鉴定主动脉夹层中的关键铁死亡基因
To Identify the Key Ferroptosis Genes in Aortic Dissection
DOI: 10.12677/ACM.2023.1351090, PDF, HTML, XML, 下载: 392  浏览: 627 
作者: 陶 艳:青岛大学附属医院心脏超声科,山东 青岛
关键词: 主动脉夹层铁死亡生物信息学关键基因Aortic Dissection Ferroptosis Bioinformatics Key Genes
摘要: 目的:生信分析结合组织验证以鉴定主动脉夹层(aortic dissection, AD)中的关键铁死亡基因。方法:Limma筛选正常主动脉和AD主动脉间的差异表达基因(differentially expressed genes, DEGs)。基因本体论(gene ontology, GO)和京都基因和基因组百科全书(Kyoto Encyclopedia of Genes and Genomes, KEGG)富集分析预测DEGs在AD中的功能和代谢过程。DEGs与铁死亡相关基因(ferroptosis-related genes, FRGs)数据库FerrDB取交集得到差异表达的铁死亡相关基因(differentially expressed ferrop-tosis-related genes, DEFRGs)。构建AD小鼠模型,验证前4个DEFRGs。结果:正常主动脉样本和AD主动脉样本间存在774个DEGs。DEGs与酶活性、细胞亚结构及糖脂代谢等相关。DEGs与FerrDB数据库交集出17个DEFRGs。通过构建AD小鼠模型,进一步鉴定了DEFRGs中的前4个关键基因,它们分别是雷帕霉素靶蛋白,Mammalian Target of Rapamycin (MTOR)、脂质运载蛋白2,Lipocalin-2 (LCN2)、DNA损伤诱导转录因子4,DNA damage-inducing transcription factor 4 (DDIT4)和淋巴特异性解旋酶,Lymphoid-specific helicase (HELLS)。其中MTOR、LCN2在AD小鼠主动脉中上调,DDIT4在AD小鼠主动脉中下调而HELLS在AD小鼠主动脉和正常主动脉间无变化。结论:铁死亡是AD发展中必不可少的病理过程之一,一些DEFRGs通过介导细胞铁死亡来影响AD的进展。这一发现更深入地认识了AD的致病机制和分子靶点。
Abstract: Objective: To identify the key ferroptosis genes in aortic dissection (AD) by bioinformatics analysis combined with tissue validation. Methods: Limma screened differentially expressed genes (DEGs) between normal aorta and AD aorta. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Ge-nomes (KEGG) enrichment analysis were used to predict the potential functions and metabolic pro-cesses of DEGs in AD. Differentially expressed ferroptosis-related genes (DEFRGs) were determined by intersection of DEGs and FerrDB, which is a database of ferroptosis-related genes (FRGs). AD mouse models were constructed to validate the first four DEFRGs. Results: The analysis indicated that there were 774 DEGs between normal aortic samples and AD aortic samples. DEGs were related to enzyme activity, cell substructure and glucose and lipid metabolism. Seventeen DEFRGs were obtained by intersectional analysis of DEGs and FerrDB database. By constructing an AD mouse model, we further identified the top four key genes in DEFRGs. They are Mammalian Target of Ra-pamycin (MTOR), Lipocalin-2 (LCN2) and DNA damage inducing transcription factor 4 (DDIT4) and Lymphoid-specific helicase (HELLS). Among them, MTOR and LCN2 were up-regulated in AD mouse aorta, DDIT4 was down-regulated in AD mouse aorta, while HELLS had no change between AD mouse aorta and normal aorta. Conclusion: These results suggested that ferroptosis is one of the essential pathological processes in AD and that several DEFRGs affect the progression of AD by me-diating cell ferroptosis. This finding provides deeper insights into the pathogenesis and molecular targets of AD.
文章引用:陶艳. 鉴定主动脉夹层中的关键铁死亡基因[J]. 临床医学进展, 2023, 13(5): 7799-7808. https://doi.org/10.12677/ACM.2023.1351090

1. 引言

AD是最常见的急性主动脉综合征(acute aortic syndrome, AAS),占所有AAS的85%~95% [1] ,由主动脉内膜撕裂伴血液流入中膜引起 [2] 。AD的发病率约为每年15例/100,000人 [3] 。近年来随着高血压及高血糖等代谢紊乱的增加,其发病率明显升高 [4] 。根据斯坦福系统,AD可分为A型或B型。A型AD (Type A AD, TAAD)初始病死率最高,如果未被及时诊断通常是致命的 [5] 。而B型主动脉夹层(Type BAD, TBAD)的总体预后取决于复杂因素的存在,如发生器官缺血或破裂可大大增加其发病率 [6] 。总之,AD病情危急,需要了解其发病机制以指导诊疗。

越来越多的证据表明包括铁死亡、自噬和焦亡在内的多种细胞生物学功能都参与了AD的发生发展。例如,李等人发现铁死亡抑制剂liproxstatin-1下调了AD小鼠主动脉中的铁死亡驱动物4-羟基壬烯醛和转铁蛋白受体,同时其明显减轻了主动脉中膜变性和弹性纤维断裂 [7] 。Clément等人证实平滑肌细胞(smooth muscle cells, SMCs)自噬相关蛋白ATG5的缺失会增加AD发生率和血管损伤程度 [8] 。同时段等人的研究表明抑制SMC焦亡可明显改善AD [9] 。其中,新近发现的铁死亡在AD发生中起关键作用 [7] [10] 。铁死亡是一种以铁毒性为特征的调节性坏死 [11] 。已有研究发现心血管疾病中存在广泛的铁死亡现象。例如,叶等人证实SMC铁死亡可促进血管钙化 [12] 。另一项研究发现BRD4770可通过抑制铁死亡进而对AD发挥保护作用 [10] 。而李等人的研究进一步提出靶向人主动脉SMCs (human aortic smooth muscle cells, HASMCs)的铁死亡可缓解AD [7] 。可见靶向铁死亡可成为治疗AD的有效策略。而鉴定DEFRGs可为AD提供诊断性生物标记物或干预靶点。

本研究通过结合基因表达综合数据库(Gene Expression Omnibus, GEO)中的数据集GSE98770和FRGs数据库FerrDB筛选出774个DEGs和17个DEFRGs。随后,我们对候选的基因进行GO和KEGG富集分析。最后我们在AD小鼠主动脉和正常主动脉中验证了前4个DEGs。

2. 材料与方法

2.1. 数据来源

GSE98770的mRNA表达谱来自于GPL14550,包含6例无家族性胸主动脉疾病的TAAD患者的夹层升主动脉内中膜和5例移植供体的非夹层升主动脉内中膜。

2.2. DEGs和DEFRGs的鉴定

Limma是一种基于广义线性模型的差异表达筛选方法 [13] 。本文采用R软件包Limma (版本3.40.6)进行DEGs分析,以获得正常主动脉样本与AD主动脉样本间的DEGs。具体而言,以|logFC| ≥ 2和P值< 0.05作为界定差异基因表达的标准,使用R软件中的“ggplot2”包绘制火山图。从FerrDB数据库获得FRGs,并与DEGs相交获得DEFRGs。

2.3. 基因富集分析

为了研究AD主动脉和正常主动脉之间DEGs的潜在生物学功能,采用R包中的clusterProfiler进行了GO与KEGG分析。

2.4. AD小鼠和健康小鼠主动脉的获取

购进满3周龄的C57BL/6J雄性小鼠(中国济南朋悦)。每天给予标准饮食及规律光照适应环境一周后,小鼠被随机分为两组(11只/组):正常组及AD组。AD组小鼠腹腔注射血管紧张素II (AngⅡ, 6 mg/kg/12h,中国上海吉尔)和β-氨基丙腈(BAPN,0.33 g/kg/24h,中国上海皓鸿),正常组小鼠腹腔注射等量的生理盐水。14天后对小鼠进行安乐死,取主动脉拍照后储存在-80℃超低温冰箱以备分子学检测或固定于4%多聚甲醛以备组织学分析。所有动物实验操作均经青岛大学附属医院动物伦理委员会审批。

2.5. RNA提取和qRT-PCR

使用Kz-111-fp高速低温研磨仪(中国青岛塞维尔)研磨组织并使用TRIZOL试剂(中国青岛思科捷)提取总RNA。cDNA的逆转录是根据制造商(中国南京诺唯赞)提供的说明进行的。使用通用SYBR qPCR混合物(中国南京诺唯赞),反应在95℃下运行30秒,95℃运行5秒,60℃运行30秒并≥40个循环。所有实验数据均表示为从三个独立实验中获得的平均值,并使用2-ΔΔ循环阈值法进行统计学分析。甘油醛-3-磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase, GAPDH)用作内参。qRT-PCR所用的引物如表1所示。

2.6. 苏木素&伊红(Hematoxylin & Eosin, H&E)染色

将固定的主动脉样本制成石蜡切片。用H&E染色试剂盒(中国大连美仑)按照制造商提供的方案进行染色。使用光学显微镜(日本东京Olympus)拍摄图像。

Table 1. Primers used for qRT-PCR

表1. qRT-PCR所用的引物

2.7. 统计学分析

GraphPad Prism 8.3.0软件分析所有采集的原始数据。计数数据以均数±标准差表示。两独立组间样本比较采用非配对t检验。P < 0.05有显著性差异。

3. 结果

3.1. 确定DEGs

我们在GSE98770中发现了AD主动脉样本和正常主动脉样本间存在774个DEGs,其中有468个上调基因,306个下调基因。DEGs的火山图如图1所示。

Figure 1. Volcano plot of DEGs between AD aorta and healthy aorta

图1. AD主动脉和健康主动脉间DEGs的火山图

3.2. 候选DEGs的基因富集概况

我们进行了GO和KEGG富集分析以了解DEGs的相关功能和参与的信号通路。GO富集分析中,DEGs在分子功能类别(molecular function, MF)主要富集于磷蛋白磷酸酶活性、NAD结合、外肽酶活性(图2(A))。DEGs在细胞成分类别(cell component, CC)主要富集于细胞器亚区室、高尔基体和高尔基体子室(图2(B))。DEGs生物过程类别(biological process, BP)主要富集于骨骼系统形态发生、脂多糖代谢过程和糖脂生物合成过程(图2(C))。在KEGG富集分析中,大部分DEGs与人t细胞白血病病毒1感染通路和产热作用通路有关(图2(D)),该结果提示AD中可能有这些通路的激活。

Figure 2. GO and KEGG enrichment analysis of 774 DEGs. (A) Bubble plot of GO enriched MF categories; (B) Bubble plot of GO enriched CC categories; (C) Bubble plot of GO-enriched BP categories; (D) Chordograms of KEGG enrichment

图2. 774个DEGs的GO和KEGG富集分析。(A) GO富集MF类别的气泡图;(B) GO富集CC类别的气泡图;(C) GO富集BP类别的气泡图;(D) KEGG富集的弦图

3.3. 确定DEFRGs

既往研究表明铁死亡促进了AD的发生发展。为了分析哪些FRGs参与了AD的病理进程,我们对DEGs与FRGs取交集获得17个DEFRGs,其中有9个上调DEFRGs,8个下调DEFRGs如图3表2所示。

Figure 3. Venn diagram showing the intersection of genes between DEGs from GSE98770 and FRGs from FerrDB

图3. 维恩图显示了GSE98770的DEGs与FerrDB的FRGs之间基因的交集

Table 2. Seventeen DEFRGs identified in AD aortic samples compared to healthy aortic samples

表2. 与健康主动脉样本相比,AD主动脉样本中鉴定出的17个DEFRGs

3.4. 构建AD小鼠模型

为了进一步在AD主动脉组织中确认获得的DEFRGs,我们构建了AD损伤小鼠模型。主动脉大体图片显示与正常主动脉相比,AD主动脉明显增粗(图4(A))。H&E染色显示AD主动脉内径明显增宽,主动脉各层结构紊乱,弹性纤维断裂(图4(B))。这些数据表明AD模型构建完成。

Figure 4. (A) Gross photographs of the aorta of mice between the two groups; (B) Aortic H&E staining of mice between different treatment groups, bar = 200 μm

图4. (A) 两组间小鼠的主动脉大体照片;(B) 不同处理组间小鼠的主动脉H&E染色,比例尺 = 200 μm

3.5. 验证DEFRGs

为了进一步验证差异表达的DEFRGs在小鼠主动脉中的差异表达,采用qRT-PCR检测了前4个候选DEFRGs的表达。结果表明,MTOR和LCN2在AD小鼠主动脉中上调(图5(A)、图5(B)),而DDIT4在AD小鼠主动脉中下调同时HELLS在AD小鼠主动脉和正常主动脉间无变化。

Figure 5. (A) qRT-PCR detection of MTOR in mouse aortas among groups; (B) qRT-PCR was used to detect LCN2 in the aorta of mice among groups; (C) qRT-PCR was used to detect LCN2 in the aorta of mice among groups; (D) qRT-PCR detection of HELLS in mouse aortae across groups. nsP > 0.05, *P < 0.05, **P < 0.01

图5. (A) qRT-PCR检测各组间小鼠主动脉中的MTOR;(B) qRT-PCR检测各组间小鼠主动脉中的LCN2;(C) qRT-PCR检测各组间小鼠主动脉中的LCN2;(D) qRT-PCR检测各组间小鼠主动脉中的HELLS。nsP > 0.05,*P < 0.05,**P < 0.01

4. 讨论

AD与炎症、细胞外基质(extracellular matrix, ECM)降解、氧化应激以及SMCs的表型转换和凋亡相关。这些病理机制相互作用以促进AD的发生 [14] 。比如,炎症细胞分泌的炎症因子和蛋白酶通过损伤内皮细胞 [15] 、降解SMCs收缩蛋白 [16] 以及诱导主动脉中膜细胞凋亡 [17] 引起AD。此外,氧化应激可引起主动脉功能障碍 [18] 。实验研究发现,硫化氢(H2S)可通过减少氧化应激产物生成来抑制AD进展 [19] 。具体来说,与对照组相比,H2S升高了AD组小鼠主动脉中的超氧化物歧化酶活性并降低了丙二醛和一氧化氮生成量。SMCs从静止的收缩型转变为活跃的增殖迁移型称为SMCs的表型转换或去分化 [20] 。张等人证实低表达的多囊蛋白-1通过激活mTOR/S6K/S6信号通路调节SMCs表型转换和ECM重塑而导致胸主动脉夹层(thoracic aortic dissection, TAD) [21] 。虽然已有研究证实与氧化应激和炎症密切相关的铁死亡参与了AD的进展 [10] [22] ,但我们对铁死亡引发AD的机制认识仍然有限。

本研究的MF富集分析显示AD与白细胞介素-1 (interleukin-1, IL-1)受体活性有关。IL-1主要由巨噬细胞分泌,是促炎细胞因子家族中的重要一员 [23] [24] 。郭等人发现IL-1β通过升高MMP-2和MMP-9而引起弹性纤维破裂及主动脉壁应力改变,最终促进了TAD形成 [25] 。而抗IL-1β治疗可减轻TAD。这一发现与蒋等人的研究结果一致 [26] 。此外铁死亡可参与IL-1β介导的炎症反应。例如,徐等人证实谷胱甘肽过氧化物酶(glutathione peroxidase, GPX4)缺失的T淋巴细胞发生了铁死亡且IL-1β生成增加 [27] 。事实上,多种IL家族成员可广泛参与AD的进展且与铁死亡密切相关。例如,临床研究发现AD患者的IL-6水平升高 [28] 。且IL-6可作为诊断AD及评估AD治疗及预后的可靠生物标记物。而降低IL-6的抗炎治疗可明显缓解AD。同时,张等人发现elabela通过调节IL-6/信号转导因子3 (signal transducer and activator of transcription 3, STAT3)/GPX4信号通路而拮抗铁死亡 [29] 。此外,本研究的BP富集分析发现AD与铁配位体运输有关。而铁运输中任一环节障碍一方面会导致病理性铁积累,由此引发细胞氧化应激损伤而致铁死亡 [22] 。例如,介导铁摄取的转铁蛋白受体缺失可抑制铁死亡 [30] [31] 。另一方面铁运输障碍也会导致铁缺乏而影响SMCs功能。比如,钟等人揭示了铁缺乏通过破坏SMCs的细胞骨架而促进主动脉中膜变性 [32] 。上述铁缺乏所致的主动脉结构性损伤最终增加了AD的患病风险 [33] 。

在小鼠主动脉样品中,我们验证了MTOR、DDIT4和LCN2与微阵列测序结果一致。虽然MTOR是肿瘤发生的关键驱动因子 [34] ,但MTOR也与AD有关 [35] 。比如,李等人发现激活MTOR复合物1 (MTOR complex 1, MTORC1)会促进SMCs增生而导致进行性主动脉中膜变性和TAAD [36] 。另一项研究显示雷帕霉素可能通过抑制MTOR信号转导减少炎细胞浸润和MMP-9的产生,从而抑制TAAD的形成 [37] 。研究人员首先证明小鼠TAAD组织中介导MTORC1信号级联反应的主要活化靶蛋白p-S6K和p-S6上调。而雷帕霉素治疗的TAAD小鼠中p-S6K和p-S6下调,同时TTAD形成及主动脉扩张减少、弹性纤维断裂减少、破坏弹性纤维的MMP-9下调以及促进ECM降解的中性粒细胞和巨噬细胞浸润减少。这进一步佐证了MTOR的促AD作用。而何等人的研究与上述发现相反。他们发现抑制MTOR 信号传导可防止主动脉破裂,但促进AD。因此应谨慎探索抑制MTOR对主动脉疾病的作用 [38] 。同时,研究表明MTOR可促进铁死亡。韩等人发现第3类去乙酰化酶(type 3 sirtuins, SIRT3)通过激活腺苷酸活化蛋白激酶(adenosine 5’-monophosphate-activated protein kinase, AMPK)-MTOR通路参与了滋养细胞的铁死亡 [39] 。综上,MTOR是否通过铁死亡途径促进AD值得进一步探索。DDIT4是一种高度保守的应激反应蛋白和铁死亡相关蛋白 [40] 。罗等人已证明下调DDIT4可抑制铁死亡 [41] 。但目前没有关于DDIT4调控AD的报道。作为一种铁螯合细胞因子,范等人发现下调LCN2可增强铁死亡诱导剂的致铁死亡作用 [42] 。同时作为一类分泌型脂肪因子,LCN2是心衰病理生理学中氧化应激和免疫反应的重要调节剂 [43] 。但目前尚无研究表明LCN2参与调控AD。鉴于LCN2在调节铁死亡及心血管疾病中的强大作用,未来有必要阐明其在AD中的作用。

综上,我们利用小鼠AD主动脉样本中鉴定了一些关键的DEFRGs。但限于临床取样的难度,目前无法在临床主动脉样本中验证这些基因,因此未来仍需收集临床样本以进一步鉴定这些DEFRGs。此外,更多AD数据集的开发及更多FRGs的鉴定也会为改善AD提供更多的诊断标记物及治疗靶点。

参考文献

[1] Mussa, F.F., et al. (2016) Acute Aortic Dissection and Intramural Hematoma. JAMA, 316, 754-763.
https://doi.org/10.1001/jama.2016.10026
[2] Stombaugh, D.K. and Mangunta, V.R. (2022) Aortic Dissection. Anesthesiology Clinics, 40, 685-703.
https://doi.org/10.1016/j.anclin.2022.08.012
[3] Landenhed, M., Engstrom, G., Gottsater, A., et al. (2015) Risk Profiles for Aortic Dissection and Ruptured or Surgically Treated Aneurysms: A Prospective Cohort Study. Journal of the American Heart Association, 4, e001513.
https://doi.org/10.1161/JAHA.114.001513
[4] Suzuki, Y., Kaneko, H., Yano, Y., et al. (2022) Dose-Dependent Relationship of Blood Pressure and Glycaemic Status with Risk of Aortic Dissection and Aneurysm. European Journal of Preventive Cardiology, 29, 2338-2346.
https://doi.org/10.1093/eurjpc/zwac205
[5] Pape, L.A., Awais, M., Woznicki, E.M., et al. (2015) Presentation, Diagnosis, and Outcomes of Acute Aortic Dissection: 17-Year Trends from the International Registry of Acute Aortic Dissection. Journal of the American College of Cardiology, 66, 350-358.
[6] Sen, I., Erben, Y.M., Franco-Mesa, C., et al. (2021) Epidemiology of Aortic Dissection. Seminars in Vascular Surgery, 34, 10-17.
https://doi.org/10.1053/j.semvascsurg.2021.02.003
[7] Li, N., Yi, X., He, Y., et al. (2022) Targeting Ferroptosis as a Novel Approach to Alleviate Aortic Dissection. International Journal of Biological Sciences, 18, 4118-4134.
https://doi.org/10.7150/ijbs.72528
[8] Clément, M., Chappell, J., Raffort, J., et al. (2019) Vascular Smooth Mus-cle Cell Plasticity and Autophagy in Dissecting Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 39, 1149-1159.
https://doi.org/10.1161/ATVBAHA.118.311727
[9] Duan, H., Zhang, X., Song, R., et al. (2020) Upregulation of miR-133a by Adiponectin Inhibits Pyroptosis Pathway and Rescues Acute Aortic Dissection. Acta Biochimica et Bio-physica Sinica, 52, 988-997.
https://doi.org/10.1093/abbs/gmaa078
[10] Chen, Y., Yi, X., Huo, B., et al. (2022) BRD4770 Functions as a Novel Ferroptosis Inhibitor to Protect against Aortic Dissection. Pharmacological Research, 177, Article ID: 106122.
https://doi.org/10.1016/j.phrs.2022.106122
[11] Chen, X., Kang, R., Kroemer, G., et al. (2021) Ferroptosis in In-fection, Inflammation, and Immunity. Journal of Experimental Medicine, 218, e20210518.
https://doi.org/10.1084/jem.20210518
[12] Ye, Y., Chen, A., Li, L., et al. (2022) Repression of the Antiporter SLC7A11/Glutathione/Glutathione Peroxidase 4 Axis Drives Ferroptosis of Vascular Smooth Muscle Cells to Facilitate Vascular Calcification. Kidney International, 102, 1259-1275.
https://doi.org/10.1016/j.kint.2022.07.034
[13] Ritchie, M.E., Phipson, B., Wu, D., et al. (2015) Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic Acids Research, 43, e47.
https://doi.org/10.1093/nar/gkv007
[14] Chakraborty, A., Li, Y., Zhang, C., et al. (2022) Programmed Cell Death in Aortic Aneurysm and Dissection: A Potential Therapeutic Target. The Journal of Molecular and Cellular Cardiology, 163, 67-80.
https://doi.org/10.1016/j.yjmcc.2021.09.010
[15] Han, L., Dai, L., Zhao, Y.-F., et al. (2018) CD40L Promotes De-velopment of Acute Aortic Dissection via Induction of Inflammation and Impairment of Endothelial Cell Function. Aging (Albany NY), 10, 371-385.
https://doi.org/10.18632/aging.101651
[16] Wu, D., Ren, P., Zheng, Y., et al. (2017) NLRP3 (Nucleotide Oli-gomerization Domain-Like Receptor Family, Pyrin Domain Containing 3)-Caspase-1 Inflammasome Degrades Contrac-tile Proteins: Implications for Aortic Biomechanical Dysfunction and Aneurysm and Dissection Formation. Arterioscle-rosis Thrombosis and Vascular Biology, 37, 694-706.
https://doi.org/10.1161/ATVBAHA.116.307648
[17] Zhang, L., Liao, M.F., Tian, L., et al. (2011) Overexpression of Interleukin-1β and Interferon-γ in Type I Thoracic Aortic Dissections and Ascending Thoracic Aortic Aneurysms: Possible Correlation with Matrix Metalloproteinase-9 Expression and Apoptosis of Aortic Media Cells. European Jour-nal of Cardio-Thoracic Surgery, 40, 17-22.
https://doi.org/10.1016/j.ejcts.2010.09.019
[18] Xiao, T., Zhang, L., Huang, Y., et al. (2019) Sestrin2 Increases in Aortas and Plasma from Aortic Dissection Patients and Alleviates Angiotensin II-Induced Smooth Muscle Cell Apopto-sis via the Nrf2 Pathway. Life Sciences, 218, 132- 138.
https://doi.org/10.1016/j.lfs.2018.12.043
[19] Lu, H.-Y., Hsu, H.-L., Li, C.-H., et al. (2021) Hydrogen Sulfide Attenuates Aortic Remodeling in Aortic Dissection Associating with Moderated Inflammation and Oxidative Stress through a NO-Dependent Pathway. Antioxidants, 10, Article No. 682.
https://doi.org/10.3390/antiox10050682
[20] Salmon, M., Gomez, D., Greene, E., et al. (2012) Cooperative Bind-ing of KLF4, pELK-1, and HDAC2 to a G/C Repressor Element in the SM22alpha Promoter Mediates Transcriptional Silencing during SMC Phenotypic Switching in Vivo. Circulation Research, 111, 685-696.
https://doi.org/10.1161/CIRCRESAHA.112.269811
[21] Zhang, J., Liu, F., He, Y.-B., et al. (2020) Polycystin-1 Downregulation Induced Vascular Smooth Muscle Cells Phenotypic Alteration and Extracellular Matrix Remodeling in Thoracic Aortic Dissection. Frontiers in Physiology, 11, Article ID: 548055.
https://doi.org/10.3389/fphys.2020.548055
[22] Chen, X., Li, J., Kang, R., et al. (2021) Ferroptosis: Machinery and Regulation. Autophagy, 17, 2054-2081.
https://doi.org/10.1080/15548627.2020.1810918
[23] Shimizu, K., Mitchell, R.N. and Libby, P. (2006) Inflamma-tion and Cellular Immune Responses in Abdominal Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Bi-ology, 26, 987-994.
https://doi.org/10.1161/01.ATV.0000214999.12921.4f
[24] Golledge, J., Tsao, P.S., Dalman, R.L., et al. (2008) Circulating Markers of Abdominal Aortic Aneurysm Presence and Progression. Circulation, 118, 2382-2392.
https://doi.org/10.1161/CIRCULATIONAHA.108.802074
[25] Guo, L.L., Wu, M.T., Zhang, L.W., et al. (2020) Blocking Interleukin-1 Beta Reduces the Evolution of Thoracic Aortic Dissection in a Rodent Model. European Journal of Vascular and Endovascular Surgery, 60, 916-924.
https://doi.org/10.1016/j.ejvs.2020.08.032
[26] Jiang, Y.F., Guo, L.L., Zhang, L.W., et al. (2019) Local Upregula-tion of Interleukin-1 Beta in Aortic Dissecting Aneurysm: Correlation with Matrix Metalloproteinase-2,9 Expression and Biomechanical Decrease. Interdisciplinary CardioVascular and Thoracic Surgery, 28, 344-352.
https://doi.org/10.1093/icvts/ivy256
[27] Xu, C., Sun, S., Johnson, T., et al. (2021) The Glutathione Peroxidase Gpx4 Prevents Lipid Peroxidation and Ferroptosis to Sustain Treg Cell Activation and Suppression of Antitumor Im-munity. Cell Reports, 35, Article ID: 109235.
https://doi.org/10.1016/j.celrep.2021.109235
[28] Yuan, S.M. (2019) Profiles and Predictive Values of Interleu-kin-6 in Aortic Dissection: A Review. Brazilian Journal of Cardiovascular Surgery, 34, 596-604.
https://doi.org/10.21470/1678-9741-2018-0287
[29] Zhang, Z., Tang, J., Song, J., et al. (2022) Elabela Alleviates Ferroptosis, Myocardial Remodeling, Fibrosis and Heart Dysfunction in Hypertensive Mice by Modulating the IL-6/STAT3/GPX4 Signaling. Free Radical Biology and Medicine, 181, 130-142.
https://doi.org/10.1016/j.freeradbiomed.2022.01.020
[30] Gao, M., Monian, P., Quadri, N., et al. (2015) Glutami-nolysis and Transferrin Regulate Ferroptosis. Molecular Cell, 59, 298-308.
https://doi.org/10.1016/j.molcel.2015.06.011
[31] Yang, W.S. and Stockwell, B.R. (2008) Synthetic Lethal Screening Identifies Compounds Activating Iron-Dependent, Nonapoptotic Cell Death in Oncogenic-RAS-Harboring Cancer Cells. Chemistry & Biology, 15, 234-245.
https://doi.org/10.1016/j.chembiol.2008.02.010
[32] Zhong, X., Wu, Q., Wang, Z., et al. (2022) Iron Deficiency Exacerbates Aortic Medial Degeneration by Inducing Excessive Mitochondrial Fission. Food & Function, 13, 7666-7683.
https://doi.org/10.1039/D2FO01084D
[33] Li, B., Wang, Z., Hong, J., et al. (2021) Iron Deficiency Promotes Aor-tic Medial Degeneration via Destructing Cytoskeleton of Vascular Smooth Muscle Cells. Clinical and Translational Medicine, 11, e276.
https://doi.org/10.1002/ctm2.276
[34] Hua, H., Kong, Q., Zhang, H., et al. (2019) Targeting mTOR for Cancer Therapy. Journal of Hematology Oncology, 12, Article No. 71.
https://doi.org/10.1186/s13045-019-0754-1
[35] Hayashi-Hori, M., Aoki, H., Matsukuma, M., et al. (2020) Ther-apeutic Effect of Rapamycin on Aortic Dissection in Mice. International Journal of Molecular Sciences, 21, 3341.
https://doi.org/10.3390/ijms21093341
[36] Li, G., Wang, M., Caulk, A.W., et al. (2020) Chronic mTOR Activation Induces a Degradative Smooth Muscle Cell Phenotype. Journal of Clinical Investigation, 130, 1233-1251.
https://doi.org/10.1172/JCI131048
[37] Zhou, B., Li, W., Zhao, G., et al. (2019) Rapamycin Prevents Thoracic Aortic Aneurysm and Dissection in Mice. Journal of Vascular Surgery, 69, 921-932.e3.
https://doi.org/10.1016/j.jvs.2018.05.246
[38] He, C., Jiang, B., Wang, M., et al. (2022) mTOR Inhibition Prevents Angiotensin II-Induced Aortic Rupture and Pseudoaneurysm but Promotes Dissection in Apoe-Deficient Mice. JCI In-sight, 7, e155815.
https://doi.org/10.1172/jci.insight.155815
[39] Han, D., Jiang, L., Gu, X., et al. (2020) SIRT3 Deficiency Is Re-sistant to Autophagy-Dependent Ferroptosis by Inhibiting the AMPK/mTOR Pathway and Promoting GPX4 Levels. Journal of Cellular Physiology, 235, 8839-8851.
https://doi.org/10.1002/jcp.29727
[40] Zhang, Z., Zhu, H., Zhao, C., et al. (2023) DDIT4 Promotes Malignancy of Head and Neck Squamous Cell Carcinoma. Molecular Carcinogenesis, 62, 332-347.
https://doi.org/10.1002/mc.23489
[41] Luo, T., Chen, S.S., Ruan, Y., et al. (2023) Downregulation of DDIT4 Ameliorates Abnormal Behaviors in Autism by Inhibiting Ferroptosis via the PI3K/Akt Pathway. Biochemical and Bio-physical Research Communications, 641, 168-176.
https://doi.org/10.1016/j.bbrc.2022.12.032
[42] Yao, F., Deng, Y., Zhao, Y., et al. (2021) A Targetable LIFR-NF-κB-LCN2 Axis Controls Liver Tumorigenesis and Vulnerability to Ferroptosis. Nature Communications, 12, Article No. 7333.
https://doi.org/10.1038/s41467-021-27452-9
[43] Song, E., Jahng, J.W., Chong, L.P., et al. (2017) Lipocalin-2 Induces NLRP3 Inflammasome Activation via HMGB1 Induced TLR4 Signaling in Heart Tissue of Mice under Pressure Overload Challenge. American Journal of Translational Research, 9, 2723-2735.