过硫酸盐高级氧化技术通过非自由基途径降解有机污染物的研究进展
Research Progress of Advanced Oxidation of Persulfate to Degrade Organic Pollutants by Non-Free Radical Pathway
DOI: 10.12677/OJNS.2023.113058, PDF, HTML, XML, 下载: 523  浏览: 1,969 
作者: 江逸帆, 张鑫宇, 刘 琼*:武汉工程大学化学与环境工程学院,绿色化工过程教育部重点省重点实验室,新型反应器与绿色化学工艺湖北省重点实验室,湖北 武汉
关键词: 过硫酸盐非自由基途径降解Persulfate Non-Free Radical Mechanism Degradation
摘要: 水体中大量存在的有机污染物已经对生态系统造成不可避免的伤害。非自由基途径在过硫酸盐高级氧化技术中表现出选择性高、pH稳定性好、抗干扰能力强等优点,成为近十年来的一个热门话题。但因非自由基途径多样,机制复杂,尚需深入了解。本文主要介绍了近年来单线态氧、表面结合氧化物、表面结合自由基、电子转移和高价金属等五种非自由基途径在过硫酸盐体系降解有机污染物的研究进展、研究成果和识别方法。最后对非自由基途径的发展进行了展望。
Abstract: A large amount of organic pollutants in water has caused inevitable damage to the ecosystem. Non-free radical pathway has become a hot topic in the past decade due to its advantages of high selectivity, good pH stability and strong anti-interference ability in persulfate advanced oxidation technology. However, due to the variety of non-free radical pathways and complex mechanisms, further understanding is needed. In this paper, the research progress, achievements and identification methods of organic pollutants in persulfate system by five non-free radical pathways including singlet oxygen, surface-bound oxides, surface-bound free radicals, electron transfer and hypervalent metals were reviewed. Finally, the development of non-free radical pathways is prospected.
文章引用:江逸帆, 张鑫宇, 刘琼. 过硫酸盐高级氧化技术通过非自由基途径降解有机污染物的研究进展[J]. 自然科学, 2023, 11(3): 483-495. https://doi.org/10.12677/OJNS.2023.113058

1. 引言

废水是已经被生活、工业和商业活动污染的水 [1] ,需要经过处理才能排放到其他水体中,以避免更多的地下水污染。废水中可能含有重金属、有机污染物、无机污染物和新兴污染物等多种污染物 [2] 。几十年来,人们一直在研究各种污染物,但这些新出现的污染物主要来自制药、个人护理产品、激素和化肥行业等。当各种各样的内分泌干扰物(EDCs),如增塑剂、除草剂、杀虫剂、药品和个人护理产品(PPCPs)、食品添加剂和甜味剂等从工业废水排放到水资源,最终出现在饮用水中,这一现象引起了科学界的极大关注 [3] 。污染物的产生主要有以下几个原因:1) 生产和消费总量多:中国人口快速增长,中国是最大的EDCs、PPCPs生产国与消费国之一,年生产总量达几百万吨 [3] 。2) 产生途径多:药物生产过程中的浪费,药物使用时的不完全吸收,以及药物处理时污水处理厂的不完全降解 [4] [5] ,都可能直接或间接的产生污染。3) 污染物的假持久性:大量、广泛、不间断的使用各种护理用品和药物 [6] ,造成污染物的假持久性 [7] 。污染过程往往是动态的、隐匿的、累积的和不可逆的,大多数有机污染物具有低溶解度、生态毒性、致突变性甚至致癌性,可能对人类健康和生态系统造成威胁 [8] [9] 。因此污染物的完全降解就显得格外重要。近年来过硫酸盐高级氧化技术( SO 4 · -AOPs)因其高效、温和的条件和能够完全矿化污染物的能力而受到研究者的青睐 [8] [10] - [16] 。过硫酸盐(PDS/PMS)活化产生的 SO 4 · · OH 自由基,可以有效、非选择性地氧化有机污染物。然而, SO 4 · · OH 在水溶液中不可避免地会与共存的有机物和无机底物发生反应,过度的消耗过硫酸盐,不能有效地降低其利用效率 [17] 。非自由基途径和自由基途径相比具有受环境影响较小,选择性更强,可以抑制有毒物质的产生等特点,更适合应用在实际水体中 [18] 。

2. 非自由基途径

非自由基途径通常具有几个明显的优势:1) 在去除富电子有机污染物方面具有更高的选择性 [19] 。2) 对卤化物离子和NOMs等水基质具有更高的耐受性 [20] 。3) 抑制卤化物消毒副产物的产生。非自由基氧化剂与卤化物离子具有低反应性 [21] 。因此,非自由基过硫酸盐活化在废水中微量有机污染物的氧化中具有很好的应用潜力。非自由基途径一般可以分为单线态氧、表面结合氧化物、表面结合自由基、电子转移和高价金属五种。

2.1. 单线态氧

与经典的 SO 4 · · OH 相比,1O2是一种选择性氧化剂,它与胺、硫化物和苯酚等富电子化合物的反应活性较高,与饱和醇的反应活性较低 [22] 。此外,1O2的氧化势相对温和,半衰期适中,氧化机制不同 [19] 。过硫酸盐多相催化体系中1O2主要通过PMS的自分解(式1) [23] 、晶格氧的释放(图1(a)) [24] 、 O 2 · 的转化(图1(b),图1(c)) [25] [26] 等其他途径(图1(d)) [27] 生成。

HSO 5 + SO 5 2 HSO 4 + SO 4 2 + O 1 2 (1)

(a) (b)(c) (d)

Figure 1. 1O2 formation path: (a) lattice oxygen release of Bi(V)/Bi(III) composites [24] , (b) (c) O 2 · conversion [25] [26] , (d) activation of PMS by carbon-based materials to generate 1O2 [27]

图1. 1O2生成途径:(a) Bi(V)/Bi(III)复合材料晶格氧的释放 [24] ,(b) (c) O 2 · 的转化 [25] [26] ,(d) 碳基材料活化PMS生成1O2 [27]

研究者们发现可以通过调节特定的参数来有效产生1O2。Bu等人 [28] 对不同BiOBr基催化剂活化PDS降解双酚A进行了全面的研究。研究发现,在碱性条件下氧空位多的BiOBr可以产生更多的1O2,从而更有效活化PDS降解双酚A。结果表明,可以通过调节氧空位的含量和溶液体系的pH值来调控1O2产生的量。Yao等人 [29] 开发了一个简单的策略,通过调整双金属沸石咪唑骨架(ZnxCo1-ZIFs)的Zn/Co比值,在原子水平上调节Co-N-C催化剂的组成和配位,通过催化剂设计来实现污染物的选择性氧化,有效生产1O2。Zn4Co1-C在苯酚/苯甲酸(苯酚/BA)混合溶液中对苯酚的选择性去除率为98%。密度泛函理论计算和实验结果表明,Zn4Co1-C中生成了更多活性的CoN4位点,有利于过氧单硫酸盐活化生成1O2

1O2识别方法(表1)主要有1) 捕获剂实验,在特定的1O2捕获剂下,根据降解效率是否发生改变来确认,常用的猝灭剂有:糠醇(FFA),L-组氨酸和叠氮化合物(NaN3) [30] [31] [32] ;2) 判断是否可以和空气中的氧气发生反应产生1O2,可以通过在N2氛围/惰性气体(目的为了除氧)下反应,根据降解效率是否发生改变来确认 [33] ;3) EPR实验,在水做溶剂的反应体系下加入TEMP捕获剂,根据是否有特征1O2的信号来确认 [30] [34] ;4) 更换溶剂,将水更换成重水(D2O),根据降解效率和EPR信号是否发生改变来确认 [35] ,文献报道1O2在D2O中的寿命比水中更长 [36] ;5) 测试1O2的加和产物,通过高效液相色谱和质谱(HPLC-MS)连用来确认 [37] 。

Table 1. Identification pathways of 1O2 in different literatures

表1. 不同文献中1O2的识别方法

2.2. 表面结合氧化物

表面结合氧化物的主要机制是催化剂和过硫酸盐之间通过络合的方式结合,结合后催化剂和过硫酸盐整体的氧化还原电位升高,接着从污染物中提取电子,最终达到降解的目的。Zhang等人 [42] 研究发现CuO和PDS可以通过外球作用高效降解2,4-二氯苯酚(2,4-DCP),当CuO浓度为200 mg/L,PDS浓度为40 μM时,40分钟可完全降解浓度为5 μM的2,4-DCP (图2(a))。Lee等人 [26] 研究发现,石墨纳米金刚石(G-ND)在过硫酸盐活化方面优于其他基准碳材料,如石墨、石墨烯、富勒烯和碳纳米管。G-ND/过硫酸盐体系对酚类化合物和一些药物有选择性反应,其降解动力学不受氧化剂清除剂和天然有机物的抑制。线性扫描伏安法、热重分析、傅立叶红外光谱和电子顺磁共振光谱分析结果表明,过硫酸盐和苯酚都能与G-ND表面有效结合,并可能形成电荷转移络合物,其中G-ND在苯酚向过硫酸盐的电子转移中起关键作用(图2(b))。Ren等人 [27] [43] 揭示了酚类化合物(PCs)非自由基氧化的实质和这一过程中主要的影响因素。结果表明,PDS首先吸附在CNT上,然后CNT活化PDS形成亚稳态CNT-PDS*中间体。同时,配合物有效提高了CNT的整体电位(+0.65 V左右),PDS/碳配合物呈现出较高的氧化还原状态,可将共吸附的PCs氧化成电位较低的产物(图2(c))。在此过程中,非自由基体系的氧化能力受到半波电位(φ1/2,由固有官能团决定)、PCs的离子/分子状态和碳纳米管中氧基浓度的影响。φ1/2值较低的PCs更有利于将电子提供给CNT-PDS*,从而加速PDS的消耗。相反,与CNT-PDS*电位相比,具有更高φ1/2值的PC (如硝基苯酚,羟基苯乙酮和羟基苯甲酸甲酯)将阻碍电子转移过程。PC的负电荷离子态不利于碳纳米管表面的接近,容易阻碍碳纳米管表面的电子穿梭过程。此外碳纳米管中氧基浓度的降低有利于PDS的吸附,易于形成亚稳态CNT-PDS*;其中CNT-PDS*的非自由基氧化速率与配合物的电位呈指数相关,表明CNT-PDS*的非自由基氧化经历了类似于阳极氧化的机制(图2(d))。对表面结合氧化物这一机理来说,污染物的降解效率不仅和材料有关,而且和污染物的半波电位(半波电位越小越容易降解) [44] 、IP值(IP值低于9 eV才可发生发应) [45] 的大小也有关。

表面结合氧化物是否形成,主要通过拉曼光谱和表面衰减全反射光谱(ATR-FTIR)两种最直接的证据来确定 [27] [46] 。Ma等人 [47] 通过原位拉曼光谱提供了MFBO-PDS配合物形成的直接证据。从图3(a)中可以看出,除了PDS分子在1067和835 cm−1处的特征峰,MFBO/PDS体系在801 cm−1附近出现了一个

(a) (b)(c) (d)

Figure 2. Schematic diagram of the mechanism of surface binding oxides: (a) exosphere interaction of CuO and PDS [42] , (b) G-ND activated persulfate degradation of phenol [26] , (c) formation of complexes of CNT and PDS degradation of different pollutants [27] and (d) complexation of different CNTs and PDS [43]

图2. 表面结合氧化物机理示意图:(a) CuO和PDS的外球作用 [42] ;(b) G-ND活化过硫酸盐降解苯酚 [26] ;(c) CNT和PDS形成配合物降解不同污染物 [27] ;(d) 不同CNT和PDS的络合作用 [43]

新的峰,这可能是亚稳反应配合物中过氧化O-O键延长的弯曲振动所致。此外,添加BPA后, S 2 O 8 2 波段的峰强度减弱,801 cm−1处出现的峰消失更加证明了亚稳反应配合物的形成。Zhang等人 [48] 通过测试不同反应液的ATR-FTIR,确定了表面结合氧化物这一机理。如图3(b)所示,1249 cm−1的红外波段可能来自于 HSO 5 SO 4 2 的S-O拉伸振动,在CuFe2O4和PMS同时存在时,该波段的蓝移分别为7 cm1。结果表明, HSO 5 的S-O-(OH)结构中的OH在与氧化物表面结合时,从相邻的S-O键吸引的电子密度较小,使其更强。表面Cu(II)给了 HSO 5 的OH电子,抑制了相邻S-O的电子吸引。

(a) (b)

Figure 3. The most direct means of proving the formation of surface bound oxides are (a) Raman spectra under different systems [47] , and (b) ATR-FTIR spectra under different systems [48]

图3. 证明表面结合氧化物形成的最直接手段:(a) 不同体系下的拉曼光谱 [47] ,(b) 不同体系下的ATR-FTIR光谱 [48]

2.3. 表面结合自由基

表面结合自由基机理包括表面结合的 SO 4 · · OH 自由基。与自由基机理不同,生成的 SO 4 · · OH 被吸附在催化剂表面,而不是分散在溶液中 [18] 。此外,经典的亲水自由基猝灭剂(MeOH, TBA等对这些体系的催化降解没有明显的淬火作用。Liang等人 [49] 采用新型负载型氧化铜催化剂,在室温(即20℃)的水溶液中活化过硫酸盐(PS)氧化对氯苯胺(PCA)。氧化铜催化过硫酸盐氧化对PCA的破坏效果明显优于单纯的PS或氧化铜体系。通过对自由基机理的分析,用三种自由基清除剂(苯酚、MA和TBA)确定,在初始pH为7时,CuO/PS体系降解PCA的过程可能不是发生在液相中,而是发生在氧化铜表面的边界层中。Chen等人 [50] 制备的还原含铁蒙脱石粘土(R-NAu-2)能有效激活PMS,在300 s内诱导邻苯二甲酸二乙酯(DEP)的快速降解。化学探针、自由基猝灭和电子顺磁共振(EPR)结果证实, · OH SO 4 · 活性物种主要结合在粘土表面,而不是在体溶液中,这导致DEP、磺胺甲恶唑、苯酚、金四环素和苯甲酸等有机化合物的快速降解,阴离子 Cl NO 3 对DEP降解的影响有限,而 HCO 3 由于反应pH的增加而抑制了DEP的降解(图4(a))。Zhang等人 [51] 研究了非晶态FeOOH活化过氧单硫酸盐(PMS)降解磺胺甲恶唑(SMX)。非晶态FeOOH在分解PMS和降解SMX方面表现出比晶态α-FeOOH和β-FeOOH更好的性能。淬灭实验和EPR测试表明,非晶态FeOOH活化PMS的机制主要是表面结合自由基( · OH SO 4 · )。基本上,表面结合的 · OH 自由基是该体系中主要的活性氧化物,主要是通过非晶态FeOOH-PMS配合物的分解产生的。Zhu等人 [52] 合成的石墨烯纳米片支撑的空心硫化钴纳米晶体(Co3S4@GN, CoS@GN),CoS@GN/PMS对BPA的降解效率在8 min内达到100%,动力学常数(0.62 min−1)比大多数报道的多相催化剂高1~2个数量级。淬火试验和EPR检测揭示了石墨烯在表面结合 SO 4 · 生成中的关键作用(图4(b))。

识别表面结合自由基机理常用的方法:1) 加入表面清除剂KI [53] ;2) 加入对固体材料表面具有亲和力的苯酚 [54] ;3) 测试加入F-前后的EPR信号变化,根据文献调研,F-的加入可以促进表面结合自由基的释放,EPR信号会增加 [55] 。

(a) (b)

Figure 4. Schematic diagram of surface binding free radical mechanism: (a) reduced Fe-containing montmorillonite clay (R-NAu-2) activated PMS to degrade diethyl phthalate [50] , (b) CoS@GN activated PMS to degrade BPA in situ [52]

图4. 表面结合自由基机理示意图:(a) 还原含铁蒙脱石粘土(R-NAu-2)活化PMS降解邻苯二甲酸二乙酯 [50] ,(b) CoS@GN活化PMS原位降解BPA [52]

2.4. 电子转移

过硫酸盐非自由基电子转移机制通常发生在导电性能好的金属和非金属异相催化剂中,在介导的电子转移过程中,催化剂作为电子桥(或导体),促进电荷从共吸附有机物(电子给体)向过硫酸盐(电子受体)的转移 [56] 。Tang等人 [57] 采用六孔有序介孔碳(CMK-3)活化过硫酸盐(PS)降解2,4-二氯苯酚(2,4-DCP),20 min内去除率达90%,其较高的催化效率可能是由于CMK-3的大吸附容量加速了电子转移。研究发现,活化剂的比表面积(SSA)、缺陷位点和官能团与其催化效率和钝化程度密切相关。与其他纳米碳相比,CMK-3具有有序的介孔结构,SSA大,缺陷度高,具有更好的可重用性(图5(a))。Yang等人 [58] 制备的石墨多壁碳纳米管(MWCNTs)被可控地解压缩成边缘丰富的石墨烯纳米带,富集的碳边显著提高了催化性能,并可作为杂原子(N, S)掺杂的承载位点,促进碳催化。样品(NS-2)在20分钟内完全去除BPA,速率常数为0.182 min−1。通过自由基筛选试验、原位拉曼和电化学表征,阐明了解压缩的多壁碳纳米管遵循非自由基电子转移途径。揭示的机理强调了在边缘富集碳催化剂中必要的石墨度和电导率对于更好的催化性能的重要性。Yu等人 [59] 制备了虾壳分级多孔生物炭(PSS-bio),并将其用于过硫酸盐活化去除2,4-二氯苯酚。热解温度对碳的结构和性质调控起着重要作用,其中800℃下制备的PSS-bio (PSS-800)具有最快的吸附能力和最优的催化活性,降解率是400℃下制备的PSS-bio (PSS-400)的29倍。进一步的分析表明,层次孔和碳结构是影响生物炭AOP的两个关键因素。有趣的是,PSS-400中原本以自由基为主的途径也在PSS-800中转变为非自由基的途径(直接双电子转移途径),其效率会受到pH值、腐殖酸和阴离子的干扰,无论其浓度低至5 mm还是高至500 mm,显示了其在处理高盐度水和富有机水方面的应用潜力(图5(b))。

电子转移机理通常使用电化学手段来鉴定 [56] 。1)线性扫描伏安法(LSV)监测体系电流变化 [60] ;2) 时间安培(CP)揭示有机物到过硫酸盐的电子转移方向 [61] ;3) 开路电压(OPC)反应电势变化 [62] ;4) 电化学阻抗(EIS)估计催化剂的电导率;5) Tafel斜率评价催化剂电化学动力学和确定相应限速步骤的重要参数 [63] ;6) 循环伏安法(CV)用来识别电化学可逆性和半波电势 [27] 。

(a)(b)

Figure 5. Electron transfer mechanism diagram: (a) activation of ordered mesoporous carbon by persulfate [57] ; (b) PSS-800 activates PDS to degrade 2,4-DCP [59]

图5. 电子转移机理图:(a) 过硫酸盐活化有序介孔碳 [57] ;(b) PSS-800活化PDS降解2,4-DCP [59]

2.5. 高价金属

文献通常报道的高价金属为Fe、Co、Cu、Mn等,通过直接或间接利用具有较强氧化还原能力的高价金属来降解有机污染物。Jiang等人 [64] 报道了单原子Fe(III)和氮掺杂碳(Fe-N-C)可以有效地激活PDS,选择性地去除一些有机污染物,遵循非自由基途径。单原子Fe(III)与吡啶N原子配位是催化分解PDS的活性位点。然而,PDS分解不产生自由基或活性氧。配位的Fe(III)很可能通过PDS的双电子抽离转化为Fe(V),Fe(V)可能是去除有机污染物的中间氧化剂。Yi等人 [65] 基揭示了Co(IV)介导的氧化降解芳香烃污染物的机理。以Co3O4/PMS为基础的分级反应器对芳香性有机污染物的降解效率达到90%。电子对磁共振表征、自由基猝灭和探针氧化实验证实,Co(IV)是Co3O4/PMS分级反应器中的主要反应物质。进一步的清除实验验证了Co(IV)在去除芳香族污染物中起着最关键的作用。Co(IV)的主要来源是固定化的Co3O4/PMS,而不是Cox+离子在Co3O4/PMS分级反应器中的浸出。Chen等人 [66] 首次报道了Cu(II)配合物在配位涉及合适的配体时可能是PDS的有效激活剂。以头孢氨苄(CFX)为代表,研究表明Cu(II)与CFX配合物能有效激活PDS,诱导CFX快速降解。PDS/Cu(II)对CFX的转化产物与典型的自由基氧化过程(如PDS/Ag(I))有很大的不同,但与Cu(III)对CFX的氧化产物非常相似。与CFX络合后Cu(II)的电子密度增大,有利于Cu(II)向PDS的电子转移,生成自由基和Cu(III)。产生的Cu(III),而不是自由基,在CFX的整体降解中起主要作用,并在催化循环中再生Cu(II)。当与Cu(II)配合时,这种新的激活过程可以发生在广泛的污染物(头孢菌素、青霉素和四环素抗生素)和配体上,并且发现含N的官能团(如胺)可以形成有效的Cu(II)配合物来激活PDS。

高价金属通常用二苯甲基亚砜(PMSO)来鉴定(图6),文献报道高价金属Mn、Co、Fe可以将PMSO转化成甲基苯基砜(PMSO2) [67] [68] [69] 。

(a)(b)

Figure 6. Schematic diagram of identification of high-priced metals through PMSO: (a) high-priced Mn [67] , (b) high-priced Fe [70]

图6. 高价金属通过PMSO识别的示意图:(a) 高价态Mn [67] ,(b) 高价态Fe [70]

3. 结语与展望

目前,过硫酸盐体系中的非自由基氧化引起了人们极大的兴趣,深入了解将极大地促进其在催化氧化和废水处理中的应用。本文主要总结了不同非自由基途径降解有机污染物的研究进展、研究成果以及非自由基机理的识别方法。过硫酸盐体系中的非自由基途径具有中等的氧化还原电位,这使其能够适应不同的pH,并抵抗无机离子和背景有机物的干扰。因此,非自由基氧化过程在去除自然水体中的有机污染物方面具有广阔的前景。研究者在这一方面也做出了大量努力,提出可能的反应途径和作用机理。然而,非自由基途径大多集中在催化剂的表面,作用位点和氧化能力有限,造成对有机污染物氧化不完全,矿化能力弱。因此,自由基与非自由基的结合体系对于有机污染物的完全分解具有重要意义,未来在此基础上结合多种氧化技术来提升对有机污染物的氧化效率是非常重要的。

NOTES

*通讯作者。

参考文献

[1] Richmond, E.K., Rosi, E.J., Walters, D.M., Fick, J., Hamilton, S.K., Brodin, T., Sundelin, A. and Grace, M.R. (2018) A Diverse Suite of Pharmaceuticals Contaminates Stream and Riparian Food Webs. Nature Communication, 9, Ar-ticle No. 4491.
https://doi.org/10.1038/s41467-018-06822-w
[2] Xiang, Y., Wu, H.H., Li, L., Ren, M., Qie, H.T. and Lin, A.J. (2021) A Review of Distribution and Risk of Pharmaceuticals and Personal Care Products in the Aquatic Environment in China. Ecotoxicology and Environmental Safety 213, Article ID: 112044.
https://doi.org/10.1016/j.ecoenv.2021.112044
[3] UshaVipinachandran, V., Rajendran, S., Badagoppam Haroon, K.H., Ashokan, I., Mondal, A. and Bhunia, S.K. (2020) Detoxification of Endocrine Disruptors in Water Using Visible-Light-Active Nanostructures: A Review. ACS Applied Nano Materials, 3, 11659-11687.
https://doi.org/10.1021/acsanm.0c02974
[4] Rout, P.R., Zhang, T.C., Bhunia, P. and Surampalli, R.Y. (2021) Treatment Technologies for Emerging Contaminants in Wastewater Treatment Plants: A Review. Science of the Total Environment, 753, Article ID: 141990.
https://doi.org/10.1016/j.scitotenv.2020.141990
[5] Patel, M., Kumar, R., Kishor, K., Mlsna, T., Pittman, C.U., Jr. and Mohan, D. (2019) Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chemical Reviews, 119, 3510-3673.
https://doi.org/10.1021/acs.chemrev.8b00299
[6] He, M.J., Wan, Z.H., Tsang, D.C.W., Sun, Y.Q., Khan, E., Hou, D.Y. and Graham, N.J.D. (2021) Performance Indicators for a Holistic Evaluation of Catalyst-Based Degra-dation—A Case Study of Selected Pharmaceuticals and Personal Care Products (PPCPs). Journal of Hazardous Materials, 402, Article ID: 123460.
https://doi.org/10.1016/j.jhazmat.2020.123460
[7] Su, C., Cui, Y., Liu, D., Zhang, H. and Baninla, Y. (2020) Endocrine Disrupting Compounds, Pharmaceuticals and Personal Care Products in the Aquatic Environment of China: Which Chemicals are the Prioritized Ones? Science of the Total Environment, 720, Article ID: 137652.
https://doi.org/10.1016/j.scitotenv.2020.137652
[8] Zhou, Z., Liu, X., Sun, K., Lin, C.Y., Ma, J., He, M.C. and Ouyang, W. (2019) Persulfate-Based Advanced Oxidation Processes (AOPs) for Organic-Contaminated Soil Remediation: A Review. Chemical Engineering Journal, 372, 836-851.
https://doi.org/10.1016/j.cej.2019.04.213
[9] Li, Z.P., Yu, X.P., Yu, F.R. and Huang, X. (2021) Occurrence, Sources and Fate of Pharmaceuticals and Personal Care Products and Artificial Sweeteners in Groundwater. Envi-ronmental Science and Pollution Research, 28, 20903-20920.
https://doi.org/10.1007/s11356-021-12721-3
[10] Ghanbari, F. and Moradi, M. (2017) Application of Per-oxymonosulfate and Its Activation Methods for Degradation of Environmental Organic Pollutants: Review. Chem-ical Engineering Journal, 310, 41-62.
https://doi.org/10.1016/j.cej.2016.10.064
[11] Wacławek, S., Lutze, H.V., Grübel, K., Padil, V.V.T., Černík, M. and Dionysiou, D.D. (2017) Chemistry of Persulfates in Water and Wastewater Treatment: A Review. Chemical Engineering Journal, 330, 44-62.
https://doi.org/10.1016/j.cej.2017.07.132
[12] Chen, X., Oh, W.D. and Lim, T.T. (2018) Graphene- and CNTs-Based Carbocatalysts in Persulfates Activation: Material Design and Catalytic Mechanisms. Chemical Engi-neering Journal, 354, 941-976.
https://doi.org/10.1016/j.cej.2018.08.049
[13] Wang, J.L. and Wang, S.Z. (2018) Activation of Persulfate (PS) and Peroxymonosulfate (PMS) and Application for the Degradation of Emerging Contaminants. Chemical Engi-neering Journal, 334, 1502-1517.
https://doi.org/10.1016/j.cej.2017.11.059
[14] Lee, J., Von Gunten, U. and Kim, J.H. (2020) Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks. Environmental Science & Technology, 54, 3064-3081.
https://doi.org/10.1021/acs.est.9b07082
[15] Wang, L.H., Xu, H.D., Jiang, N., Wang, Z.M., Jiang, J. and Zhang, T. (2020) Trace Cupric Species Triggered Decomposition of Peroxymonosulfate and Degradation of Organic Pol-lutants: Cu(III) Being the Primary and Selective Intermediate Oxidant. Environmental Science & Technology, 54, 4686-4694.
https://doi.org/10.1021/acs.est.0c00284
[16] Gao, Y., Wang, Q., Ji, G.Z. and Li, A.M. (2022) Degradation of Antibiotic Pollutants by Persulfate Activated with Various Carbon Materials. Chemical Engineering Journal, 429, Article ID: 132387.
https://doi.org/10.1016/j.cej.2021.132387
[17] Ding, Y.B., Wang, X.R., Fu, L.B., Peng, X.Q., Pan, C., Mao, Q.H., Wang, C.J. and Yan, J.C. (2021) Nonradicals Induced Degradation of Organic Pollutants by Peroxydisulfate (PDS) and Peroxymonosulfate (PMS): Recent Advances and Perspective. Science of the Total Environment, 765, Article ID: 142794.
https://doi.org/10.1016/j.scitotenv.2020.142794
[18] Zhou, X.Q., Zhao, Q.D., Wang, J., Chen, Z.L. and Chen, Z.Q. (2021) Nonradical Oxidation Processes in PMS-Based Heterogeneous Catalytic System: Generation, Identifi-cation, Oxidation Characteristics, Challenges Response and Application Prospects. Chemical Engineering Journal, 410, Article ID: 128312.
https://doi.org/10.1016/j.cej.2020.128312
[19] Yu, J.F., Tang, L., Pang, Y., Liang, X.M., Lu, Y., Feng, H.P., Wang, J.J., Deng, L.F., Zou, J.J., Zhu, X. and Tang, J.L. (2022) Non-Radical Oxidation in Environmental Catalysis: Recognition, Identification, and Perspectives. Chemical Engineering Journal, 433, Article ID: 134385.
https://doi.org/10.1016/j.cej.2021.134385
[20] Duan, X.G., Sun, H.Q., Shao, Z.P. and Wang, S.B. (2018) Nonradical Reactions in Environmental Remediation Processes: Uncertainty and Challenges. Applied Ca-talysis B: Environmental, 224, 973-982.
https://doi.org/10.1016/j.apcatb.2017.11.051
[21] Xue, Y., Wang, Z.H., Naidu, R., Bush, R., Yang, F., Liu, J.S. and Huang, M.H. (2022) Role of Halide Ions on Organic Pollutants Degradation by Peroxygens-Based Advanced Oxidation Processes: A Critical Review. Chemical Engineering Journal, 433, Article ID: 134546.
https://doi.org/10.1016/j.cej.2022.134546
[22] Peng, W.Y., Dong, Y.X., Fu, Y., Wang, L.L., Li, Q.C., Liu, Y.J., Fan, Q.Y. and Wang, Z.H. (2021) Non-Radical Reactions in Persulfate-Based Homogeneous Degradation Processes: A Review. Chemical Engineering Journal, 421, Article ID: 127818.
https://doi.org/10.1016/j.cej.2020.127818
[23] Ge, L., Shao, B.B., Liang, Q.H., Huang, D.L., Liu, Z.F., He, Q.Y., Wu, T., Luo, S.H., Pan, Y., Zhao, C.H., Huang, J.H. and Hu, Y.M. (2022) Layered Double Hydroxidebased Materials Applied in Persulfate Based Advanced Oxidation Processes: Property, Mechanism, Application and Per-spectives. Journal of Hazardous Materials, 424, Article ID: 127612.
https://doi.org/10.1016/j.jhazmat.2021.127612
[24] Zhang, T., Ding, Y.B. and Tang, H.Q. (2015) Generation of Singlet Oxygen over Bi(V)/Bi(III) Composite and Its Use for Oxidative Degradation of Organic Pollutants. Chemical Engineering Journal, 264, 681-689.
https://doi.org/10.1016/j.cej.2014.12.014
[25] Jawad, A., Zhan, K., Wang, H.B., Shahzad, A., Zeng, Z.H., Wang, J., Zhou, X.Q., Ullah, H., Chen, Z.L. and Chen, Z.Q. (2020) Tuning of Persulfate Activation from a Free Radical to a Nonradical Pathway through the Incorporation of Non-Redox Magnesium Oxide. Environmental Sci-ence & Technology, 54, 2476-2488.
https://doi.org/10.1021/acs.est.9b04696
[26] Lee, H., Kim, H.I., Weon, S., Choi, W., Hwang, Y.S., Seo, J., Lee, C. and Kim, J.H. (2016) Activation of Persulfates by Graphitized Nanodiamonds for Removal of Organic Com-pounds. Environmental Science & Technology, 50, 10134-10142.
https://doi.org/10.1021/acs.est.6b02079
[27] Ren, W., Xiong, L.L., Yuan, X.H., Yu, Z.W., Zhang, H., Duan, X.G. and Wang, S.B. (2019) Activation of Peroxydisulfate on Carbon Nanotubes: Electron-Transfer Mechanism. Environmental Science & Technology, 53, 14595-14603.
https://doi.org/10.1021/acs.est.9b05475
[28] Bu, Y.G., Li, H.C., Yu, W.J., Pan, Y.F., Li, L.J., Wang, Y.F., Pu, L.T., Ding, J., Gao, G.D. and Pan, B.C. (2021) Peroxydisulfate Activation and Singlet Oxygen Generation by Oxygen Vacancy for Degradation of Contaminants. Environmental Science & Technology, 55, 2110-2120.
https://doi.org/10.1021/acs.est.0c07274
[29] Yao, Y.Y., Wang, C.H., Yan, X., Zhang, H., Xiao, C.M., Qi, J.W., Zhu, Z.G., Zhou, Y.J., Sun, X.Y., Duan, X.G. and Li, J.S. (2022) Rational Regulation of Co-N-C Coordination for High-Efficiency Generation of 1O2Toward Nearly 100% Selective Degradation of Organic Pollutants. Environmental Science & Technology, 56, 8833-8843.
https://doi.org/10.1021/acs.est.2c00706
[30] Li, H., Liu, Y., Jiang, F., Bai, X., Li, H.J., Lang, D., Wang, L. and Pan, B. (2022) Persulfate Adsorption and Activation by Carbon Structure Defects Provided New Insights into Of-loxacin Degradation by Biochar. Science of the Total Environment, 806, Article ID: 150968.
https://doi.org/10.1016/j.scitotenv.2021.150968
[31] Liu, Z., Pan, S.Y., Xu, F., Wang, Z.W., Zhao, C., Xu, X., Gao, B.Y. and Li, Q. (2022) Revealing the Fundamental Role of MoO2 in Promoting Efficient and Stable Activation of Persulfate by Iron Carbon Based Catalysts: Efficient Fe2+/Fe3+ Cycling to Generate Reactive Species. Water Re-search, 225, Article ID: 119142.
https://doi.org/10.1016/j.watres.2022.119142
[32] Pirsaheb, M., Hossaini, H., Asadi, A., Mansouri, B., Jafari, Z. and Motlagh, R.J. (2023) Facile Fabrication of WO3- CuO/RGO as a Catalyst for Enhanced Catalytic Oxidation of Pesticide and Organic Dye by Activation of Persulfate under Visible Light. Surfaces and Interfaces, 36, Article ID: 102609.
https://doi.org/10.1016/j.surfin.2022.102609
[33] Zhu, S.S., Jin, C., Duan, X.G., Wang, S.B. and Ho, S.H. (2020) Nonradical Oxidation in Persulfate Activation by Graphene-Like Nanosheets (GNS): Differentiating the Contributions of Singlet Oxygen (1O2) and Sorption-Dependent Electron Transfer. Chemical Engineering Journal, 393, Article ID: 124725.
https://doi.org/10.1016/j.cej.2020.124725
[34] Zhang, L.H., Xiao, C., Li, Z.M., Guo, J.B., Du, G.G., Cheng, X. and Jia, Y.P. (2023) Degradation of Methyl Orange Using Persulfate Activated by Magnetic Cus/Fe3O4 Catalyst: Catalytic Performance and Mechanisms. Applied Surface Science, 618, Article ID: 156595.
https://doi.org/10.1016/j.apsusc.2023.156595
[35] Jiang, M.D., Lu, J.H., Ji, Y.F. and Kong, D.Y. (2017) Bi-carbonate-Activated Persulfate Oxidation of Acetaminophen. Water Research, 116, 324-331.
https://doi.org/10.1016/j.watres.2017.03.043
[36] Haag, W.R. and Hoigne, J. (1986) Singlet Oxygen in Surface Waters. 3. Photochemical Formation and Steady-State Concentrations in Various Types of Waters. Environmental Science & Technology, 20, 341-348.
https://doi.org/10.1021/es00146a005
[37] Cheng, X., Guo, H.G., Zhang, Y.L., Wu, X. and Liu, Y. (2017) Non-Photochemical Production of Singlet Oxygen via Activation of Persulfate by Carbon Nanotubes. Water Re-search, 113, 80-88.
https://doi.org/10.1016/j.watres.2017.02.016
[38] Chen, H.X., Xu, Y., Zhu, K.M. and Zhang, H. (2021) Un-derstanding Oxygen-Deficient La2CuO4-Delta Perovskite Activated Peroxymonosulfate for Bisphenol a Degradation: The Role of Localized Electron within Oxygen Vacancy. Applied Catalysis B: Environmental, 284, Article ID: 119732.
https://doi.org/10.1016/j.apcatb.2020.119732
[39] Li, Y., Ma, S.L., Xu, S.J., Fu, H.C., Li, Z.Q., Li, K., Sheng, K., Du, J.G., Lu, X., Li, X.H. and Liu, S.L. (2020) Novel Magnetic Biochar as an Activator for Peroxymo-nosulfate to Degrade Bisphenol A: Emphasizing the Synergistic Effect between Graphitized Structure and CoFe2O4. Chemical Engineering Journal, 387, Article ID: 124094.
https://doi.org/10.1016/j.cej.2020.124094
[40] Sun, P., Liu, H., Feng, M.B., Guo, L., Zhai, Z.C., Fang, Y.S., Zhang, X.S. and Sharma, V.K. (2019) Nitrogen-Sulfur Co-Doped Industrial Graphene as an Efficient Peroxymo-nosulfate Activator: Singlet Oxygen-Dominated Catalytic Degradation of Organic Contaminants. Applied Catalysis B: Environmental, 251, 335-345.
https://doi.org/10.1016/j.apcatb.2019.03.085
[41] Yun, E.T., Lee, J.H., Kim, J., Park, H.D. and Lee, J. (2018) Identifying the Nonradical Mechanism in the Peroxymonosulfate Activation Process: Singlet Oxygenation versus Mediated Electron Transfer. Environmental Science & Technology, 52, 7032-7042.
https://doi.org/10.1021/acs.est.8b00959
[42] Zhang, T., Chen, Y., Wang, Y.R., Le Roux, J., Yang, Y. and Croue, J.P. (2014) Efficient Peroxydisulfate Activation Process Not Relying on Sulfate Radical Generation for Water Pollutant Degradation. Environmental Science & Technology, 48, 5868-5875.
https://doi.org/10.1021/es501218f
[43] Ren, W., Xiong, L.L., Nie, G., Zhang, H., Duan, X.G. and Wang, S.B. (2020) Insights into the Electron-Transfer Regime of Peroxydisulfate Activation on Carbon Nanotubes: The Role of Oxygen Functional Groups. Environmental Science & Technology, 54, 1267-1275.
https://doi.org/10.1021/acs.est.9b06208
[44] Guan, C.T., Jiang, J., Pang, S.Y., Luo, C.W., Ma, J., Zhou, Y. and Yang, Y. (2017) Oxidation Kinetics of Bromophenols by Nonradical Activation of Peroxydisulfate in the Presence of Carbon Nanotube and Formation of Brominated Polymeric Products. Environmental Science & Technology, 51, 10718-10728.
https://doi.org/10.1021/acs.est.7b02271
[45] Hu, P.D., Su, H.R., Chen, Z.Y., Yu, C.Y., Li, Q.L., Zhou, B.X., Alvarez, P.J.J. and Long, M. (2017) Selective Degradation of Organic Pollutants Using an Efficient Metal-Free Catalyst Derived from Carbonized Polypyrrole via Peroxymonosulfate Activation. Environmental Sci-ence & Technology, 51, 11288-11296.
https://doi.org/10.1021/acs.est.7b03014
[46] Miao, J., Zhu, Y., Lang, J.Y., Zhang, J.Z., Cheng, S.X., Zhou, B.X., Zhang, L.Z., Alvarez, P.J.J. and Long, M. (2021) Spin-State-Dependent Peroxymonosulfate Activation of Single-Atom M-N Moieties via a Radical-Free Pathway. ACS Catalysis, 11, 9569-9577.
https://doi.org/10.1021/acscatal.1c02031
[47] Ma, Y.H., Wang, D.L., Xu, Y., Lin, H. and Zhang, H. (2022) Nonradical Electron Transfer-Based Peroxydisulfate Activation by a Mn-Fe Bimetallic Oxide Derived from Spent Alkaline Battery for the Oxidation of Bisphenol A. Journal of Hazardous Materials, 436, Article ID: 129172.
https://doi.org/10.1016/j.jhazmat.2022.129172
[48] Zhang, T., Zhu, H.B. and Croue, J.P. (2013) Production of Sulfate Radical from Peroxymonosulfate Induced by a Magnetically Separable CuFe2O4 Spinel in Water: Efficiency, Stability, and Mechanism. Environmental Science & Technology, 47, 2784-2791.
https://doi.org/10.1021/es304721g
[49] Liang, H.Y., Zhang, Y.Q., Huang, S.B. and Hussain, I. (2013) Oxida-tive Degradation of P-Chloroaniline by Copper Oxidate Activated Persulfate. Chemical Engineering Journal, 218, 384-391.
https://doi.org/10.1016/j.cej.2012.11.093
[50] Chen, N., Fang, G.D., Zhu, C.Y., Wu, S., Liu, G.X., Dionysiou, D.D., Wang, X.L., Gao, J. and Zhou, D.M. (2020) Surface-Bound Radical Control Rapid Organic Contaminant Degradation through Peroxymonosulfate Activation by Reduced Fe-Bearing Smectite Clays. Journal of Hazardous Materials, 389, Article ID: 121819.
https://doi.org/10.1016/j.jhazmat.2019.121819
[51] Zhang, X., Gang, D.D., Lei, X.B., Wang, T.J., Lian, Q., Holmes, W.E., Fei, L., Zappi, M.E. and Yao, H. (2022) Surface-Bound Hydroxyl Radical-Dominated Degradation of Sulfamethoxazole in the Amorphous Feooh/Peroxymono- sulfate System: The Key Role of Amorphous Structure Enhancing Electron Transfer. Environmental Research, 214, Article ID: 113964.
https://doi.org/10.1016/j.envres.2022.113964
[52] Zhu, C.Q., Liu, F.Q., Ling, C., Jiang, H., Wu, H.D. and Li, A.M. (2019) Growth of Graphene-Supported Hollow Cobalt Sulfide Nanocrystals via Mof-Templated Ligand Ex-change as Surface-Bound Radical Sinks for Highly Efficient Bisphenol a Degradation. Applied Catalysis B: Envi-ronmental, 242, 238-248.
https://doi.org/10.1016/j.apcatb.2018.09.088
[53] He, Y.Z., Wang, Z.W., Wang, H., Almatrafi, E., Qin, H., Huang, D.L., Zhu, Y., Zhou, C.Y., Tian, Q.Y., Xu, P. and Zeng, G.M. (2022) Confinement of ZIF-Derived Cop-per-Cobalt-Zinc Oxides in Carbon Framework for Degradation of Organic Pollutants. Journal of Hazardous Mate-rials, 440, Article ID: 129811.
https://doi.org/10.1016/j.jhazmat.2022.129811
[54] Bai, Z.Y., Wang, S.X., Tian, J.Y., Gao, S.S., Zhang, R.J. and Liu, X.W. (2022) Aluminum-Based Layered Metal Oxides Activating Peroxymonosulfate for Bisphenol a Degradation via Surface-Bound Sulfate Radicals and Singlet Oxygen. Journal of Hazardous Materials, 424, Article ID: 127515.
https://doi.org/10.1016/j.jhazmat.2021.127515
[55] Fang, G.D., Deng, Y.M., Huang, M., Dio-nysiou, D.D., Liu, C. and Zhou, D.M. (2018) A Mechanistic Understanding of Hydrogen Peroxide Decomposition by Vanadium Minerals for Diethyl Phthalate Degradation. Environmental Science & Technology, 52, 2178-2185.
https://doi.org/10.1021/acs.est.7b05303
[56] Ren, W., Cheng, C., Shao, P.H., Luo, X.B., Zhang, H., Wang, S.B. and Duan, X.G. (2022) Origins of Electron-Transfer Regime in Persulfate-Based Nonradical Oxidation Processes. Environmental Science & Technology, 56, 78-97.
https://doi.org/10.1021/acs.est.1c05374
[57] Tang, L., Liu, Y., Wang, J., Zeng, G.M., Deng, Y.C., Dong, H.R., Feng, H.P., Wang, J.J. and Peng, B. (2018) Enhanced Activation Process of Persulfate by Mesoporous Carbon for Degradation of Aqueous Organic Pollutants: Electron Transfer Mechanism. Applied Catalysis B: Environmental, 231, 1-10.
https://doi.org/10.1016/j.apcatb.2018.02.059
[58] Yang, Q., Chen, Y., Duan, X.G., Zhou, S.K., Niu, Y., Sun, H.Q., Zhi, L.J. and Wang, S.B. (2020) Unzipping Carbon Nanotubes to Nanoribbons for Revealing the Mechanism of Nonradical Oxidation by Carbocatalysis. Applied Catalysis B: Environmental, 276, Article ID: 119146.
https://doi.org/10.1016/j.apcatb.2020.119146
[59] Yu, J.F., Tang, L., Pang, Y., Zeng, G.M., Feng, H.P., Zou, J.J., Wang, J.J., Feng, C.Y., Zhu, X., Ouyang, X.L. and Tan, J.S. (2020) Hierarchical Porous Biochar from Shrimp Shell for Persulfate Activation: A Two-Electron Transfer Path and Key Impact Factors. Applied Catalysis B: Environmental, 260, Article ID: 118160.
https://doi.org/10.1016/j.apcatb.2019.118160
[60] Lee, H.S., Lee, H.J., Jeong, J., Lee, J., Park, N.B. and Lee, C.H. (2015) Activation of Persulfates by Carbon Nanotubes: Oxidation of Organic Compounds by Nonradical Mechanism. Chemical Engineering Journal, 266, 28-33.
https://doi.org/10.1016/j.cej.2014.12.065
[61] Ahn, Y.Y., Bae, H., Kim, H.I., Kim, S.H., Kim, J.H., Lee, S.G. and Lee, J. (2019) Surface-Loaded Metal Nanoparticles for Peroxymonosulfate Activation: Efficiency and Mech-anism Reconnaissance. Applied Catalysis B: Environmental, 241, 561-569.
https://doi.org/10.1016/j.apcatb.2018.09.056
[62] Guo, X., Zhang, H., Yao, Y.Y., Xiao, C.M., Yan, X., Chen, K., Qi, J.W., Zhou, Y.J., Zhu, Z.G., Sun, X.Y. and Li, J.S. (2023) Derivatives of Two-Dimensional Mxene-MOFs Heterostructure for Boosting Peroxymonosulfate Activation: Enhanced Performance and Synergistic Mechanism. Applied Catalysis B: Environmental, 323, Article ID: 122136.
https://doi.org/10.1016/j.apcatb.2022.122136
[63] Ren, W., Nie, G., Zhou, P., Zhang, H., Duan, X.G. and Wang, S.B. (2020) The Intrinsic Nature of Persulfate Activation and N-Doping in Carbocatalysis. Environmental Science & Technology, 54, 6438-6447.
https://doi.org/10.1021/acs.est.0c01161
[64] Jiang, N., Xu, H.D., Wang, L.H., Jiang, J. and Zhang, T. (2020) Nonradical Oxidation of Pollutants with Single-Atom- Fe(III)-Activated Persulfate: Fe(V) Being the Possible In-termediate Oxidant. Environmental Science & Technology, 54, 14057-14065.
https://doi.org/10.1021/acs.est.0c04867
[65] Yi, Q.Y., Li, X.S., Li, Y., Dai, R.B. and Wang, Z.W. (2022) Un-raveling the Co(IV)-Mediated Oxidation Mechanism in a Co3O4/PMS-Based Hierarchical Reactor: Toward Efficient Catalytic Degradation of Aromatic Pollutants. ACS ES&T Engineering, 2, 1836-1846.
https://doi.org/10.1021/acsestengg.2c00087
[66] Chen, J.B., Zhou, X.F., Sun, P.Z., Zhang, Y.L. and Huang, C.H. (2019) Complexation Enhances Cu(II)-Activated Peroxydisulfate: A Novel Activation Mechanism and Cu(III) Contribution. Environmental Science & Technology, 53, 11774-11782.
https://doi.org/10.1021/acs.est.9b03873
[67] Gao, Y., Zhou, Y., Pang, S.Y., Jiang, J., Yang, Z.F., Shen, Y.M., Wang, Z., Wang, P.X. and Wang, L.H. (2019) New Insights into the Combination of Permanganate and Bisulfite as a Novel Advanced Oxidation Process: Importance of High Valent Manganese-Oxo Species and Sulfate Radical. En-vironmental Science & Technology, 53, 3689-3696.
https://doi.org/10.1021/acs.est.8b05306
[68] Pan, L.H., Shi, W., Sen, T., Wang, L.Z. and Zhang, J.L. (2021) Visible Light-Driven Selective Organic Degradation by FeTiO3/Persulfate System: The Formation and Effect of High Valent Fe(IV). Applied Catalysis B: Environmental, 280, 119414.
https://doi.org/10.1016/j.apcatb.2020.119414
[69] Su, R.D., Li, N., Liu, Z., Song, X.Y., Liu, W., Gao, B.Y., Zhou, W.Z., Yue, Q.Y. and Li, Q. (2023) Revealing the Generation of High-Valent Cobalt Species and Chlorine Dioxide in the Co3O4-Activated Chlorite Process: Insight into the Proton Enhancement Effect. Environmental Sci-ence & Technology, 57, 1882-1893.
https://doi.org/10.1021/acs.est.2c04903
[70] Zhu, J.H., Yu, F.L., Meng, J.R., Shao, B.B., Dong, H.Y., Chu, W.H., Cao, T.C., Wei, G.F., Wang, H.J. and Guan, X.H. (2020) Overlooked Role of Fe(IV) and Fe(V) in Organic Contaminant Oxidation by Fe(VI). Environmental Science & Technology, 54, 9702-9710.
https://doi.org/10.1021/acs.est.0c03212