IDH1/2基因突变与急性髓系白血病的关系及作用的研究进展
Research Progress in the Relationship and Role of IDH1/2 Gene Mutation and Acute My-eloid Leukemia
DOI: 10.12677/ACM.2023.1361289, PDF, HTML, XML, 下载: 512  浏览: 727 
作者: 戚栋铭:南昌大学玛丽女王学院,江西 南昌;李丽:临沂市中心医院血液科,山东 临沂
关键词: 急性髓系白血病IDH抑制剂预后Acute Myeloid Leukemia IDH Inhibitor Prognosis
摘要: 异柠檬酸脱氢酶(Isocitrate dehydrogenase, IDH)是三羧酸循环(Tricarboxylic acid cycle, TCA)中细胞呼吸的必需酶,在细胞代谢的过程中发挥重要作用。越来越多的证据表明IDH同血液系统恶性肿瘤的发生密切相关,研究发现IDH是急性髓系白血病(Acute myeloid leukemia, AML)的重要驱动基因,对AML的预后,疗效监测及靶向治疗具有重要的影响。本文将对IDH在AML方面的研究进展作一综述。
Abstract: Isocitrate dehydrogenase (IDH) is essential for cellular metabolism by functioning as an essential enzyme for cellular respiration in the tricarboxylic acid (TCA) cycle. The high correlation between IDH and the development of hematological malignancies has been confirmed by a mounting amount of data. As an important driven gene in acute myeloid leukaemia (AML), the study of IDH has im-portant implications for the prognosis, monitoring of efficacy and targeted therapy in AML. In this article, we mainly summary and review the progress of IDH research in AML.
文章引用:戚栋铭, 李丽. IDH1/2基因突变与急性髓系白血病的关系及作用的研究进展[J]. 临床医学进展, 2023, 13(6): 9202-9210. https://doi.org/10.12677/ACM.2023.1361289

1. 引言

急性髓性白血病(AML)是未分化的髓系前体细胞的克隆性扩增,导致造血功能受损和骨髓衰竭,其特征是具有复发性的遗传学异常,随着测序技术的发展及研究的不断深入,AML患者根据其遗传学的不同分为不同的分子亚型,例如:AML伴t(9; 11) (p21.3; q23.3)/MLLT3:KMT2A;AML with t(1; 3) (p36.3; q21.3)/PRDM16::RPN1等 [1] ,而这些分子亚群的出现,定义了AML的预后及治疗的可靶向性。异柠檬酸脱氢酶(IDH)的突变可见于20%~30%的AML患者,IDH的突变(mIDH)导致AML细胞异常的表观遗传调控并阻断分化,在AML的发生、发展中均发挥了重要的作用,而针对IDH的抑制剂(IDHi)目前也被FDA批准应用于临床。本文主要综述了正常和突变IDH的功能,讨论了mIDH与AML的关系及其对肿瘤发生和进展的作用及影响,总结了IDH1/2基因在AML诊断、预后评估和靶向治疗中的作用。

2. IDH

异柠檬酸脱氢酶(IDH)是三羧酸循环(TCA)中细胞呼吸的必需酶,IDH家族包含三种同工酶(IDH1,IDH2和IDH3),IDH1主要存在于过氧化物酶体和胞质溶胶中,IDH2和IDH3位于线粒体内 [2] 。IDH在线粒体和胞质之间的关键代谢产物交换和电子穿梭中发挥重要作用,对能量产生有重要意义 [2] 。通过参与TCA循环,IDH催化异柠檬酸氧化脱氢产生α酮戊二酸(α-KG),同时将NADP+转化为NADPH [3] [4] 或将NAD+转化为NADH。

NADPH不仅可以促进如脂肪酸等大分子的合成,还可以作为一种抗氧化剂抑制肿瘤细胞快速增殖过程中活性氧(ROS)的产生,维持细胞氧化还原状态的稳定,防止ROS毒性和DNA氧化性损伤 [5] 。NADH的转化使得线粒体内NADH/NAD+比值升高,从而促进部分线粒体代谢产物参与细胞质中的合成代谢 [5] 。由此可见,IDH在细胞的代谢过程中发挥的作用主要包括了生物能学、生物合成及氧化还原稳态的维持等方面。

3. AML中IDH突变

有证据表明,IDH突变(mIDH)可能与其他突变协同启动和驱动多种血液肿瘤和实体肿瘤的发生 [6] 。在20%~30%的成年AML患者中会出现以体细胞突变为主的IDHs [6] [7] [8] 的早期突变。其中IDH2基因最常发生突变,影响8%~19%的患者,中等风险和老年患者群体中的突变发生频率增加 [9] [10] 。IDH1突变发生在7%~14%的AML患者中。突变通常涉及IDH1中的R132密码子,或者IDH2中的R172和R140密码子,以错义突变为主,它们所编码的精氨酸在结构上映射到活性位点内的关键残基,对酶的催化特性具有直接的影响 [11] [12] 。IDH1和IDH2突变所编码的蛋白具有新变体活性,能够影响异柠檬酸和NADPH结合,导致催化反应的产物从α-KG还原为2-羟基戊二酸酯(2-HG) [13] [14] ,在生理情况下,低水平的2-HG通常通过手性特异性脱氢酶(D-2HGDH或L-2HGDH)转化为α-KG快速清除。然而,突变IDH酶产生丰富的2-HG使其超过了正常清除机制的清除能力,导致2-HG蓄积。高水平的2-HG已被证明可以抑制α-KG依赖性双加氧酶 [15] [16] 。这些双加氧酶参与的各种细胞过程受到抑制,包括组蛋白去甲基化 [17] 、DNA修饰和对缺氧 [18] 的适应。从而损害髓系分化,增加未成熟细胞表面标志物如5-甲基胞嘧啶的表达 [6] 。另一方面,2-HG可以诱导WNT通路抑制信号的高甲基化,作为维持肿瘤干细胞干性的关键级联反应,最终导致WNT通路的激活和细胞干性特征的增强 [19] 。此外,2-HG可以通过旁分泌诱导基质细胞中NF-κB的稳定和转录激活,进而诱导基质细胞分泌IL-6、IL-8和C5,刺激AML细胞增殖 [20] 。

进一步的小鼠研究 [21] [22] [23] 证实在造血组织中特异性表达IDH1-R132H或IDH2-R140Q/R172K足以引起早期造血祖细胞增加、脾肿大、贫血、组蛋白高甲基化和DNA甲基化模式异常等血液肿瘤性改变。然而,在这些小鼠模型中肿瘤的潜伏期长和外显率不完全,表明需要二次突变来完全驱动肿瘤进展。后续研究表明,IDH2突变小鼠与致癌基因FLT3或NRAS等位基因的遗传杂交可以通过损害骨髓细胞的分化来驱动白血病转化 [22] [23] 。在敲掉IDH2突变的基因或用药物抑制IDH表达时可以减少2-HG的产生和肿瘤细胞的生长,同时诱导细胞分化 [22] [23] 。

IDH突变对AML的预后影响仍在继续研究中,在一项接受传统化疗诱导缓解的AML患者中,IDH突变对AML患者的完全缓解(CR)率、无事件生存期或总生存期没有显著影响 [24] 。其他研究表明,在某些情况下,IDH2突变可能预示着更好的预后,这取决于突变残基或FLT3突变状态。队列研究发现有IDH2-R140Q突变的患者生存率提高但缓解率降低 [25] ,在标准强化疗的情况下,IDH1/2突变合并NPM1突变且不存在FLT3-ITD时预后良好,尤其是IDH2 R172 K突变的预后相对较好 [26] 。但IDH1突变通常与较差的总生存期和无事件生存期相关,尤其是在细胞遗传学正常的患者中 [16] [27] [28] 。

4. IDH抑制剂

mIDH的发现及其在驱动早期AML发生中起关键作用的证据刺激了针对IDH的药物研发工作。目前有两种靶向mIDH的药物ivosidenib和enasidenib已经被FDA批准用于复发/难治(R/R)的具有mIDH的AML患者以及难以耐受强化疗的初诊的具有mIDH1的AML患者。它们分别通过阻断IDH1和IDH2蛋白发挥作用,通过促进白血病白细胞的正常成熟和再分化,从而减少未成熟的白血病白细胞的母细胞数量,并增加成熟的白细胞的百分比 [29] ,来发挥其抗肿瘤的作用。

4.1. Enasidenib

由Agios Pharmaceuticals开发的Enasidenib (ENA)是第一个获得FDA批准的mIDH抑制剂。ENA是一种选择性的mIDH2变构抑制剂;它结合并稳定mIDH酶的开放构象并抑制αKG转化为2-HG [30] 。研究显示ENA对mIDH2具有有效的抑制作用,并使血浆2-HG水平降低 > 90% [31] 。在I/II期试验 [32] 的基础上,ENA于2017年被FDA批准用于治疗伴有mIDH2的R/R AML。ENA的总有效率(ORR)为40.3%,中位OS为9.3个月。在一项包含39例新诊断为AML的老年患者的I/II期试验中ENA的单药治疗也显示出中等疗效,完全缓解或部分血液学恢复(CR/CRi)率为21%,ORR为30.8%,中位OS为11.3个月 [33] 。III期临床试验也证实同传统化疗(CCR)相比,ENA显着改善了无事件生存期EFS (4.9 VS 2.6个月)、治疗失败时间(TTF) (4.9 VS 1.9个月)、总有效率(ORR) (40.5%与9.9%)、血液学改善(HI) (42.4% VS 11.2%)和红细胞(RBC)-输血独立性(TI) (31.7% VS 9.3%) [34] 。ENA治疗耐受性良好,常见的3级或以上不良事件包括高间接胆红素血症(12%~13%),贫血(5%~13%)、肿瘤溶解综合征(3%~8%)和血小板减少症(6%~8%) [32] [33] [34] 。

4.2. Ivosidenib

Ivosidenib (IVO)是一种可逆的、变构竞争性mIDH1抑制剂。IVO与镁离子竞争结合(镁离子是mIDH1酶的重要辅助因子),从而阻止催化活性位点的形成 [26] 。与ENA一样,IVO的治疗效果来源于2-HG抑制和分化阻滞的释放。基于一项1/2期试验 [35] ,IVO于2018年7月被批准用于R/R mIDH1 AML。该试验包括一个剂量递增阶段,共有258名患者,R/R AML疗效队列中的179名患者根据疗效和血清2-HG的降低,IVO的最终推荐剂量为每天500 mg。CR/CRi率为30.4% (21.6% CR),ORR为41.6%,中位OS为8.8个月,CR/CRi患者生存期为18个月为50.1%。在新诊断的mIDH1 AML患者组中,CR/CRi率达到42.4%,中位OS为12.6个月,2019年5月,IVO被批准用于不能耐受强化疗的具有mIDH的AML患者的一线治疗 [32] 。在该人群中,IVO的CR/CRi率为42.4% (CR 28.6%, CRi 14.3%),中位OS为12.6个月 [36] 。无论是否能够达到完全缓解,IVO的治疗可以缓解分化阻滞、改善血细胞计数、降低感染风险改善患者尤其是老年患者的生活治疗。IVO的常见3至4级不良反应包括QT间期延长(7.8%)、IDH分化综合征(3.9%)、贫血(2.2%)和血小板减少症(3.4%) [35] [36] 。

除了上述两种已被批准用于临床的IDHi以外,还有一些IDH突变的抑制剂正在进行临床研究。

4.3. Olutasidenib

FT-2102是一种口服小分子选择性IDH1抑制剂。入组153名未接受过IDH1抑制剂治疗的IDH1R132突变的R/R AML患者接受每天两次的olutasidenib 150 mg单药治疗。CR/CRi的比率为35% (n = 51; 95% CI, 27.0~43.0),总体缓解率为48% (n = 71; 95% CI, 40.0~56.7)。接受过和未接受过维奈托克治疗的患者的反应率相似。CR/CRi的中位持续时间为25.9个月(95% CI, 13.5~NE)。ORR的中位持续时间为11.7个月(95% CI, 6.9~25.9)。中位OS为11.6个月(95% CI, 8.9~15.5)。在所有反应组中有29名(34%)患者脱离了输血依赖。3/4级治疗相关不良反应主要是发热性中性粒细胞减少症和贫血(n = 31;各20%)、血小板减少症(n = 25; 16%)、中性粒细胞减少症(n = 20; 13%)以及IDH的分化综合征(n = 22; 14%) [37] 。

4.4. AG-881

AG-881是一种针对mIDH1和mIDH2的泛IDH抑制剂,目前正在I期临床研究(NCT02492737)。

4.5. IDH-305

IDH-305是一种口服小分子IDH1R132抑制剂,IDH-305的1期临床研究显示10/37 (27%)的AML患者达到CR或CRi。但由于治疗窗可能比较狭窄,该研究提前停止 [38] 。

4.6. BAY1436032

BAY1436032,一种新型泛突变IDH1抑制剂,在体外和体内试验显示:BAY1436032特异性抑制R-2HG产生和集落生长,并诱导携带IDH1R132H、IDH1R132C、IDH1R132G、IDH1R132L和IDH1R132S突变的AML细胞的骨髓分化。此外,该化合物影响DNA甲基化并减弱组蛋白高甲基化 [39] 。后续的1期临床研究发现在所有受试者的中位治疗时间为3.0个月(0.49~8.5)。总体缓解率为15% (4/27; 1 CRp, 1 PR, 2 MLFS),其中缓解受试者的中位治疗时间为6.0个月(3.9~8.5),R-2HG明显降低。30% (8/27)达到了SD,中位治疗时间为5.5个月(3.1~7.0)。R-2HG抑制的程度和临床获益与剂量无关。尽管BAY1436032作为单一疗法是安全且适度有效的,但即使在测试的最高剂量下仍具有较低的总体缓解率和不完全的靶标抑制作用 [40] ,提示BAY1436032单药在AML中的疗效有限。Chaturvedi等进一步评估了阿扎胞苷与BAY1436032联合治疗的疗效,研究真是联合治疗显着延长了生存期(P < 0.005)。小鼠试验证实联合治疗使白血病干细胞(LSC)减少了33,150倍 [41] 。

5. IDH抑制剂的耐药机制

IDH抑制剂单药治疗的CR率为20%至40%,大多数患者对治疗没有反应或出现短期复发。多项研究对IDH抑制剂的耐药机制进行了描述,主要包括以下四个关键机制:

1) 第二位点IDH突变亚型的出现:在ENA治疗复发的IDH2R140Q突变患者中,出现了新的IDH2突变(Q316E和I319M) [42] 。33在20例IVO治疗后复发的IDH1突变的患者中也观察到新的IDH1突变(S280F,R119P G131A,D279N,G289D和H315D) [43] 。

2) IDH突变亚型的改变(即亚型转换):除了第二位点IDH突变亚型的出现,在IVO治疗后复发的患者中也观察到IDH2突变的出现 [43] ,而在接受ENA治疗后复发的IDH2突变的患者中也同样观察到了IDH1的突变 [44] [45] 。

转录因子突变的出现,髓系转录因子基因(CEBPA, RUNX1, GATA2)特别是RUNX1的突变,与原发性IDHi耐药相关 [44] [46] 。差异甲基化探针分析显示,一组患者显示高甲基化表型,导致参与骨髓分化的基因下调,与白血病干性相关的基因上调,与原发性IDHi耐药相关 [46] 。复发时,在髓系转录因子(RUNX1, GATA2, BCORL1, BCL11A)突变的患者中观察到分化阻滞的重新建立 [46] 。

RTK/RAS信号通路突变:研究证实在IDH抑制剂治疗中原发耐药与同时发生的受体酪氨酸激酶(RTK)和RAS通路突变相关,包括FLT3、NRAS和KRAS突变 [46] 。RTK/RAS通路基因基线共突变的患者获得CR或CRh的可能性显着降低 [46] 。而IDH抑制剂获得性耐药的机制与克隆进化/RTK/RAS通路突变的选择有关 [44] [46] 。鉴于AML复发遗传病因的多种可能性,所有复发事件都应当进行重复测序,以更好地了解耐药的机制并确定进一步的治疗方案。

6. 联合治疗

IDH抑制剂单药治疗R/R AML患者的CR/CRi约为30%。鉴于AML突变的多样性,研究者认为如果在疾病早期将IDHi与其他药物联合使用可能会提高反应率和持久性。

临床前数据显示,去甲基化药物(HMA)阿扎胞苷(AZA)与ENA联合使用比单独使用具有更大程度的造血分化和凋亡增强,提示这种联合使用可能对AML产生协同作用 [47] 。多项临床试验 [48] [49] [50] [51] [52] 正在对IVO或ENA与AZA联合用药在不适合接受强化诱导化疗的患者中的安全性和有效性进行研究。这些研究结果证实联合治疗具有更高的反应率,并能改善患者的EFS,但不良反应同单独用药相比无明显差异。

IVO/ENA联合CCR的一项I期、多中心、开放性的临床研究 [53] ,用IVO或ENA联合CCR (蒽环类药物 + 阿糖胞苷IA)方案,分别诱导了60例和93例IDH1或IDH2突变的AML患者。研究证实IDHi + IA是安全的,研究并没有观察到重叠的骨髓毒性,IVO或ENA联合IA方案治疗的CR/CRi率分别为77%和74%。明显高于单药治疗的有效率。中位随访9.3个月后,接受IVO + IA治疗的患者(12个月OS率为78%),接受ENA + IA治疗的患者为25.6个月(12个月OS: 76%)中位OS未达到。

这些联合治疗的初步临床研究显示出了良好的治疗反应性及持续性,并具有可控的毒副作用,为联合治疗的进一步研究提供了基础。

7. 讨论

IDH突变对AML的发生和发展具有重要的作用,并且具有可识别的独特生物学标志物2-HG。IDH突变可以作为AML患者治疗疗效的监测标志,并可作为治疗的靶点。目前已有两种IDH抑制剂被批准应用于临床,并仍有许多新的IDH抑制剂正在研发中。IDH抑制剂单药及联合治疗,在AML特别是R/RAML患者中良好的有效率及安全性,为AML治疗新方案的研究,及最佳治疗方案的选择提供了新的方向。基于基因指导下的AML治疗的方案选择将使AML患者的治疗越来越个体,并进一步改善AML患者的预后。

参考文献

[1] Döhner, H., Wei, A.H., Appelbaum, F.R., Craddock, C., DiNardo, C.D., Dombret, H., Ebert, B.L., Fenaux, P., Godley, L.A., Hasserjian, R.P., et al. (2022) Diagnosis and Management of AML in Adults: 2022 Recommendations from an In-ternational Expert Panel on Behalf of the ELN. Blood, 140, 1345-1377.
https://doi.org/10.1182/blood.2022016867
[2] Gross, S., Cairns, R.A., Minden, M.D., Driggers, E.M., Bittinger, M.A., Jang, H.G., Sasaki, M., Jin, S., Schenkein, D.P., Su, S.M., et al. (2010) Cancer-Associated Metabolite 2-Hydroxyglutarate Accumulates in Acute Myelogenous Leukemia with Isocitrate Dehydrogenase 1 and 2 Mutations. Journal of Experimental Medicine, 207, 339-344.
https://doi.org/10.1084/jem.20092506
[3] DiNardo, C.D., Propert, K.J., Loren, A.W., Paietta, E., Sun, Z., Levine, R.L., Straley, K.S., Yen, K., Patel, J.P., Agresta, S., et al. (2013) Serum 2-Hydroxyglutarate Levels Predict Isocitrate Dehydrogenase Mutations and Clinical Outcome in Acute Myeloid Leukemia. Blood, 121, 4917-4924.
https://doi.org/10.1182/blood-2013-03-493197
[4] Dang, L., Yen, K. and Attar, E.C. (2016) IDH Mutations in Cancer and Progress toward Development of Targeted Therapeutics. Annals of Oncolog, 27, 599-608.
https://doi.org/10.1093/annonc/mdw013
[5] Jiang, L., Shestov, A.A., Swain, P., Yang, C., Parker, S.J., Wang, Q.A., Terada, L.S., Adams, N.D., McCabe, M.T., Pietrak. B., et al. (2016) Reductive Carboxylation Supports Redox Homeostasis during Anchorage-Independent Growth. Nature, 532, 255-258.
https://doi.org/10.1038/nature17393
[6] Figueroa, M.E., Abdel-Wahab, O., Lu, C., Ward, P.S., Patel, J., Shih, A., Li, Y., Bhagwat, N., Vasanthakumar, A., Fernandez, H.F., et al. (2010) Leukemic IDH1 and IDH2 Mutations Result in a Hypermethylation Phenotype, Disrupt TET2 Function, and Impair Hematopoietic Differentiation. Cancer Cell, 18, 553-567.
https://doi.org/10.1016/j.ccr.2010.11.015
[7] Rakheja, D., Medeiros, L.J., Bevan, S. and Chen, W. (2013) The Emerging Role of D-2-Hydroxyglutarate as an Oncometabolite in Hematolymphoid and Central Nervous System Neo-plasms. Frontiers in Oncology, 3, Article 169.
https://doi.org/10.3389/fonc.2013.00169
[8] Kranendijk, M., Struys, E.A., van Schaftingen, E., Gibson, K.M., Kanhai, W.A., van der Knaap, M.S., Amiel, J., Buist, N.R., Das, A.M., de Klerk, J.B., et al. (2010) IDH2 Mutations in Patients with D-2-Hydroxyglutaric Aciduria. Science, 330, 336.
https://doi.org/10.1126/science.1192632
[9] Mardis, E.R., Ding, L., Dooling, D.J., Larson, D.E., McLellan, M.D., Chen, K., Koboldt, D.C., Fulton, R.S., Delehaunty, K.D., McGrath, S.D., et al. (2009) Recurring Mutations Found by Sequencing an Acute Myeloid Leukemia Genome. The New England Journal of Medicine, 361, 1058-1066.
https://doi.org/10.1056/NEJMoa0903840
[10] Paschka, P., Schlenk, R.F., Gaidzik, V.I., Habdank, M., Krönke, J., Bullinger, L., Späth, D., Kayser, S., Zucknick, M., Götze, K., et al. (2010) IDH1 and IDH2 Mutations Are Frequent Ge-netic Alterations in Acute Myeloid Leukemia and Confer Adverse Prognosis in Cytogenetically Normal Acute Myeloid Leukemia WithNPM1 Mutation without FLT3 Internal Tandem Duplication. Journal of Clinical Oncology, 28, 3636-3643.
https://doi.org/10.1200/JCO.2010.28.3762
[11] Losman, J. and Kaelin, W.G. (2013) What a Difference a Hydroxyl Makes: Mutant IDH, (R)-2-Hydroxyglutarate, and Cancer. Genes & Development, 27, 836-852.
https://doi.org/10.1101/gad.217406.113
[12] Yang, H., Ye, D., Guan, K. and Xiong, Y. (2012) IDH1 and IDH2 Mutations in Tumorigenesis: Mechanistic Insights and Clinical Perspectives. Clinical Cancer Research, 18, 5562-5571.
https://doi.org/10.1158/1078-0432.CCR-12-1773
[13] Dang, L., White, D.W., Gross, S., Bennett, B.D., Bittinger, M.A., Driggers, E.M., Fantin, V.R., Jang, H.G., Jin, S., Keenan, M.C., et al. (2009) Cancer-Associated IDH1 Mutations Produce 2-Hydroxyglutarate. Nature, 462, 739-744.
https://doi.org/10.1038/nature08617
[14] Ward, P.S., Patel, J., Wise, D.R., Abdel-Wahab, O., Bennett, B.D., Coller, H.A., Cross, J.R., Fantin, V.R., Hedvat, C.V., Perl, A.E., et al. (2010) The Common Feature of Leukemia-Associated IDH1 and IDH2 Mutations Is a Neomorphic Enzyme Activity Converting α-Ketoglutarate to 2-Hydroxyglutarate. Cancer Cell, 17, 225-234.
https://doi.org/10.1016/j.ccr.2010.01.020
[15] Koivunen, P., Lee, S., Duncan, C.G., Lopez, G., Lu, G., Ramkis-soon, S., Losman, J.A., Joensuu, P., Bergmann, U., Gross, S., et al. (2012) Transformation by the (R)-Enantiomer of 2-Hydroxyglutarate Linked to EGLN Activation. Nature, 483, 484-488.
https://doi.org/10.1038/nature10898
[16] Montalban-Bravo, G. and DiNardo, C.D. (2018) The Role of IDH Muta-tions in Acute Myeloid Leukemia. Future Oncology, 14, 979-993.
https://doi.org/10.2217/fon-2017-0523
[17] Lu, C., Ward, P.S., Kapoor, G.S., Rohle, D., Turcan, S., Abdel-Wahab, O., Edwards, C.R., Khanin, R., Figueroa, M.E., Melnick, A., et al. (2012) IDH Mutation Impairs Histone Demethylation and Results in a Block to Cell Differentiation. Nature, 483, 474-478.
https://doi.org/10.1038/nature10860
[18] Clark, O., Yen, K. and Mellinghoff, I.K. (2016) Molecular Pathways: Isocitrate Dehydrogenase Mutations in Cancer. Clinical Cancer Research, 22, 1837-1842.
https://doi.org/10.1158/1078-0432.CCR-13-1333
[19] Zhan, T., Rindtorff, N. and Boutros, M. (2017) Wnt Sig-naling in Cancer. Oncogene, 36, 1461-1473.
https://doi.org/10.1038/onc.2016.304
[20] Chen, J., Lai, Y., Tsai, H., Kuo, C., Yen, B.L., Yeh, S., Sun, H.S. and Hung, W. (2016) The Oncometabolite R-2-Hy- droxyglutarate Activates NF-κB-Dependent Tumor-Promoting Stromal Niche for Acute Myeloid Leukemia Cells. Scientific Reports, 6, Article No. 32428.
https://doi.org/10.1038/srep32428
[21] Sasaki, M., Knobbe, C.B., Munger, J.C., Lind, E.F., Brenner, D., Brüstle, A., Harris, I.S., Holmes, R., Wakeham, A., Haight, J., et al. (2012) IDH1 (R132H) Mutation Increases Murine Haema-topoietic Progenitors and Alters Epigenetics. Nature, 488, 656-659.
https://doi.org/10.1038/nature11323
[22] Chen, C., Liu, Y., Lu, C., Cross, J.R., Morris, J.P., Shroff, A.S., Ward, P.S., Bradner, J.E., Thompson, C. and Lowe, S.W. (2013) Cancer-Associated IDH2 Mutants Drive an Acute Myeloid Leukemia That Is Susceptible to Brd4 Inhibition. Genes & Development, 27, 1974-1985.
https://doi.org/10.1101/gad.226613.113
[23] Kats, L.M., Reschke, M., Taulli, R., Pozdnyakova, O., Burgess, K., Bhargava, P., Straley, K., Karnik, R., Meissner, A., Small, D., et al. (2014) Proto-Oncogenic Role of Mutant IDH2 in Leukemia Initiation and Maintenance. Cell Stem Cell, 14, 329-341.
https://doi.org/10.1016/j.stem.2013.12.016
[24] Brunner, A.M., Neuberg, D.S., Wander, S.A., Sadrzadeh, H., Ballen, K.K., Amrein, P.C., Attar, E., Hobbs, G.S., Chen, Y.B., Perry, A., et al. (2019) Isocitrate Dehydrogenase 1 and 2 Mutations, 2-Hydroxyglutarate Levels, and Response to Standard Chemotherapy for Patients with Newly Diagnosed Acute Myeloid Leukemia. American Cancer Society, 125, 541-549.
https://doi.org/10.1002/cncr.31729
[25] Abdel-Wahab, O., Patel, J. and Levine, R.L. (2011) Clinical Implications of Novel Mutations in Epigenetic Modifiers in AML. Hematology/Oncology Clinics of North America, 25, 1119-1133.
https://doi.org/10.1016/j.hoc.2011.09.013
[26] Issa, G.C. and DiNardo, C.D. (2021) Acute Myeloid Leukemia with IDH1 and IDH2 Mutations: 2021 Treatment Algorithm. Blood Cancer Journal, 11, Article No. 107.
https://doi.org/10.1038/s41408-021-00497-1
[27] Chou, W., Lei, W., Ko, B., Hou, H., Chen, C., Tang, J., Yao, M., Tsay, W., Wu, S., Huang, S., et al. (2011) The Prognostic Impact and Stability of Isocitrate dehydrogenase 2 Mutation in Adult Patients with Acute Myeloid Leukemia. Leukemia, 25, 246-253.
https://doi.org/10.1038/leu.2010.267
[28] Becker, J.S. and Fathi, A.T. (2020) Targeting IDH Mutations in AML: Wielding the Double-Edged Sword of Differentiation. Current Cancer Drug Targets, 20, 490-500.
https://doi.org/10.2174/1568009620666200424145622
[29] Padmakumar, D., Chandraprabha, V.R., Gopinath, P., Vimala Devi, A.R.T., Anitha, G.R.J., Sreelatha, M.M., Padmakumar, A. and Sreedharan, H. (2021) A Concise Review on the Molecular Genetics of Acute Myeloid Leukemia. Leukemia Research, 111, Article ID: 106727.
https://doi.org/10.1016/j.leukres.2021.106727
[30] Wang, F., Travins, J., DeLaBarre, B., Penard-Lacronique, V., Schalm, S., Hansen, E., Straley, K., Kernytsky, A., Liu, W., Gliser, C., et al. (2013) Targeted Inhibition of Mutant IDH2 in Leukemia Cells Induces Cellular Differentiation. Science, 340, 622-626.
https://doi.org/10.1126/science.1234769
[31] Yen, K., Travins, J., Wang, F., David, M.D., Artin, E., Straley, K., Padyana, A., Gross, S., DeLaBarre, B., Tobin, E., et al. (2017) AG-221, a First-in-Class Therapy Targeting Acute Mye-loid Leukemia Harboring Oncogenic IDH2 Mutations. Cancer Discovery, 7, 478-493.
https://doi.org/10.1158/2159-8290.CD-16-1034
[32] Stein, E.M., DiNardo, C.D., Pollyea, D.A., Fathi, A.T., Ro-boz, G.J., Altman, J.K., Stone, R.M., DeAngelo, D.J., Levine, R.L., Flinn, I.W., et al. (2017) Enasidenib in Mutant IDH2 Relapsed or Refractory Acute Myeloid Leukemia. Blood, 130, 722-731.
https://doi.org/10.1182/blood-2017-04-779405
[33] Pollyea, D.A., Tallman, M.S., de Botton, S., Kantarjian, H.M., Collins, R., Stein, A.S., Frattini, M.G., Xu, Q., Tosolini, A., See, W.L., et al. (2019) Enasidenib, an Inhibitor of Mutant IDH2 Proteins, Induces Durable Remissions in Older Patients with Newly Diagnosed Acute Myeloid Leukemia. Leuke-mia, 33, 2575-2584.
https://doi.org/10.1038/s41375-019-0472-2
[34] De Botton, S., Montesinos, P., Schuh, A.C., Papayannidis, C., Vyas, P., Wei, A.H., Ommen, H., Semochkin, S., Kim, H., Larson, R.A., et al. (2023) Enasidenib vs Conventional Care in Older Patients with Late-Stage Mutant-IDH2 Relapsed/Refractory AML: A Randomized Phase 3 Trial. Blood, 141, 156-167.
https://doi.org/10.1182/blood.2021014901
[35] DiNardo, C.D., Stein, E.M., de Botton, S., Roboz, G.J., Altman, J.K., Mims, A.S., Swords, R., Collins, R.H., Mannis, G.N., Pollyea, D.A., et al. (2018) Durable Remissions with Ivosidenib in IDH1-Mutated Relapsed or Refractory AML. The New England Journal of Medicine, 378, 2386-2398.
https://doi.org/10.1056/NEJMoa1716984
[36] Roboz, G.J., DiNardo, C.D., Stein, E.M., de Botton, S., Mims, A.S., Prince, G.T., Altman, J.K., Arellano, M.L., Donnellan, W., Erba, H.P., et al. (2020) Ivosidenib Induces Deep Durable Remissions in Patients with Newly Diagnosed IDH1-Mutant Acute Myeloid Leukemia. Blood, 135, 463-471.
https://doi.org/10.1182/blood.2019002140
[37] De Botton, S., Fenaux, P., Yee, K.W.L., Récher, C., Wei, A.H., Montesinos, P., Taussig, D.C., Pigneux, A., Braun, T., Curti, A., et al. (2023) Olutasidenib (FT-2102) Induces Durable Complete Remissions in Patients with Relapsed or refractory IDH1-Mutated AML. Blood Advances.
https://doi.org/10.1182/bloodadvances.2022009411
[38] DiNardo, C.D., Hochhaus, A., Frattini, M.G., Yee, K., Zander, T., Krämer, A., Chen, X., Ji, Y., Parikh, N.S., Choi, J. and Wei, A.H. (2022) A Phase 1 Study of IDH305 in Pa-tients with IDH1R132-Mutant Acute Myeloid Leukemia or Myelodysplastic Syndrome. Journal of Cancer Research and Clinical Oncology, 149, 1145-1158.
https://doi.org/10.1007/s00432-022-03983-6
[39] Chaturvedi, A., Herbst, L., Pusch, S., Klett, L., Goparaju, R., Stichel, D., Kaulfuss, S., Panknin, O., Zimmermann, K., Toschi, L., et al. (2017) Pan-Mutant-IDH1 Inhibitor BAY1436032 Is Highly Effective against Human IDH1 Mutant Acute Myeloid Leukemia in Vivo. Leukemia, 31, 2020-2028.
https://doi.org/10.1038/leu.2017.46
[40] Heuser, M., Palmisiano, N., Mantzaris, I., Mims, A., DiNardo, C., Silverman, L.R., Wang, E.S., Fiedler, W., Baldus, C., Schwind, S., et al. (2020) Safety and Efficacy of BAY1436032 in IDH1-Mutant AML: Phase I Study Results. Leukemia, 34, 2903-2913.
https://doi.org/10.1038/s41375-020-0996-5
[41] Chaturvedi, A., Gupta, C., Gabdoulline, R., Borchert, N.M., Go-paraju, R., Kaulfuss, S., Görlich, K., Schottmann, R., Othman, B., Welzenbach, J., et al. (2021) Synergistic Activity of IDH1 Inhibitor BAY1436032 with Azacitidine in IDH1 Mutant Acute Myeloid Leukemia. Haematologica, 106, 565-573.
https://doi.org/10.3324/haematol.2019.236992
[42] Intlekofer, A.M., Shih, A.H., Wang, B., Nazir, A., Rustenburg, A.S., Albanese, S.K., Patel, M., Famulare, C., Correa, F.M., Takemoto, N., et al. (2018) Acquired Resistance to IDH In-hibition through Trans or Cis Dimer-Interface Mutations. Nature, 559, 125-129.
https://doi.org/10.1038/s41586-018-0251-7
[43] Choe, S., Wang, H., DiNardo, C.D., Stein, E.M., de Botton, S., Roboz, G.J., Altman, J.K., Mims, A.S., Watts, J.M., Pollyea. D.A., et al. (2020) Molecular Mechanisms Mediating Re-lapse following Ivosidenib Monotherapy in IDH1-Mutant Relapsed or Refractory AML. Blood Advances, 4, 1894-1905.
https://doi.org/10.1182/bloodadvances.2020001503
[44] Quek, L., David, M.D., Kennedy, A., Metzner, M., Ama-tangelo, M., Shih, A., Stoilova, B., Quivoron, C., Heiblig, M., Willekens, C., et al. (2018) Clonal Heterogeneity of Acute Myeloid Leukemia Treated with the IDH2 Inhibitor Enasidenib. Nature Medicine, 24, 1167-1177.
https://doi.org/10.1038/s41591-018-0115-6
[45] Harding, J.J., Lowery, M.A., Shih, A.H., Schvartzman, J.M., Hou, S., Famulare, C., Patel, M., Roshal, M., Do, R.K., Zehir, A., et al. (2018) Isoform Switching as a Mechanism of Acquired Resistance to Mutant Isocitrate Dehydrogenase Inhibition. Cancer Discovery, 8, 1540-1547.
https://doi.org/10.1158/2159-8290.CD-18-0877
[46] Wang, F., Morita, K., DiNardo, C.D., Furudate, K., Tanaka, T., Yan, Y., Patel, K.P., MacBeth, K.J., Wu, B., Liu, G., et al. (2021) Leukemia Stemness and Co-Occurring Mutations Drive Resistance to IDH Inhibitors in Acute Myeloid Leukemia. Nature Communications, 12, Article No. 260.
https://doi.org/10.1038/s41467-021-22874-x
[47] MacBeth, K.J., Chopra, V.S., Tang, L., Zheng, B., Avanzino, B., See, W.L., Schwickart, M., Figueroa, M.E., Quek, L. and DiMartino, J.F. (2021) Combination of Azacitidine and Enasidenib Enhances Leukemic Cell Differentiation and Cooperatively Hypomethylates DNA. Experimental Hematology, 98, 47-52.
https://doi.org/10.1016/j.exphem.2021.03.003
[48] DiNardo, C.D., Stein, A.S., Stein, E.M., Fathi, A.T., Frankfurt, O., Schuh, A.C., Döhner, H., Martinelli, G., Patel, P.A., Raffoux, E., et al. (2021) Mutant Isocitrate Dehydrogenase 1 Inhibitor Ivosidenib in Combination with Azacitidine for Newly Diagnosed Acute Myeloid Leukemia. Journal of Clinical Oncology, 39, 57-65.
https://doi.org/10.1200/JCO.20.01632
[49] Montesinos, P., Recher, C., et al. (2022) Ivosidenib and Azacitidine inIDH1-Mutated AML. The New England Journal of Medicine, 386, 2535-2537.
https://doi.org/10.1056/NEJMc2206489
[50] DiNardo, C.D., Schuh, A.C., Stein, E.M., Montesinos, P., Wei, A.H., de Botton, S., Zeidan, A.M., Fathi, A.T., Kantarjian, H.M., Bennett, J.M., et al. (2021) Enasidenib plus Azacitidine ver-sus Azacitidine Alone in Patients with Newly Diagnosed, Mutant-IDH2 Acute Myeloid Leukaemia (AG221-AML-005): A Single-Arm, Phase 1b and Randomised, Phase 2 Trial. The Lancet Oncology, 22, 1597-1608.
https://doi.org/10.1016/S1470-2045(21)00494-0
[51] (2022) Ivosidenib Boosts OS with Azacitidine in AML. Cancer Discovery, 12, 1602-1603.
https://doi.org/10.1158/2159-8290.CD-NB2022-0035
[52] Venugopal, S., Takahashi, K., Daver, N., Maiti, A., Borthakur, G., Loghavi, S., Short, N.J., Ohanian, M., Masarova, L., Issa, G., et al. (2022) Efficacy and Safety of Enasidenib and Azacitidine Combination in Patients with IDH2 Mutated Acute Myeloid Leukemia and Not Eligible for Intensive Chemotherapy. Blood Cancer Journal, 12, Article No. 10.
https://doi.org/10.1038/s41408-021-00604-2
[53] Wei, A.H., Döhner, H., Pocock, C., Montesinos, P., Afanasyev, B., Dombret, H., Ravandi, F., Sayar, H., Jang, J., Porkka, K., et al. (2020) Oral Azacitidine Maintenance Therapy for Acute Myeloid Leukemia in First Remission. The New England Journal of Medicine, 383, 2526-2537.
https://doi.org/10.1056/NEJMoa2004444