https://doi.org/10.12677/ACM.2023.1361473

1. 引言

膀胱癌是泌尿生殖系统最为常见的恶性肿瘤之一,在2020年全球癌症统计中膀胱癌的发病率高居恶性肿瘤第的10位,在男性排名第6位,女性排在第10位之后,死亡率居恶性肿瘤的第12位 [1] 。在欧美国家,膀胱癌发病率居男性恶性肿瘤的第4位居于前列腺癌之后,在女性恶性肿瘤中排第10位以后 [2] [3] 。膀胱癌通常分为两大类,非肌层浸润性膀胱癌(non-muscular invasive bladder cancer, NMIBC)和肌层浸润性膀胱癌(muscular invasive bladder cancer, MIBC)。大多数膀胱肿瘤为NMIBC (占初发膀胱肿瘤的70%),其包括以下病理阶段:Ta——非浸润性乳头状肿癌,Tis——原位肿瘤,T1——肿瘤侵犯上皮下结缔组织 [4] 。NMIBC患者如果不治疗,约有50%的患者会发展为MIBC,而治疗后的复发率约为70%~80% [5] 。NMIBC的治疗费用从每个患者5594美元到9554美元不等 [6] 。根据初次诊断的阶段和初次治疗的成功程度,后期费用相差很大。随着注射卡介苗等一些治疗方法的可获得性不断下降,该疾病的全球负担正在急剧增加 [7] 。这就进一步加强了对能够在早期预测治疗成功和复发准确工具的需求。

由于膀胱癌患者中一大部分都是非肌层浸润性膀胱癌,而且其进展率和复发率都很高。根据现有的侵入性检查方法,如白光膀胱镜等,很难及时的检测到患者病情的进展情况,侵入性检查加剧了患者的痛苦,无痛膀胱镜则花费巨大,还可能进一步增加尿路感染的风险。而基因生物标志物可以不受到这些限制,可以进一步去普及,还可以对一部分患者做到早期诊断,所以本文就近年来对于非肌层浸润性膀胱癌复发预测的新型基因生物标志物及新的基因技术进行综述,以期来提高临床NMIBC复发检出的准确性和为NMIBC患者术后指定个性化的治疗方案。

2. 基因生物标志物的进展方向

目前临床上常规的侵入性NMIBC复发预测的工具,成本较高且会给患者带来痛苦的体验及增加尿路感染的风险。所以普及率高、患者体验好、准确性高且具有个性化的预测工具成为临床上的需求。基因生物标志物从分子生物学层面更早更准确的检测到肿瘤的异常状态,所以是目前肿瘤早期诊断以及复发预测的热门技术。因此有学者提出从血液、尿液中找到更适合由于NMIBC复发预测的基因靶点,由于其具有较高的敏感性、特异性、非侵入性,既可以避免膀胱镜检查带来的痛苦体验,又可以防止受到尿细胞学检查低级别膀胱癌假阴性结果的影响,未来可能进一步减少患者行膀胱镜检查的次数,优质的基因标志物甚至可以代替膀胱镜检查和活检。此外,特定的基因标志物还可以为部分患者制定个性化治疗方案。

目前关于非肌层浸润性膀胱癌基因生物标志物的研究已经发现了尿启动子基因(promoter genes)、酪氨酸激酶家族、DNA相关分子及其甲基化水平、尿基mRNA等,其他尿基标志物如尿液纤维连接蛋白、尿膀胱肿瘤抗原(BTA)、NMP22,以及一些特异性较高的小分子标志物正在不断被找到。

3. 尿液中启动子基因

端粒酶可赋予真核细胞无限增殖的能力,而端粒酶逆转录酶(TERT)是端粒酶的活化重要催化亚单位,其启动子的突变和多种肿瘤包括尿路上皮癌高度相关,提示其是肿瘤形成过发展过程中的始动因素 [8] 。研究表明起源于尿路上皮的肿瘤是通过TRRT基因的异常激活获从而获得永生化的 [9] 。TERT启动子突变在尿路上皮肿瘤的发生中具有组织特异性,原发性膀胱癌中,55%~83%的样本至少存在一种TERT启动子的突变;而在9种良性增殖性尿路上皮病变中只存在野生型的TERT启动子序列 [10] 。膀胱癌中TERT启动子区突变的频率最高;在118例患者中携带突变87例,在180例高级别肿瘤中携带突变114例。同时存在这类突变的膀胱癌患者生存时间会明显短于未突变患者,且更容易复发 [11] 。尿液中检测到TERT启动子突变通常提示有尿路上皮恶性肿瘤的可能。一项回顾性研究表明,尿中TERT启动子突变是检测疾病复发的合适指标 [12] 。Cheng等 [13] 检测了26例内翻性乳头状瘤,26例尿路上皮癌,普通型的尿路上皮癌(包括36例非浸润性和35例浸润性尿路上皮癌)及25例腺性膀胱炎病变组织样本中TERT启动子的突变情况,发现在膀胱尿路上皮恶性肿瘤中,TERT启动子突变与性别、组织学分级及病理分期无关,同时也提示小部分膀胱的内翻性乳头状瘤可能会经历与尿路上皮癌发生相似的路径;对TERT启动子突变的筛查有助于膀胱癌更客观的诊断。

4. 尿液中FGFR3

成纤维细胞生长因子受体3 (FGFR3)属于酪氨酸激酶家族,负责成纤维细胞生长因子信号通路转导,在细胞增殖和分化过程中起调节作用,同时在调节细胞增殖、分化,肿瘤血管生成及膀胱肿瘤的形成过程中起重要作用 [14] 。有相关研究报道,FGFR3突变后与肿瘤形成存在因果关系,同时FGFR3基因的激活突变是非肌层浸润性膀胱癌患者最常见的突变基因之一,60%~80%的非肌肉侵袭性尿路上皮膀胱癌患者存在FGFR3突变 [15] [16] 。有研究发现,尿液中FGFR3诊断膀胱癌的灵敏度为39%,FGFR3突变在低级别尿路上皮膀胱癌中更常见,并且与短的复发时间显著相关。研究发现原发肿瘤中有70%的FGFR3发生突变的同时会出现肿瘤复发,证明使用NMIBC热点突变进行纵向监测是合理的 [17] 。BLANCA等 [18] 联合检测321例膀胱癌随访患者尿FGFR3基因及细胞周期蛋白D3 (Cyclin D3)的表达,显示灵敏度和特异度分别为73%、90%,提高了膀胱癌术后复发的检出率,认为其可作为潜在的NMIBC复发诊断的基因生物标志物。

5. DNA水平

5.1. 微小染色体维持(Minichromosome Maintenance, MCM5) 蛋白5

微小染色体维持蛋白是由MCM基因编码,由六个相关蛋白组成(MCM2~MCM7)的蛋白家族。MCM蛋白家族各成员的分子质量大小不一,多由776~1017个氨基酸残基构成 [19] 。MCM蛋白家族成员间有很高的序列相似性,在DNA的复制过程中,MCM蛋白使一个细胞周期中DNA复制中出现一次,MCM蛋白与肿瘤密切相关 [20] 。在NMIBC诊断中已被确定为一种优秀的生物标志物,在正常的尿路上皮中,MCM5的表达局限于基础增殖室中的细胞。正常膀胱内排入尿液的细胞MCM5阴性 [21] 。在尿路上皮癌中,细胞生长不受控制,MCM5表达遍及尿路上皮的所有层,导致表达MCM5的细胞从膀胱表面脱落。尿沉积物中MCM5阳性细胞的存在提示有肿瘤 [22] 。一项欧洲前瞻性多中心队列研究 [23] 表明:在1431名符合条件的患者中,127名被诊断为膀胱癌复发。MCM5检测检测膀胱癌复发的总体敏感性为44.9%;特异性为71.1%。这项大型前瞻性研究表明,在对非肌肉浸润性膀胱癌患者的随访中,MCM5检测能够排除最具侵袭性肿瘤的存在,阴性预测值为99%。这些结果表明MCM5检测可纳入非肌肉浸润性膀胱癌的随访策略中。另一项系统回顾和数据分析的文章 [24] 显示:纳入8项前瞻性研究,共纳入5114例患者。使用Der Simonian-Laird随机效应分析汇总了敏感性和特异性,MCM5预测肿瘤复发的综合敏感性和特异性分别为0.66 (0.56~0.75)和0.72 (0.61~0.81)。尿中检测MCM5对膀胱癌的诊断具有中等的诊断准确率。亚组分析显示,在高级别肿瘤患者和无症状患者的初步诊断具有良好的诊断性能。对于监测非肌层浸润性膀胱癌患者的研究发现,其具有高阴性预测值,可能延长膀胱镜检查的间隔时间,且有潜力成为预测NMIBC患者预后的指标。

5.2. DNA甲基化

DNA 甲基化是最具特征的肿瘤表观遗传现象。其检测在肿瘤分子诊断中具有重要前景,在基底细胞癌和癌前病变中发现了DNA的高甲基化和低甲基化区域 [25] 。DNA甲基化状态通常发生在癌变过程的早期,DNA的甲基化修饰早于DNA翻译,癌症相关基因的沉默影响癌症表观遗传变化的发生发展。在膀胱癌的早期诊断和复发监测中可能发挥着重要作用 [26] 。一项研究 [27] 采用实时荧光定量PCR检测尿液标本中EOMES、HOXA9、POU4F2、TWIST1、VIM和ZNF154的甲基化水平。分析了184名NMIBC患者的390份尿液沉淀物。35名年龄匹配的对照者的尿液被用来确定甲基化基线水平。经膀胱镜检查确诊为复发,并经组织学证实。发现所有6个标志物的显著高甲基化(P < 0.0001),敏感性在82%~89%,特异性在94%~100%。EOMES、POU4F2、VIM和ZNF154在高级别肿瘤患者的尿液中更常发生甲基化。ZNF154具有预测复发的最高性能指标。其敏感性为94%,特异性为67%。同样一项研究 [28] 使用PCR检测了90名NMIBC患者的尿液样本,在整个期间,34例患者出现肿瘤复发,而56例患者在最后一次随访时未诊断为复发。其中甲基化的CCND2、CCNA1和CALCA基因在复发预测中显示出显著的结果。而则CCNA1被认为是一种抑制肿瘤的基因。另有研究 [29] [30] 表明:RSPH9、HOXA9,PCDH17,POU4F2和ONECUT2可以作为NMIBC患者复发及预后预测的检测指标,同样具有较高的敏感性和特异性,但患者的依从性和高昂的费用是限制其发现的重要因素。综上,DNA甲基化标记物在尿沉积物中的卓越敏感性和特异性,高甲基化和低甲基化标记物的结合可能有助于避免不必要的侵入性检查,并揭示DNA甲基化在MNIBC发生中的重要性。

6. RNA水平

6.1. mRNA

循环信使RNA可在一定程度上反映细胞的存活状态,虽然大多数循环中的信使RNA会被RNA酶降解,但在癌症患者中仍然可以检测到循环信使RNA。因此,在膀胱癌患者中,信使RNA可以被认为是尿液中潜在的生物标志物 [31] 。国外一项多中心前瞻性研究 [32] 收集了763例膀胱癌患者的1036份尿液样本,对5个生物标志物,包括IGFBP5、HOXA13、MDK、CDK1和CXCR2 mRNA基因进行检测。结果表明其灵敏度为0.93,阴性预测值为0.97,阴性检测率为0.34。癌症复发检测的敏感性为0.95,亚组分析显示,不同年龄、性别、肿瘤分期的诊断表现差异不显著。另一项前瞻性研究 [33] 对239名NMIBC患者的标本测量5个mRNA靶点(ABL1, CRH, IGF2, UPK1B和ANXA10),结果表明NMIBC患者中的检测特异性为95% (95% CI: 93~97)。在上述研究中,与膀胱镜检查相比,基于尿液mRNA水平的检测具有较高的灵敏度和NPV值,并且和膀胱镜检查的准确性相似。由于个体化及样本数量相对较少,其效能还有待进一步研究。

6.2. 环状RNA

环状RNA (circular RNA, circRNA)是一类具有闭合环状结构的非编码RNA,没有3'端的多聚A尾和5'端的帽状结构,这种特殊的结构使得环状RNA可以避免核酸外切酶降解,其半衰期比其亲本mRNA长得多 [34] 。同时越来越多的研究发现了环状RNA的调控功能 [35] 。它们可以通过与其他RNA或蛋白相互作用来影响蛋白水平,一些环状RNA甚至可以被翻译成多肽 [36] 。有研究表明其稳定性强于mRNA [37] ,由于这些特殊性质,许多研究都表明一部分环状RNA可能具有成为肿瘤的生物标志物或预后因子的潜力 [38] 。一项研究 [39] 通过建立带有circ-ZKSCAN1基因的膀胱肿瘤小鼠模型。通过观察裸鼠的肿瘤细胞的增殖、迁移和侵袭功能发生来确定circ-ZKSCAN1在膀胱癌中的作用。同时对205名膀胱癌患者进行相关基因检测,发现circ-ZKSCAN1在BCa组织和细胞系中表达下调。circ-ZKSCAN1水平与生存期、肿瘤分级、病理T分期及肿瘤复发相关。过表达的circ-ZKSCAN1在体外和体内均能抑制细胞增殖、迁移、侵袭和转移。同时circ-ZKSCAN1表达较低的患者预后较差,其可能是BCa潜在的生物标志物和预后因子,但是其临床效能还需进一步的研究。

6.3. 长链非编码RNA

长链非编码RNA (lncRNA)是一类转录本长度超过200个核苷酸的RNA分子 [40] 。大量研究表明,lncRNA可以通过影响信号转导通路、表观遗传调控、细胞增殖分化等多个层面参与生物体内的多种调控过程 [41] [42] 。在前列腺癌、乳腺癌、肝癌、肾癌等常见肿瘤中,都发现了异常表达的lncRNA,研究结果也证实这些表达异常的lncRNA确实与肿瘤的增殖、迁移、侵袭等发生发展过程密切相关 [43] 。在泌尿系统肿瘤研究中,也发现了多种异常表达的lncRNA参与了肿瘤发生发展,其中发现最早的是在膀胱癌中表达异常的H19,之后又陆续发现了UCA1、MALAT1等在膀胱癌中的作用 [44] [45] 。近期有研究 [46] 采集了343名膀胱癌患者的基因图谱,筛选出8个基因作为预测因子。其中,APCDD1LAS1、FAM225B、LINC00626、LINC00958、LOC100996694和LOC441601等6个基因的表达水平越高,存活时间越短。其余两个基因(LOC101928111和ZSWIM8AS1)呈负相关,它们的表达水平越高,存活时间越长。越来越多的证据表明,这些异常调控的lncRNA在癌症的早期诊断、治疗过程监测和预后评估方面已经显示出巨大的潜力,成为新型的分子生物标志物。然而,单个lncRNA可能不足以准确预测癌症患者,所以综上这8个lncRNA基因的组合具有预测复发的潜力。

7. 其他生物标志物

除了上述的基因标志物,其他新兴以及优质的生物标志物和新技术正在被开发和应用,来提高NMIBC的预后预测的准确性,血红素氧合酶1 (HO-1)、角蛋白20 (CK20)、微RNA (microRNA, miRNA)、Ki-67编码蛋白,A-FABP (脂肪细胞–脂肪酸结合蛋白),CUETO、EORTC风险表等 [47] [48] [49] ,相信随着生信技术以及人工智能的进一步发展这些标志物会被更好的整合和发展以用于NMIBC患者。

8. 总结与展望

综上所述,对于非肌层浸润性膀胱癌的预后预测以及术后检测,现有的临床金标准虽具有高精准性,但是由于其相对费时、有感染风险、体验感差等,部分患者对其依从性较差而不能全面展开。上述各种标基因生物标志物对NMIBC的预后预测有着重要的价值,但是个别标志物的敏感性和特异性差异较大,仍需要大量的临床试验来验证和调整,提高其诊断效能的同时降低成本的同时找到更加合适的标志物或标志物的组合;以此来指导临床医师对不同患者制定个体化的治疗方案和预后随访指导,大大减少患者行膀胱镜检次数。对于现有的标志物是否能高效且顺利应用于NMIBC的预后预测,仍需要进行大量多中心大样本的前瞻性临床试验来进一步研究。

基金项目

延安市科技计划项目。合同编号:2022SLSFGG-044。

NOTES

*通讯作者。

参考文献

[1] Babjuk, M., Burger, M., Capoun, O., Cohen, D., Compérat, E.M., Dominguez Escrig, J.L., et al. (2022) European Asso-ciation of Urology Guidelines on Non-Muscle-Invasive Bladder Cancer (Ta, T1, and Carcinoma in Situ). European Urology, 81, 75-94.
https://doi.org/10.1016/j.eururo.2021.08.010
[2] Sung, H., Ferlay, J., Siegel, R.L., Laver-sanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[3] van Rhijn, B.W.G., Hentschel, A.E., Bründl, J., Compérat, E.M., Hernán-dez, V., Čapoun, O., et al. (2021) Prognostic Value of the WHO1973 and WHO2004/2016 Classification Systems for Grade in Primary Ta/T1 Non-Muscle-Invasive Bladder Cancer: A Multicenter European Association of Urology Non-Muscle-Invasive Bladder Cancer Guidelines Panel Study. European Urology Oncology, 4, 182-191.
[4] DeGeorge, K.C., Holt, H.R. and Hodges, S.C. (2017) Bladder Cancer: Diagnosis and Treatment. Ameri-can Family Physician, 96, 507-514.
[5] Saginala, K., Barsouk, A., Aluru, J.S., Rawla, P., Padala, S.A. and Barsouk, A. (2020) Epidemiology of Bladder Cancer. Medical Sciences (Basel, Switzerland), 8, Article No. 15.
https://doi.org/10.3390/medsci8010015
[6] Skolarus, T.A., Ye, Z., Zhang, S. and Hollenbeck, B.K. (2010) Re-gional Differences in Early Stage Bladder Cancer Care and Outcomes. Urology, 76, 391-396.
https://doi.org/10.1016/j.urology.2009.12.079
[7] Packiam, V.T., Werntz, R.P. and Steinberg, G.D. (2019) Cur-rent Clinical Trials in Non-Muscle-Invasive Bladder Cancer: Heightened Need in an Era of Chronic BCG Shortage. Cur-rent Urology Reports, 20, Article No. 84.
https://doi.org/10.1007/s11934-019-0952-y
[8] Huang, D.S., Wang, Z., He, X.J., Diplas, B.H., Yang, R., Killela, P.J., et al. (2015) Recurrent TERT Promoter Mutations Identified in a Large-Scale Study of Multiple Tumour Types Are Associated with Increased TERT Expression and Telomerase Activation. European Journal of Cancer (Oxford, England: 1990), 51, 969-976.
https://doi.org/10.1016/j.ejca.2015.03.010
[9] Chapman, E.J., Kelly, G. and Knowles, M.A. (2008) Genes In-volved in Differentiation, Stem Cell Renewal, and Tumorigenesis Are Modulated in Telomerase-Immortalized Human Urothelial Cells. Molecular Cancer Research, 6, 1154-1168.
https://doi.org/10.1158/1541-7786.MCR-07-2168
[10] Kurtis, B., Zhuge, J., Ojaimi, C., Ye, F., Cai, D., Zhang, D., Fallon, J.T. and Zhong, M. (2016) Recurrent TERT Promoter Mutations in Urothelial Carcinoma and Potential Clinical Applications. Annals of Diagnostic Pathology, 21, 7-11.
https://doi.org/10.1016/j.anndiagpath.2015.12.002
[11] Rachakonda, P.S., Hosen, I., de Verdier, P.J., Fallah, M., Heidenreich, B., Ryk, C., et al. (2013) TERT Promoter Mutations in Bladder Cancer Affect Patient Survival and Disease Recurrence through Modification by a Common Polymorphism. Proceedings of the National Academy of Sciences of the United States of America, 110, 17426-17431.
https://doi.org/10.1073/pnas.1310522110
[12] Borah, S., Xi, L., Zaug, A.J., Powell, N.M., Dancik, G.M., Cohen, S.B., et al. (2015) Cancer. TERT Promoter Mutations and Telomerase Reactivation in Urothelial Cancer. Science (New York, N.Y.), 347, 1006-1010.
https://doi.org/10.1126/science.1260200
[13] Cheng, L., Davidson, D.D., Wang, M., Lopez-Beltran, A., Montironi, R., Wang, L., et al. (2016) Telomerase Reverse Transcriptase (TERT) Promoter Mutation Analysis of Benign, Malignant and Reactive Urothelial Lesions Reveals a Subpopulation of Inverted Papilloma with Immortalizing Genetic Change. Histopathology, 69, 107-113.
https://doi.org/10.1111/his.12920
[14] Cao, W., Ma, E., Zhou, L., Yuan, T. and Zhang, C. (2017) Exploring the FGFR3-Related Oncogenic Mechanism in Bladder Cancer Using Bioinformatics Strategy. World Journal of Surgical Oncology, 15, Article No. 66.
https://doi.org/10.1186/s12957-017-1125-4
[15] van Kessel, K.E., Kompier, L.C., de Bekker-Grob, E.W., Zuiver-loon, T.C., Vergouwe, Y., Zwarthoff, E.C. and Steyerberg, E.W. (2013) FGFR3 Mutation Analysis in Voided Urine Samples to Decrease Cystoscopies and Cost in Nonmuscle Invasive Bladder Cancer Surveillance: A Comparison of 3 Strategies. The Journal of Urology, 189, 1676-1681.
https://doi.org/10.1016/j.juro.2012.11.005
[16] Oliushina, E.M., Zavalishina, L.E., Alekseenok, E.Y., Oskina, N.A. andreeva, Y.Y., Kuznetsova, O.A., et al. (2023) Investigation of the Mutational Status of the FGFR3 Gene in Urothelial Bladder Carcinoma. Arkhiv Patologii, 85, 5-12.
https://doi.org/10.17116/patol2023850215
[17] Critelli, R., Fasanelli, F., Oderda, M., Polidoro, S., Assumma, M.B., Viberti, C., et al. (2016) Detection of Multiple Mutations in Urinary Exfoliated Cells from Male Bladder Cancer Patients at Diagnosis and during Follow-Up. Oncotarget, 7, 67435-67448.
https://doi.org/10.18632/oncotarget.11883
[18] Blanca, A., Requena, M.J., Alvarez, J., Cheng, L., Montironi, R., Raspollini, M.R., Reymundo, C. and Lopez-Beltran, A. (2016) FGFR3 and Cyclin D3 as Urine Biomarkers of Bladder Cancer Recurrence. Biomarkers in Medicine, 10, 243-253.
https://doi.org/10.2217/bmm.15.120
[19] Gou, K., Liu, J., Feng, X., Li, H., Yuan, Y. and Xing, C. (2018) Expression of Minichromosome Maintenance Proteins (MCM) and Cancer Prognosis: A Meta-Analysis. Journal of Cancer, 9, 1518-1526.
https://doi.org/10.7150/jca.22691
[20] Yu, S., Wang, G., Shi, Y., Xu, H., Zheng, Y. and Chen, Y. (2020) MCMs in Cancer: Prognostic Potential and Mechanisms. Analytical Cellular Pathology (Amsterdam), 2020, Article ID: 3750294.
https://doi.org/10.1155/2020/3750294
[21] Kelly, J.D., Dudderidge, T.J., Wollenschlaeger, A., Okoturo, O., Burl-ing, K., Tulloch, F., et al. (2012) Bladder Cancer Diagnosis and Identification of Clinically Significant Disease by Com-bined Urinary Detection of Mcm5 and Nuclear Matrix Protein 22. PLOS ONE, 7, e40305.
https://doi.org/10.1371/journal.pone.0040305
[22] Dudderidge, T., Stockley, J., Nabi, G., Mom, J., Umez-Eronini, N., Hrouda, D., et al. (2020) A Novel, Non-Invasive Test Enabling Bladder Cancer Detection in Urine Sediment of Pa-tients Presenting with Haematuria—A Prospective Multicentre Performance Evaluation of ADXBLADDER. European Urology Oncology, 3, 42-46.
https://doi.org/10.1016/j.euo.2019.06.006
[23] Roupret, M., Gontero, P., McCracken, S.R.C., Dudderidge, T., Stockley, J., Kennedy, A., et al. (2020) Diagnostic Accuracy of MCM5 for the Detection of Recurrence in Nonmuscle Invasive Bladder Cancer Followup: A Blinded, Prospective Cohort, Multicenter European Study. The Journal of Urology, 204, 685-690.
https://doi.org/10.1097/JU.0000000000001084
[24] Sharma, G., Sharma, A., Krishna, M., Ahluwalia, P. and Gautam, G. (2022) Diagnostic Performance of Minichromosome Maintenance 5 (MCM5) in Bladder Cancer: A System-atic Review and Meta-Analysis. Urologic Oncology, 40, 235-242.
https://doi.org/10.1016/j.urolonc.2022.03.001
[25] Witjes, J.A., Morote, J., Cornel, E.B., Gakis, G., van Valenberg, F.J.P., Lozano, F., et al. (2018) Performance of the Bladder EpiCheck™ Methylation Test for Patients under Surveillance for Non-Muscle-Invasive Bladder Cancer: Results of a Multicenter, Prospective, Blinded Clinical Trial. European Urol-ogy Oncology, 1, 307-313.
https://doi.org/10.1016/j.euo.2018.06.011
[26] Su, S.F., de Castro Abreu, A.L., Chihara, Y., Tsai, Y. an-dreu-Vieyra, C., Daneshmand, S., et al. (2014) A Panel of Three Markers Hyper- and Hypomethylated in Urine Sedi-ments Accurately Predicts Bladder Cancer Recurrence. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 20, 1978-1989.
https://doi.org/10.1158/1078-0432.CCR-13-2637
[27] Reinert, T., Borre, M., Christiansen, A., Hermann, G.G., Ørntoft, T.F. and Dyrskjøt, L. (2012) Diagnosis of Bladder Cancer Recurrence Based on Urinary Levels of EOMES, HOXA9, POU4F2, TWIST1, VIM, and ZNF154 Hypermethylation. PLOS ONE, 7, e46297.
https://doi.org/10.1371/journal.pone.0046297
[28] Maldonado, L., Brait, M., Michailidi, C., Munari, E., Driscoll, T., Schultz, L., et al. (2014) An Epigenetic Marker Panel for Recurrence Risk Prediction of Low Grade Papillary Urothe-lial Cell Carcinoma (LGPUCC) and Its Potential Use for Surveillance after Transurethral Resection Using Urine. Onco-target, 5, 5218-5233.
https://doi.org/10.18632/oncotarget.2129
[29] Yoon, H.Y., Kim, Y.J., Kim, J.S., Kim, Y.W., Kang, H.W., Kim, W.T., et al. (2016) RSPH9 Methylation Pattern as a Prognostic Indicator in Patients with Non-Muscle Invasive Bladder Cancer. Oncology Reports, 35, 1195-1203.
https://doi.org/10.3892/or.2015.4409
[30] Wu, Y., Jiang, G., Zhang, N., Liu, S., Lin, X., Perschon, C., et al. (2020) HOXA9, PCDH17, POU4F2, and ONECUT2 as a Urinary Biomarker Combination for the Detection of Bladder Cancer in Chinese Patients with Hematuria. European Urology Focus, 6, 284-291.
https://doi.org/10.1016/j.euf.2018.09.016
[31] Deligezer, U., Erten, N., Akisik, E.E. and Dalay, N. (2006) Circu-lating Fragmented Nucleosomal DNA and Caspase-3 mRNA in Patients with Lymphoma and Myeloma. Experimental and Molecular Pathology, 80, 72-76.
https://doi.org/10.1016/j.yexmp.2005.05.001
[32] Kavalieris, L., O’Sullivan, P., Frampton, C., Guilford, P., Dar-ling, D., Jacobson, E., et al. (2017) Performance Characteristics of a Multigene Urine Biomarker Test for Monitoring for Recurrent Urothelial Carcinoma in a Multicenter Study. The Journal of Urology, 197, 1419-1426.
https://doi.org/10.1016/j.juro.2016.12.010
[33] Valenberg, F., Hiar, A.M., Wallace, E., Bridge, J.A., Mayne, D.J., Beqaj, S., et al. (2019) Prospective Validation of an mRNA-Based Urine Test for Surveillance of Patients with Bladder Cancer. European Urology, 75, 853-860.
https://doi.org/10.1016/j.eururo.2018.11.055
[34] Chen, L. and Shan, G. (2021) CircRNA in Cancer: Fundamental Mechanism and Clinical Potential. Cancer Letters, 505, 49-57.
https://doi.org/10.1016/j.canlet.2021.02.004
[35] Meng, X., Yang, D., Zhang, B., Zhao, Y., Zheng, Z. and Zhang, T. (2023) Regulatory Mechanisms and Clinical Applications of Tumor-Driven Exosomal circRNAs in Cancers. Interna-tional Journal of Medical Sciences, 20, 818-835.
https://doi.org/10.7150/ijms.82419
[36] Liu, C.X. and Chen, L.L. (2022) Circular RNAs: Characterization, Cellular Roles, and Applications. Cell, 185, 2016-2034.
https://doi.org/10.1016/j.cell.2022.04.021
[37] Zhang, J., Liu, H., Hou, L., Wang, G., Zhang, R., Huang, Y., Chen, X. and Zhu, J. (2017) Circular RNA_LARP4 Inhibits Cell Proliferation and Invasion of Gastric Cancer by Sponging miR-424-5p and Regulating LATS1 Expression. Molecular Cancer, 16, Article No. 151.
https://doi.org/10.1186/s12943-017-0719-3
[38] Thomson, D.W. and Dinger, M.E. (2016) En-dogenous microRNA Sponges: Evidence and Controversy. Nature Reviews Genetics, 17, 272-283.
https://doi.org/10.1038/nrg.2016.20
[39] Bi, J., Liu, H., Dong, W., Xie, W., He, Q., Cai, Z., Huang, J. and Lin, T. (2019) Circular RNA circ-ZKSCAN1 Inhibits Bladder Cancer Progression through miR-1178-3p/p21 Axis and Acts as a Prognostic Factor of Recurrence. Molecular Cancer, 18, Article No. 133.
https://doi.org/10.1186/s12943-019-1060-9
[40] Yarmishyn, A.A. and Kurochkin, I.V. (2015) Long Noncoding RNAs: A Potential Novel Class of Cancer Biomarkers. Frontiers in Genetics, 6, Article No. 145.
https://doi.org/10.3389/fgene.2015.00145
[41] Maass, P.G., Luft, F.C. and Bähring, S. (2014) Long Non-Coding RNA in Health and Disease. Journal of Molecular Medicine (Berlin, Germany), 92, 337-346.
https://doi.org/10.1007/s00109-014-1131-8
[42] Chao, C., Tang, R., Zhao, J., Di, D., Qian, Y. and Wang, B. (2023) Oncogenic Roles and Related Mechanisms of the Long Non-Coding RNA MINCR in Human Cancers. Frontiers in Cell and Developmental Biology, 11, Article ID: 1087337.
https://doi.org/10.3389/fcell.2023.1087337
[43] Malik, R., Patel, L., Prensner, J.R., Shi, Y., Iyer, M.K., Subramaniyan, S., et al. (2014) The lncRNA PCAT29 Inhibits Oncogenic Phenotypes in Prostate Cancer. Molecular Cancer Research, 12, 1081-1087.
https://doi.org/10.1158/1541-7786.MCR-14-0257
[44] Liu, Z., Wang, W., Jiang, J., Bao, E., Xu, D., Zeng, Y., Tao, L. and Qiu, J. (2013) Downregulation of GAS5 Promotes Bladder Cancer Cell Proliferation, Partly by Regulating CDK6. PLOS ONE, 8, e73991.
https://doi.org/10.1371/journal.pone.0073991
[45] Wang, Y., Chen, W., Yang, C., Wu, W., Wu, S., Qin, X. and Li, X. (2012) Long Non-Coding RNA UCA1a(CUDR) Promotes Proliferation and Tumorigenesis of Bladder Cancer. In-ternational Journal of Oncology, 41, 276-284.
[46] Lian, P., Wang, Q., Zhao, Y., Chen, C., Sun, X., Li, H., et al. (2019) An Eight-Long Non-Coding RNA Signature as a Candidate Prognostic Biomarker for Bladder Cancer. Aging, 11, 6930-6940.
https://doi.org/10.18632/aging.102225
[47] Andrew, A.S., Karagas, M.R., Schroeck, F.R., Marsit, C.J., Schned, A.R., Pettus, J.R., Armstrong, D.A. and Seigne, J.D. (2019) MicroRNA Dysregulation and Non-Muscle-Invasive Bladder Cancer Prognosis. Cancer Epidemiology, Biomarkers & Prevention, 28, 782-788.
https://doi.org/10.1158/1055-9965.EPI-18-0884
[48] Ding, W., Chen, Z., Gou, Y., Sun, C., Xu, K., Tan, J., et al. (2014) Are EORTC Risk Tables Suitable for Chinese Patients with Non-Muscle-Invasive Bladder Cancer? Cancer Epi-demiology, 38, 157-161.
https://doi.org/10.1016/j.canep.2014.02.001
[49] Abufaraj, M., Shariat, S.F., Haitel, A., Moschini, M., Foerster, B., Chłosta, P., et al. (2017) Prognostic Role of N-Cadherin Expression in Patients with Non-Muscle-Invasive Bladder Cancer. Urologic Oncology, 35, 264-271.
https://doi.org/10.1016/j.urolonc.2017.01.012