顿悟的多维度标记
Multi-Dimensional Markers of Creative Insight
DOI: 10.12677/AP.2023.135247, PDF, HTML, XML, 下载: 311  浏览: 449  国家自然科学基金支持
作者: 邓家敏, 付洪宇, 周 月, 李亿珠, 张忠炉*:广州大学教育学院心理系,广东 广州
关键词: 顿悟问题解决多维度标记Insight Problem Solving Multi-Dimensional Markers
摘要: “如何识别顿悟发生?”是顿悟研究的关键。近20年的研究提示,可以从三大维度揭示顿悟发生的身心标记。情绪感受维度主要涉及啊哈体验与温暖感评级;躯体与行为维度主要涉及视觉活动变化以及握力大小变化;生理脑神经维度主要涉及心率与皮肤电变化、时域的N380,频域的alpha和gamma振荡以及脑空间结构的前扣带回、前颞上回、海马等脑区的激活。未来可以结合多种测量方法,明确划分并分离标记顿悟不同维度,并将神经生理学与行为学数据结合,用以识别顿悟的发生并揭示其机制。
Abstract: Identifying when insight occurs is essential to insight research. In the past two decades, researches have indicated that physical and psychological indicators of insight can be identified from three perspectives. The emotional feeling dimension mainly involves aha! experience and the warmth rating, while the physical and behavioral dimensions are mainly related to changes in visual activity and grip strength. Physiological brain nerve dimension encompasses alterations in heart rate, N380 in the time domain, alpha and gamma oscillations in the frequency domain, as well as activation of the anterior cingulate cortex, anterior superior temporal gyrus, hippocampus, and other brain areas in the brain spatial structure. Future research could utilize a combination of measurement methods to accurately differentiate between the various aspects of insight, combining neurophysiological and behavioral data to identify the occurrence of insight and reveal its mechanisms.
文章引用:邓家敏, 付洪宇, 周月, 李亿珠, 张忠炉 (2023). 顿悟的多维度标记. 心理学进展, 13(5), 2003-2011. https://doi.org/10.12677/AP.2023.135247

1. 引言

“噢!我明白了!原来是这样!”在生活中,当个体在陷入问题解决的僵局之后,突然在一个不可预知时刻获得解决方案并体会类似的啊哈体验,这就是顿悟时刻(Kounios & Beeman, 2014)。自格式塔心理学开创顿悟研究以来,特别是随着脑成像等技术的出现,涉及顿悟的认知机制、神经基础、影响因素、促进机制以及与其他心理过程的关系(比如记忆)的研究不断涌现(黄福荣等,2017;赖燕群等,2019;沈汪兵等,2012)。然而,这些研究都离不开一个非常基础且关键的前提:如何测量并识别顿悟的发生?特别是通过某些指标将顿悟与常规的解题方式进行区别。随着研究的推进,越来越多的顿悟相关标记逐渐被揭示。本文从三个方面总结了顿悟相对于常规/无顿悟引发的不同身心变化,包括情绪感受维度的啊哈体验和温暖感、躯体与行为学维度指标(瞳孔变化、握力大小)、生理神经维度指标(生理方面:心率及皮肤电变化;时域方面:N380;频域方面:alpha、gamma等;空间结构:前扣带回、前颞上回、海马等),这些可为识别顿悟的发生(或将顿悟从常规思路中区分开来)提供指标或参考。

2. 情绪感受维度的顿悟标记

顿悟不同于常规思路的一个方面是二者引发或伴随的情绪感受变化不同。研究发现,相对于常规方式,当个体通过顿悟方式解决问题时,其报告了不同的主观情绪感受变化,这主要表现在啊哈体验及温暖感评级的差异上。这两个指标为识别顿悟发生提供了潜在标记。

2.1. 啊哈体验

“啊!我找到了!”当科学家历经一段时间的探索及困境之后,在知觉到事物真相时会突然体验到一种类似茅塞顿开的情绪感受,这种主观情绪体验通常被称为啊哈体验(Jung-Beeman et al., 2004)。Jung-Beeman团队首次将啊哈体验作为顿悟发生的标记区分顿悟和常规问题解决(Jung-Beeman et al., 2004),并持续被应用于复合远距离联想任务(compound remote associates task, CRAT) (Salvi et al., 2015; Shen et al., 2016; Webb et al., 2019)以及其他顿悟任务范式如字谜类任务(Ammalainen & Moroshkina, 2021)、魔术任务(Danek et al., 2014; Danek & Wiley, 2017)以及隐藏图片任务(Ishikawa et al., 2019)等。此外,也有研究在实验前将问题划分为顿悟或非顿悟问题,并比较了两者之间引发的啊哈体验的差异,结果发现顿悟问题比常规(非顿悟)问题引发更强烈的啊哈体验(Webb et al., 2019)。

事实上,啊哈体验是一种复合情绪体验,其包含了突然、惊讶、愉悦等多种情绪感受(Bilalić et al., 2019; Danek & Wiley, 2017)。研究发现,顿悟类问题解决相对于常规问题解决引发了在啊哈体验中不同维度上的差别。Danek和Wiley (2017)根据之前的开放式描述对啊哈体验的维度进行了修改,包括:突然、确信、愉悦,惊讶,放松和动力,结果显示啊哈体验的六个子维度与总体啊哈感评级存在显著正相关,但惊讶维度与总体啊哈感之间的相关性较低。Bilalić等(2019)编制了啊哈现象问卷,在问卷中将啊哈体验分为了四个维度:愉悦、惊讶、突然和确信,结果发现在棋盘顿悟任务中,相比于专家,需要重组问题表征的新手(对照组)在解决问题后的突然、惊讶和愉悦维度评分更高。此外,也有研究者使用不同维度来评定啊哈体验。Webb等(2019)通过不同类型的问题(经典顿悟问题、CRAT和非顿悟问题),分别要求参与者从信心、愉悦、惊讶、僵局四个维度进行评分,并做出整体的啊哈感评分。研究结果发现:与经典顿悟问题和CART相比,非顿悟问题的整体啊哈感评分较低,并且整体的啊哈感评分与愉悦和惊讶两个维度均呈正相关。总之,多数研究在顿悟的几个维度(包括突然性、愉悦性和确定性)得到了较一致的结果,这表明啊哈体验的不同维度的划分也存在一定的共性,因此啊哈体验可以在一定程度上作为标识顿悟是否产生的稳定指标。

2.2. 温暖感评级

另一种区分顿悟和非顿悟的潜在指标是评定问题解决过程中的“温暖感”(Feelings-of-Warmth),也即自身在问题解决过程中感受到与正确答案从冷(远)到热(近)的距离(Metcalfe & Wiebe, 1987)。Metcalfe和Wiebe(1987)在研究中比较了温暖感评级在解决经典顿悟问题和非顿悟问题时的动态变化,让参与者在问题解决过程中每隔一段时间报告温暖感评级,结果发现温暖感评级在非顿悟问题上呈逐渐递增的变化趋势,而在顿悟问题上则呈由不变到突增的变化趋势。与此一致,Kizilirmak等(2018)在CRAT中同时采用温暖感评级和啊哈体验评分来探讨顿悟问题解决的认知过程,结果表明相比无顿悟条件下(报告没有啊哈体验),顿悟条件(有啊哈体验)的温暖感曲线显示了最后两个温暖感评级有更陡的增加。然而也有研究并没有发现有顿悟和无顿悟条件在温暖感评级上的显著差异(Hedne et al., 2016; Laukkonen & Tangen, 2018)。同时温暖感评分也存在一定的局限性,基于温度的冷热隐喻与对正确答案距离的感知变化趋势(逐增还是陡增)只能间接地预测顿悟和非顿悟发生,并不能直接表明顿悟发生(Metcalfe & Wiebe, 1987)。

3. 躯体与行为维度的顿悟标记

近年研究发现,通过对顿悟的躯体与行为学指标测量也可以区分顿悟和非顿悟。目前研究主要涉及两个方面:瞳孔变化和握力大小。

3.1. 瞳孔变化

Salvi等(2015)利用眼动技术来研究顿悟式和分析式问题的解决过程。他们要求被试在完成CRAT后,基于其解决过程来报告该解答是通过顿悟式还是分析式得到的。结果发现:在准备阶段(解决问题之前),个体在解决顿悟式问题(相比与分析式)时眨眼的频率更高、时间更长,注视的次数更少;而在问题解决阶段,个体在解决顿悟式问题时眨眼时间更长,以及眼睛更容易转向问题之外。这表明分析式问题解决与刺激信息的关注有关,即对个体的注意集中于问题本身;相比之下,顿悟式问题解决与内部焦点有关,即思维聚焦于内部心理表征,而不是对问题刺激的关注。Salvi和Simoncini等(2020)在后续研究中发现在基线条件保持稳定的前提下,个体在顿悟问题解决时的瞳孔直径显著大于分析式问题解决时的瞳孔直径。前人研究表明瞳孔扩张间接反映了脑干核蓝斑(LC-NE)中含去甲肾上腺素的神经元的活性,蓝斑在集中注意力和分离正在进行的行动/思维方面都发挥着关键作用(Aston-Jones & Cohen, 2005)。因此,相对于非顿悟而言,顿悟发生时会引起瞳孔直径突然变大,这可以用于区分顿悟和非顿悟。

3.2. 握力大小变化

握力器作为一种高度灵敏的手持握力测量方法,可以用于捕捉认知状态的瞬间波动。握力器能够作为有效测量顿悟的理论基础不仅在于其具有的瞬时性、灵敏性以及连续性等优势,还在于二者的属性匹配:顿悟包括元认知和积极的情绪维度(Bowden & Jung-Beeman, 2007; Kounios & Jung-Beeman, 2014),能够在顿悟瞬间通过握力器显示的握力大小测量顿悟的上述两种成分以及顿悟体验的强度。另外,使用握力器测量顿悟的前提在于,主观报告的顿悟体验能够说明顿悟的发生,此时握力的峰值变化能够反映顿悟强度的改变(Laukkonen et al., 2021)。Laukkonen等(2021)要求参与者在解决分析式问题、CRAT以及顿悟问题的过程中,根据他们感觉离解决问题的距离来挤压测力计,直到找到解决方案。在找到解决方案后,如果经历了“顿悟时刻”,参与者就需要全力挤压握力器,如果没有出现“顿悟时刻”则放松自己的手。在回答问题后参与者报告是否有啊哈体验,若有则需对啊哈体验的强度(从轻微到强烈,1~12等距量表)进行评分。结果发现,握力大小能够预测顿悟问题解决的正确性,但对分析式问题解决则不能预测。

4. 顿悟引发的生理神经信号变化

随着生理和成像技术的发展,研究者可以测量顿悟相对于常规问题解决引发的不同生理及神经变化。总结以往研究,主要的生理神经指标涉及心率与皮肤电的变化、时域的N380、频域的alpha和gamma振荡,以及大脑空间结构方面的前扣带回、前颞上回、海马等大脑区域的激活。

4.1. 心率及皮肤电变化

顿悟所带来的啊哈体验以及伴随的情绪变化可能会引起个体的生理变化,通过生理多导仪可以测量包括心血管系统(心率、心率变异性)、皮肤电系统(皮肤电导响应的范围和均值)等自主神经活动(Shen et al., 2018)。皮肤电导响应(Skin conductance response, SCR)可以反映心理或生理唤醒,是交感神经系统活动的重要和常用的指标,在与情绪唤醒相关研究中被广泛应用(Kreibig, 2010)。其中平均SCR (mSCR)振幅可以较好地反映实验的阶段性躯体反应或情绪唤醒。Shen等(2018)对被试解答CRAT过程中的皮肤电和心血管变化进行监测记录,通过对个体顿悟、非顿悟、基线三种状态条件下的mSCR比较发现:个体有顿悟产生(有啊哈体验)时会有更大的mSCR和更快的心率。最近有研究发现,与简单问题、分析式问题和简单谜语相比,个体在解决困难谜语时产生mSCR振幅最大,这与前人结果一致(Nam et al., 2021)。由此可见,mSCR与心率变化可以作为客观指标来区分顿悟和非顿悟。

4.2. 基于时域的脑电指标

研究者从时间维度探讨了顿悟的神经机制,由于范式或材料的不同导致实验结果之间存在一些差异,但相对一致的发现是,顿悟引发了N380成分。具体而言,多数研究一致发现,在大约250~500 ms的额中部,顿悟相对于非顿悟引发了更负的ERP成分——N380/N320 (Mai et al., 2004; Qiu et al., 2006; Zhao et al., 2014;沈汪兵等,2011)。比如,Mai等(2004)在猜谜任务中发现,相比于无顿悟,有顿悟条件在250~500 ms时间窗内引发了更大的负性偏移,而该差异波的峰值潜伏期约为380 ms (N380),类似的效应也出现在汉字字谜任务(Qiu et al., 2006;沈汪兵等,2011)和汉字生成任务(Jia et al., 2019)中。但对于N380该成分的解读存在一些分歧,有研究者认为N380可能是N2成分,产生于前扣带回(anterior cingulate cortex, ACC),与认知冲突有关,反映了顿悟中打破心理定势所引发的新旧表征之间的冲突监测(Mai et al., 2004; Qiu et al., 2006; Jia et al., 2019)。也有研究者认为N380是N400成分,N400发生在双侧颞叶等脑区,与语义加工过程有关,反映了顿悟中对强外显意义的舍弃并选择弱内在隐喻意义的过程(沈汪兵等,2011)。

4.3. 基于频域的脑电指标

从频域方面看,以往研究主要有两个相对一致的发现:顿悟引发了更大的alpha振荡(8~12 Hz) (Jung-Beeman et al., 2004; Luft et al., 2018; Wu et al., 2009; Yu et al., 2022),及更大的gamma振荡 (Jung-Beeman et al., 2004; Oh et al., 2020; Rosen & Reiner, 2017; Santarnecchi et al., 2019; Sheth et al., 2009; Yu et al., 2022)。

Jung-Beeman等(2004)最早发现,在完成CRAT时,报告有顿悟的解答相对于无顿悟的解答引发了更强的alpha振荡,反映了对视觉干扰的抑制。Yu等(2022)基于相同任务重复了该发现。Luft等(2018)进一步发现,在右侧颞区给予alpha频段(10 Hz)经颅直流电刺激(transcranial direct current stimulation, tDCS)时(相对于左侧刺激或假刺激),个体更有效地解决了带有误导信息的CRAT。类似地,Wu等(2009)在汉字组块破解任务中发现在反应前约500 ms,紧密组块的破解比松散组块的破解引发更大的alpha振荡,表明组块破解式顿悟需要抑制无效的视觉干扰。

对于gamma振荡而言,Jung-Beeman等(2004)首次发现,顿悟相对于无顿悟在右侧颞区引发了更大的gamma振荡。Santarnecchi等(2019)基于同类材料发现,通过在颞叶施加Gamma经颅交流电刺激(transcranial alternating current stimulation, tACS)提升了个体解答CRAT的正确率。与此类似,研究者在其他任务中也发现了顿悟(相对于无顿悟)在额区的gamma振荡效应,包括言语类谜题(Sheth et al., 2009)、空间谜题(Rosen & Reiner, 2017)以及变位字任务(Oh et al., 2020)。增强的gamma振荡则反映了信息(从无意识到有意识)的整合或提取(Jung-Beeman et al., 2004)。

4.4. 基于大脑空间活动的指标

以往研究发现,顿悟引发了额叶、颞叶、顶叶、枕叶等广泛脑区的激活。尽管受任务特异性差异影响(Shen et al., 2016),依然存在一些共同激活的脑区,包括前扣带回、前颞上回、海马等。

首先,研究在不同顿悟任务中一致发现,顿悟条件引发了前扣带回的活动,包括CRAT (Jung-Beeman et al., 2004; Subramaniam et al., 2009),字谜催化任务(Luo et al., 2004),变位字任务(Aziz-Zadeh et al., 2009),组块破解任务(Lin et al., 2021; Wu et al., 2013)、创造发明任务(李文福等,2016)等。比如,Subramaniam等(2009)基于CRAT发现,与非顿悟相比,顿悟解答引发了喙部扣带回(rostral anterior cingulate cortex)更强的激活。基于汉字组块破解任务,有研究者揭示,紧密组块的破解(相对于松散组块)也引发了ACC的激活(Lin et al., 2021; Wu et al., 2013)。研究者认为,前扣带回的激活主要反映了心理定势打破或重构心理表征过程中对冲突信息(比如新旧思路转变)的监控(Aziz-Zadeh et al., 2009; Lin et al., 2021; Wu et al., 2013)。

第二,较多研究也发现,顿悟与前颞上回的活动有紧密关系。具体而言,Jung-Beeman等(2004)最早发现,个体解决CRAT时顿悟解答相对于无顿悟解答引发了右前颞上回(Right Hemisphere anterior Superior Temporal Gyrus, RH aSTG)的神经活动显著增加。这在近期的组块破解形态顿悟的研究中也得到了验证,即顿悟与右侧前颞上回的激活相关(Lin et al., 2021)。为了探究前颞区与顿悟的因果关系,Chi和Snyder (2011)采用火柴棒问题,使用tDCS发现在不同刺激类型下,参与者的顿悟问题解答率存在差异。在之后的研究中,研究者又采用九点问题作为实验材料考察这一效应(Chi & Snyder, 2012),两项研究的结果一致,向右前颞叶(rATL)施加阳极tDCS显著提高了被试在两种非言语经典顿悟问题中的解答率,向左前颞叶施加同样的刺激则无效。Salvi、Beeman和Bikson等(2020)采用高清的经颅直流电刺激(High Definition tDCS, HD-tDCS)同样考察右前颞叶在顿悟问题解决中的关键作用,并且根据刺激部位将被试分为三组:右前颞叶(rATL)、左额极皮层(left frontopolar cortex, lFPC)、“假刺激”对照组,以CRAT为实验材料,成功再次证明了Chi和Snyder (2012)的结论。这些研究表明,右前颞上回的活动可能是顿悟发生的标记。

第三个相对较一致的发现是海马活动。具体而言,Luo和Niki (2003)首先猜谜,然后呈现答案,研究发现,海马在答案呈现时激活最为突出。类似的,海马的激活也在汉字成语(Zhao et al., 2013)、CRAT (Kizilirmak et al., 2016)等顿悟任务中被发现。研究者认为,海马与打破心理定势及形成新颖的、任务相关的联结有关(Kizilirmak et al., 2016; Luo & Niki, 2003; Zhao et al., 2013)。

5. 总结与展望

如何识别顿悟发生是开展创造性顿悟研究的关键,而识别顿悟发生的路径主要可以通过比较顿悟和无顿悟(常规/分析式)所引发的身心变化差异来进行区别。综合以往研究可以发现,顿悟引发了(区别于无顿悟)的多维度身心变化。这包括在情绪感受维度的啊哈体验和温暖感突变,躯体行为维度的眨眼、瞳孔扩张和握力变化,以及生理神经维度的皮肤电、心率变化,alpha振荡、gamma振荡,及前扣带回、前颞上回、海马等脑活动。这些多维度身心变化为区别顿悟和无顿悟提供了主客观指标,进而为识别顿悟发生提供了潜在标记。尽管以往研究提供了较为丰富的指标用以识别顿悟发生,但仍有一些问题值得思考。

首先,这些指标是否一定能够区别顿悟和无顿悟仍需重复性检验。这主要体现在以下几个方面:第一,一些指标能否区别顿悟和无顿悟仍存争议。比如尽管多数研究证实顿悟能引发啊哈体验(Webb et al., 2019; Bilalić et al., 2019),并且将啊哈体验作为区别顿悟是否发生的标记(Jung-Beeman et al., 2004; Mai et al., 2004; Zhao et al., 2013; Salvi et al., 2015; Salvi, Simoncini et al., 2020; Shen et al., 2016),但也有研究发现顿悟相对于无顿悟并没有引发更强的啊哈体验(Webb et al., 2018)。再者,啊哈体验作为复合情绪,其包含哪些基本情绪仍存争议(Shen et al., 2016; Danek & Wiley, 2017; Stuyck et al., 2021)。第二,尽管一些新的指标被挖掘,如瞳孔变化、眨眼、握力大小变化、心率变化等,但考虑研究的单一性以及可重复性危机(Salvi et al., 2015; Salvi, Simoncini et al., 2020; Laukkonen et al., 2021; Shen et al., 2018),这些指标是否真正能区别顿悟和无顿悟仍需进一步检验。第三,哪些脑神经活动的测量可以区别顿悟和无顿悟仍然需要进一步验证。虽然脑电频域上的alpha与gamma振荡以及时域上的N380成分可以用于区别顿悟和非顿悟,然而先前研究者对N380成分的解读仍然存在争议。

其次,如何基于这些标记识别顿悟的发生?我们建议联合多项指标而不是单一指标对顿悟发生进行识别。这主要基于以下原因:第一,如前所述,尽管一些指标如啊哈体验特异于顿悟并用于识别顿悟发生(Jung-Beeman et al., 2004; Mai et al., 2004; Shen et al., 2016),但也有研究表明有些顿悟问题的解决并不引发啊哈体验(Webb et al., 2018),或并未发现顿悟和常规问题存在啊哈体验上的差异(Webb et al., 2019)。第二,多数指标并非特异于顿悟而只是顿悟相关,比如心率变化、瞳孔变化、alpha振荡、前颞上回等。具体而言,其他心理现象例如恐惧、愤怒等也引发心率变化(Wu et al., 2019),决策不确定性(decision uncertainty)也会引发瞳孔扩张(Urai et al., 2017)。尽管通过一些技术如tDCS调节alpha振荡或前颞上回活动能够因果性促进顿悟问题解决(Chi & Snyder, 2012; Santarnecchi et al., 2019),但这些神经活动也与其他心理过程相关:比如alpha振荡与情感注意相关(Uusberg et al., 2013),前颞上回则与语义加工相关(Jung-Beeman et al., 2004)。因此需要注意的是,顿悟能引发这些身心变化,但反过来并不意味着一旦观察到这些现象的发生就判定为顿悟发生。鉴于此,我们建议未来研究可以联合顿悟特异(如啊哈体验)和顿悟相关的多项指标(如瞳孔变化等)对顿悟发生进行识别,这将增加准确性。

最后,顿悟引发了如此多维度的身心变化,包括情绪感受、躯体行为、生理神经维度等。未来研究可以探讨两个方面的问题:其一,以顿悟为连接点,未来可以探讨这些身心指标之间的关联。例如探讨握力器测量顿悟时刻的握力大小与啊哈体验认知与情感各个维度的关联,以揭示主观体验与行为学指标在标记顿悟时刻的一致性。再比如,未来可结合眼动和脑电技术,来探讨脑电频域信号与视觉活动在顿悟发生时刻的一致性。具体而言,顿悟引发的瞳孔扩张或许与gamma振荡有关:瞳孔扩张可能反映了将问题答案提取到意识中,而gamma振荡与意识提取有关。此外,顿悟引发的眨眼频率增加或许与alpha振荡有关:在知觉上,眨眼对干扰或无关信息进行抑制,此过程与alpha振荡有关。第二,如果顿悟能引发全身性反应,那么除了上述行为与生理学现象之外,顿悟还可能引发其他的身心变化。例如,呼吸会随着个体的情感变化而产生速率改变,其速率增加或减少受到情绪效价和唤醒度的交互影响(Van Diest et al., 2001; Gomez et al., 2004)。顿悟问题解决过程中所伴随的啊哈体验是一种复合的情感体验,其对个体呼吸速率的作用尚未可知,这有待未来的研究详细探讨。

基金项目

广州市教育科学规划2021年度课题+诱发式顿悟对记忆的促进效应及机制(202113612);国家自然科学基金项目(32271118);教育部人文社会科学研究青年基金项目(18YJC190033)。

NOTES

*通讯作者。

参考文献

[1] 黄福荣, 和美, 罗劲(2017). 组块破解形态顿悟的脑认知机理. 科学通报, 62(31), 3594-3604.
[2] 赖燕群, 杨琪, 黄宝珍, 赛李阳(2019). 记忆的顿悟优势效应. 心理科学进展, 27(12), 2034-2042.
[3] 李文福, 童丹丹, 邱江, 张庆林(2016). 科学发明问题解决的脑机制再探. 心理学报, 48(4), 331-342.
[4] 沈汪兵, 刘昌, 张小将, 陈亚林(2011). 三字字谜顿悟的时间进程和半球效应: 一项ERP研究. 心理学报, 43(3), 229-240
[5] 沈汪兵, 罗劲, 刘昌, 袁媛(2012). 顿悟脑的10年: 人类顿悟脑机制研究进展. 科学通报, 57(21), 1948-1963.
[6] Ammalainen, A., & Moroshkina, N. (2021). The Effect of True and False Unreportable Hints on Anagram Problem Solving, Restructuring, and the Aha! Experience. Journal of Cognitive Psychology, 33, 644-658.
https://doi.org/10.1080/20445911.2020.1844722
[7] Aston-Jones, G., & Cohen, J. D. (2005). An Integrative Theory of Locus Coeruleus-Norepinephrine Function: Adaptive Gain and Optimal Performance. Annual Review of Neuroscience, 28, 403-450.
https://doi.org/10.1146/annurev.neuro.28.061604.135709
[8] Aziz-Zadeh, L., Kaplan, J. T., & Iacoboni, M. (2009). “Aha!”: The Neural Correlates of Verbal Insight Solutions. Human Brain Mapping, 30, 908-916.
https://doi.org/10.1002/hbm.20554
[9] Bilalić, M., Graf, M., Vaci, N., & Danek, A. H. (2019). When the Solution Is on the Doorstep: Better Solving Performance, But Diminished Aha! Experience for Chess Experts on the Mutilated Checkerboard Problem. Cognitive Science, 43, e12771.1-e12771.17.
https://doi.org/10.1111/cogs.12771
[10] Bowden, E. M., & Jung-Beeman, M. (2007). Methods for Investigating the Neural Components of Insight. Methods (San Diego, Calif.), 42, 87-99.
https://doi.org/10.1016/j.ymeth.2006.11.007
[11] Chi, R. P., & Snyder, A. W. (2011). Facilitate Insight by Non-Invasive Brain Stimulation. PLOS ONE, 6, e16655.
https://doi.org/10.1371/journal.pone.0016655
[12] Chi, R. P., & Snyder, A. W. (2012). Brain Stimulation Enables the Solution of an Inherently Difficult Problem. Neuroscience Letters, 515, 121-124.
https://doi.org/10.1016/j.neulet.2012.03.012
[13] Danek, A. H., & Wiley, J. (2017). What about False Insights? Deconstructing the Aha! Experience along Its Multiple Dimensions for Correct and Incorrect Solutions Separately. Frontiers in Psychology, 7, Article No. 2077.
https://doi.org/10.3389/fpsyg.2016.02077
[14] Danek, A. H., Fraps, T., von Müller, A., Grothe, B., & Öllinger, M. (2014). It’s a Kind of Magic—What Self-Reports Can Reveal about the Phenomenology of Insight Problem Solving. Frontiers in Psychology, 5, Article No. 1408.
https://doi.org/10.3389/fpsyg.2014.01408
[15] Gomez, P., Stahel, W. A., & Danuser, B. (2004). Respiratory Responses during Affective Picture Viewing. Biological Psychology, 67, 359-373.
https://doi.org/10.1016/j.biopsycho.2004.03.013
[16] Hedne, M. R., Norman, E., & Metcalfe, J. (2016). Intuitive Feelings of Warmth and Confidence in Insight and Noninsight Problem Solving of Magic Tricks. Frontiers in Psychology, 7, Article No. 1314.
https://doi.org/10.3389/fpsyg.2016.01314
[17] Ishikawa, T., Toshima, M., & Mogi, K. (2019). How and When? Metacognition and Solution Timing Characterize an “Aha” Experience of Object Recognition in Hidden Figures. Frontiers in psychology, 10, Article No. 1023.
https://doi.org/10.3389/fpsyg.2019.01023
[18] Jia, X., Hu, W., Duan, H., Qi, S., & Li, Y. (2019). The Neural Mechanism of Insight in Children and Adults: An ERPs Study of Chinese-Generation Task. Psychology, 10, 1856-1867.
https://doi.org/10.4236/psych.2019.1013120
[19] Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., Reber, P. J., & Kounios, J. (2004). Neural Activity When People Solve Verbal Problems with Insight. PLoS Biology, 2, e97.
https://doi.org/10.1371/journal.pbio.0020097
[20] Kizilirmak, J. M., Serger, V., Kehl, J., Öllinger, M., Fol-ta-Schoofs, K., & Richardson-Klavehn, A. (2018). Feelings-of- Warmth Increase More Abruptly for Verbal Riddles Solved with in Contrast to Without Aha! Experience. Frontiers in Psychology, 9, Article No. 1404.
https://doi.org/10.3389/fpsyg.2018.01404
[21] Kizilirmak, J. M., Thuerich, H., Folta-Schoofs, K., Schott, B. H., & Richardson-Klavehn, A. (2016). Neural Correlates of Learning from Induced Insight: A Case for Reward-Based Episodic Encoding. Frontiers in Psychology, 7, Article No. 1693.
https://doi.org/10.3389/fpsyg.2016.01693
[22] Kounios, J., & Beeman, M. (2014). The Cognitive Neuroscience of Insight. Annual Review of Psychology, 65, 71-93.
https://doi.org/10.1146/annurev-psych-010213-115154
[23] Kreibig, S. D. (2010). Autonomic Nervous System Activity in Emotion: A Review. Biological Psychology, 84, 394-421.
https://doi.org/10.1016/j.biopsycho.2010.03.010
[24] Laukkonen, R. E., & Tangen, J. M. (2018). How to Detect Insight Moments in Problem Solving Experiments. Frontiers in Psychology, 9, Article No. 228.
https://doi.org/10.3389/fpsyg.2018.00282
[25] Laukkonen, R. E., Ingledew, D. J., Grimmer, H. J., Schooler, J. W., & Tangen, J. M. (2021). Getting a Grip on Insight: Real-Time and Embodied Aha Experiences Predict Correct Solutions. Cognition & Emotion, 35, 918-935.
https://doi.org/10.1080/02699931.2021.1908230
[26] Lin, J., Wen, X., Cui, X., Xiang, Y., Xie, J., Chen, Y., Huang, R., & Mo, L. (2021). Common and Specific Neural Correlates Underlying Insight and Ordinary Problem Solving. Brain Imaging and Behavior, 15, 1374-1387.
https://doi.org/10.1007/s11682-020-00337-z
[27] Luft, C. D. B., Zioga, I., Thompson, N. M., Banissy, M. J., & Bhattacharya, J. (2018). Right Temporal Alpha Oscillations as a Neural Mechanism for Inhibiting Obvious Associations. Proceedings of the National Academy of Sciences of the United States of America, 115, E12144-E12152.
https://doi.org/10.1073/pnas.1811465115
[28] Luo, J., & Niki, K. (2003). Function of Hippocampus in “Insight” of Problem Solving. Hippocampus, 13, 316-323.
https://doi.org/10.1002/hipo.10069
[29] Luo, J., Niki, K., & Phillips, S. (2004). Neural Correlates of the “Aha! Reaction”. Neuroreport, 15, 2013-2017.
https://doi.org/10.1097/00001756-200409150-00004
[30] Mai, X. Q., Luo, J., Wu, J. H., & Luo, Y. J. (2004). “Aha!” Effects in a Guessing Riddle Task: An Event-Related Potential Study. Human Brain Mapping, 22, 261-270.
https://doi.org/10.1002/hbm.20030
[31] Metcalfe, J., & Wiebe, D. (1987). Intuition in Insight and Noninsight Problem Solving. Memory & Cognition, 15, 238-246.
https://doi.org/10.3758/BF03197722
[32] Nam, B., Paromita, P., Chu, S. L., Chaspari, T., & Woltering, S. (2021). Moments of Insight in Problem-Solving Relate to Bodily Arousal. Journal of Creative Behavior, 55, 1004-1014.
https://doi.org/10.1002/jocb.504
[33] Oh, Y., Chesebrough, C., Erickson, B., Zhang, F., & Kounios, J. (2020). An Insight-Related Neural Reward Signal. NeuroImage, 214, Article ID: 116757.
https://doi.org/10.1016/j.neuroimage.2020.116757
[34] Qiu, J., Li, H., Luo, Y., Chen, A., Zhang, F., Zhang, J., Yang, J., & Zhang, Q. (2006). Brain Mechanism of Cognitive Conflict in a Guessing Chinese Logogriph Task. Neuroreport, 17, 679-682.
https://doi.org/10.1097/00001756-200604240-00025
[35] Rosen, A., & Reiner, M. (2017). Right Frontal Gamma and Beta Band Enhancement While Solving a Spatial Puzzle with Insight. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 122, 50-55.
https://doi.org/10.1016/j.ijpsycho.2016.09.008
[36] Salvi, C., Beeman, M., Bikson, M., McKinley, R., & Grafman, J. (2020). TDCS to the Right Anterior Temporal Lobe Facilitates Insight Problem-Solving. Scientific Reports, 10, Article No. 946.
https://doi.org/10.1038/s41598-020-57724-1
[37] Salvi, C., Bricolo, E., Franconeri, S. L., Kounios, J., & Beeman, M. (2015). Sudden Insight Is Associated with Shutting out Visual Inputs. Psychonomic Bulletin & Review, 22, 1814-1819.
https://doi.org/10.3758/s13423-015-0845-0
[38] Salvi, C., Simoncini, C., Grafman, J., & Beeman, M. (2020). Oculometric Signature of Switch into Awareness? Pupil Size Predicts Sudden Insight Whereas Microsaccades Predict Problem-Solving via Analysis. NeuroImage, 217, Article ID: 116933.
https://doi.org/10.1016/j.neuroimage.2020.116933
[39] Santarnecchi, E., Sprugnoli, G., Bricolo, E., Costantini, G., Liew, S. L., Musaeus, C. S., Salvi, C., Pascual-Leone, A., Rossi, A., & Rossi, S. (2019). Gamma tACS over the Temporal Lobe Increases the Occurrence of Eureka! Moments. Scientific Reports, 9, Article No. 5778.
https://doi.org/10.1038/s41598-019-42192-z
[40] Shen, W., Tong, Y., Yuan, Y., Zhan, H., Liu, C., Luo, J., & Cai, H. (2018). Feeling the Insight: Uncovering Somatic Markers of the “AHA” Experience. Applied Psychophysiology and Biofeedback, 43, 13-21.
https://doi.org/10.1007/s10484-017-9381-1
[41] Shen, W., Yuan, Y., Liu, C., Zhang, X., Luo, J., & Gong, Z. (2016). Is Creative Insight Task-Specific? A Coordinate-Based Meta-Analysis of Neuroimaging Studies on Insightful Problem Solving. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 110, 81-90.
https://doi.org/10.1016/j.ijpsycho.2016.10.001
[42] Sheth, B. R., Sandkühler, S., & Bhattacharya, J. (2009). Posterior Beta and Anterior Gamma Oscillations Predict Cognitive Insight. Journal of Cognitive Neuroscience, 21, 1269-1279.
https://doi.org/10.1162/jocn.2009.21069
[43] Stuyck, H., Aben, B., Cleeremans, A., & Van den Bussche, E. (2021). The Aha! Moment: Is Insight a Different Form of Problem Solving? Consciousness and Cognition, 90, Article ID: 103055.
https://doi.org/10.1016/j.concog.2020.103055
[44] Subramaniam, K., Kounios, K., Parrish, T. B., & Jung-Beeman, M. (2009). A Brain Mechanism for Facilitation of Insight by Positive Affect. Journal of Cognitive Neuroscience, 21, 415-432.
https://doi.org/10.1162/jocn.2009.21057
[45] Urai, A. E., Braun, A., & Donner, T. H. (2017). Pupil-Linked Arousal Is Driven by Decision Uncertainty and Alters Serial Choice Bias. Nature Communications, 8, Article No. 14637.
https://doi.org/10.1038/ncomms14637
[46] Uusberg, A., Uibo, H., Kreegipuu, K., & Allik, J. (2013). EEG Alpha and Cortical Inhibition in Affective Attention. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 89, 26-36.
https://doi.org/10.1016/j.ijpsycho.2013.04.020
[47] Van Diest, I., Winters, W., Devriese, S., Vercamst, E., Han, J. N., Van de Woestijne, K. P., & Van den Bergh, O. (2001). Hyperventilation beyond Fight/Flight: Respiratory Responses during Emotional Imagery. Psychophysiology, 38, 961-968.
https://doi.org/10.1111/1469-8986.3860961
[48] Webb, M. E., Cropper, S. J., & Little, D. R. (2019). “Aha!” Is Stronger When Preceded by a “Huh?”: Presentation of a Solution Affects Ratings of Aha Experience Conditional on Accuracy. Thinking & Reasoning, 25, 324-364.
https://doi.org/10.1080/13546783.2018.1523807
[49] Webb, M. E., Little, D. R., & Cropper, S. J. (2018). Once More with Feeling: Normative Data for the Aha Experience in Insight and Noninsight Problems. Behavior Research Methods, 50, 2035-2056.
https://doi.org/10.3758/s13428-017-0972-9
[50] Wu, L., Knoblich, G., & Luo, J. (2013). The Role of Chunk Tightness and Chunk Familiarity in Problem Solving: Evidence from ERPs and fMRI. Human Brain Mapping, 34, 1173-1186.
https://doi.org/10.1002/hbm.21501
[51] Wu, L., Knoblich, G., Wei, G., & Luo, J. (2009). How Perceptual Processes Help to Generate New Meaning: An EEG Study of Chunk Decomposition in Chinese Characters. Brain Research, 1296, 104-112.
https://doi.org/10.1016/j.brainres.2009.08.023
[52] Wu, Y., Gu, R., Yang, Q., & Luo, Y. J. (2019). How Do Amusement, Anger and Fear Influence Heart Rate and Heart Rate Variability? Frontiers in Neuroscience, 13, Article No. 1131.
https://doi.org/10.3389/fnins.2019.01131
[53] Yu, Y., Oh, Y., Kounios, J., & Beeman, M. (2022). Dynamics of Hidden Brain States When People Solve Verbal Puzzles. NeuroImage, 255, Article ID: 119202.
https://doi.org/10.1016/j.neuroimage.2022.119202
[54] Zhao, Q., Zhou, Z., Xu, H., Chen, S., Xu, F., Fan, W., & Han, L. (2013). Dynamic Neural Network of Insight: A Functional Magnetic Resonance Imaging Study on Solving Chinese “Chengyu” Riddles. PLOS ONE, 8, e59351.
https://doi.org/10.1371/journal.pone.0059351
[55] Zhao, Q., Zhou, Z., Xu, H., Fan, W., & Han, L. (2014). Neural Pathway in the Right Hemisphere Underlies Verbal Insight Problem Solving. Neuroscience, 256, 334-341.
https://doi.org/10.1016/j.neuroscience.2013.10.019