胰岛素瘤相关研究进展
Research Progress of Insulinoma
DOI: 10.12677/ACM.2023.1351030, PDF, HTML, XML, 下载: 212  浏览: 383 
作者: 刘芸廷, 李 钶*:重庆医科大学附属第二医院内分泌代谢病科,重庆
关键词: 胰岛素瘤发病机制影像学药物治疗Insulinoma Pathogenesis Imaging Drug Therapy
摘要: 胰岛素瘤(insulinoma)是一种以低血糖为临床表现的肿瘤。随着近年影像学、核医学等学科发展,胰岛素瘤检出率、确诊率逐渐升高。目前细胞毒性化疗、靶向治疗、肽受体放射性核素治疗(PRRT)等最新治疗手段提高了胰岛素瘤临床治愈率。本文就胰岛素瘤发病机制、诊疗方法等方面最新进展进行综述。
Abstract: Insulinoma is a type of tumor in which hypoglycemia is the clinical manifestation. With the devel-opment of imaging, nuclear medicine and other disciplines, the detection rate and diagnosis rate of insulinoma have gradually increased. At present, cytotoxic chemotherapy, targeted therapy and peptide receptor radionuclide therapy (PRRT) have improved the clinical cure rate of insulinoma. This article reviews the latest progress in the pathogenesis, diagnosis and treatment of insulinoma.
文章引用:刘芸廷, 李钶. 胰岛素瘤相关研究进展[J]. 临床医学进展, 2023, 13(5): 7378-7385. https://doi.org/10.12677/ACM.2023.1351030

1. 引言

胰岛素瘤(insulinoma)即胰岛β细胞肿瘤,是以β细胞为主的最常见的胰腺内分泌肿瘤(pNETs)。胰腺内分泌肿瘤根据是否分泌激素及产生相应效应,分为非功能性肿瘤(NF-pNETs)及功能性肿瘤(F-pNETs)。胰岛素瘤是发病率最高的F-pNETs之一,其年发病率为1~4/百万 [1] ,多见于青中年,女性较男性常见,女性发病率约占60%左右 [2] 。胰岛素瘤有三个90%,即90%为良性、90%为单发、90%肿瘤生长于胰腺内,常见于胰头、体、尾,其发病率均为33%。因β细胞过度、不适当分泌胰岛素,该病临床常表现为Whipple三联征 [2] 。胰岛素瘤多为散发性,但也可见于各种遗传性疾病,如MEN1、VHL等。本文主要探讨散发性胰岛素瘤,从其发病机制、诊断、治疗、预后等方面进行综述。

2. 发病机制

2.1. 胰岛素瘤相关LOH改变

杂合缺失(LOH)常与肿瘤抑制基因相关,当一个等位基因异常或缺失时,其相关基因功能缺失,常丧失肿瘤抑制功能,从而导致肿瘤发生。相关研究表明 [3] [4] 22q LOH在胰岛素瘤中最常见。蒋卫君对40例胰岛素瘤组织标本(32例为良性,8例为恶性)进行PCR,研究发现22q13.3 LOH可能与恶性胰岛素瘤相关 [5] 。11q LOH、9q扩增 [6] 、1q LOH也与胰岛素瘤发病密不可分。

2.2. MEN1基因

MEN1基因位于11q13染色体上,是目前公认研究较为详细的与胰岛素瘤发病相关的抑癌基因。Menin以核蛋白形式与其他蛋白相结合,在细胞周期调节、基因表达、DNA修复等方面具有多种功能 [7] 。Bertolino等 [8] 发现特异性敲除β细胞MEN1基因的小鼠胰岛随月龄增大而增大,第10月时,小鼠发生胰岛素瘤概率为100%。国内在3例确诊散发性胰岛素瘤患者瘤体标本外显子测序发现了均有MEN1基因突变 [9] 。蒋卫君 [5] 在40例胰岛素瘤中发现40%肿瘤发生MEN1 LOH。以上研究提示胰岛素瘤发生机制可能与MEN1基因表达异常密切相关。

2.3. IGF2基因

IGF2 (insulin-like growth factor 2)即胰岛素样生长因子2,在细胞增殖分化、凋亡、转化等方面具有重要作用。有关学者 [10] 对62例胰腺或小肠内分泌肿瘤患者分析发现,IGF2差异甲基化区域(differentiallymethylated region 2, DMR2)高甲基化是胰岛素瘤特异事件,DMR2高甲基化可导致IGF2印记丢失及IGF2高表达。研究证实 [11] 人胰岛素瘤体IGF2 mRNA及IGF2蛋白表达水平较瘤旁组织高,且发现过表达IGF2质粒后可促Bcl-2增加及Bax减少,从而进一步证实了高表达IGF2可能使胰岛素瘤体细胞获得抗凋亡能力。

2.4. DAXX/ATRX基因

死亡结构域相关蛋白(death-domain-associated protein, DAXX)/ATRX(alpha thalassemia/mental retardation syndrome X-linked)基因复合体突变导致缺陷DNA修复过程异常,且导致染色体有丝分裂变异,从而发生细胞异常增殖。DAXX/ATRX基因突变在胰岛素瘤中频率较低,一例纳入39例胰岛素瘤研究 [12] 中仅1例(2.5%)发生ATRX突变,而未检出DAXX突变。Hong等人发现,发生DAXX/ATRX突变的胰岛素瘤更容易同步远处转移,但异时性远处转移两者发生率无显著差异 [13] 。DAXX/ATRX基因突变也与病程前2年高复发风险相关 [13] 。

2.5. mTOR信号通路相关基因

哺乳动物雷帕霉素靶蛋白(mTOR)是一类丝/苏氨酸激酶,其可调节多种癌基因、抑癌基因,从而调节细胞生长、凋亡、自噬等。该信号通路可参与胰岛β细胞生长、凋亡 [14] 。YY1基因为mTOR通路靶基因,Cao等 [12] 检测39例胰岛素瘤发现,30% (34/113)胰岛素瘤有YY1基因突变,其中YY1 T372R突变为唯一突变,该突变与胰岛素瘤恶变相关。

2.6. F2R基因

凝血因子II凝血酶受体(coagulation factor II receptor, F2R)又称蛋白酶激活受体1 (protease activated receptor, PAR1)是G蛋白偶联受体。众所周知,凝血级联反应与肿瘤之间有着密不可分的关系,血管形成是肿瘤进展不可或缺的步骤。Zhou [15] 等在文章中指出,F2R在胰岛素瘤中过表达,Yin等 [16] 指出F2R可通过诱导血管内皮生长因子(vascular endothlial growth factor, VEGF)表达,显著增加了肿瘤血管生成及瘤体生长。F2R还可参与信号转导,引发炎症,导致内皮屏障破坏,均有助于肿瘤发展 [17] 。Kreutter G [18] 等通过实验证明,F2R表达增加可促进胰岛β细胞增殖及胰岛素释放。

2.7. CXCL12基因

趋化因子CXC配体12 (CXCL12)即基质细胞衍生因子1 (stromal cell-derived factor-1, SDF-1),属于CXC趋化因子家族,有SDF-1α和SDF-1β两种亚型 [19] 。CXCL12与受体CXCR4结合,通过G蛋白偶联受体途径发挥生理作用。研究表明,CXCL12及其受体CXCR4参与前列腺癌 [20] 胰腺癌 [21] 、卵巢癌 [22] 、胃癌 [23] 等恶性肿瘤发生与发展。Aysegul IIhan等人 [24] 发现,与正常胰岛细胞相比,CXCL12在胰岛素瘤细胞及人胰岛素瘤组织中高表达。稳定转染人CXCL12的大鼠Rin-5F胰岛素瘤细胞可形成细胞集落,且转染型集落大小为假转染型集落大小两倍,提示CXCL12基因可能与胰岛素瘤发病相关。

2.8. GATA6基因

GATA6 (GATA binding protein 6)作为GATA锌指转录因子家族成员,与GATA4、GATA5共同控制胚胎期内胚层、中胚层细胞分化,参与心、胰腺、肝、胃肠等器官发生 [25] 。研究表明,GATA6表达于胰腺内分泌细胞。魏美林等人 [26] 发现GATA6在胰岛素瘤中高表达,通过减少胰岛素瘤细胞内活性氧(ROS)产生,降低Bax/Bcl-2比例,使胰岛素瘤细胞抗凋亡能力增加。

2.9. Robo2基因

Robo2 (roundabout2)蛋白由Robo2基因编码而成,为Robo受体家族成员。该家族是一类保守的跨膜受体蛋白,由Robo1、Robo2、Robo3、Robo4 4种亚型组成。Robo2在膈肌、心脏、乳腺、肾脏等器官发育中起重要作用 [27] [28] [29] [30] 。Sophie Escott等人 [31] 发现,Robo2通过调节Tead转录因子从而调控胰腺祖细胞。而Robo受体是β细胞中内分泌细胞分选及胰岛结构成熟必备条件。敲低小鼠胚胎中的Robo1、Robo2可使胰腺体积缩小、发育不良 [32] 。Iacovos P. Michael发现,miR-137在高侵入性pNETs中高表达,其发挥刺激肿瘤生长及局部侵犯作用,Robo2即该miRNA候选靶基因 [33] 。Zhou [15] 等人对胰岛素瘤上调差异表达基因(differentially expressed genes, DEGs)进行排序,发现Robo2基因位于第二位。综上,Robo2可能通过miR-137发挥促胰岛素瘤生长及侵犯作用。

3. 诊断

胰岛素瘤诊断主要有生化定性及影像定位诊断。

3.1. 生化诊断

胰岛素瘤常有Whipple三联征,且低血糖发作时体内胰岛素、C肽同步升高,胰岛素释放指数(IRI/G)常 > 0.3 [34] 。目前来说72小时饥饿实验为胰岛素瘤诊断金标准 [35] 。有关研究 [36] 行48小时禁食实验,每6小时监测一次患者体内胰岛素及C肽含量,确诊阳性率大于97%,故该实验认为48小时禁食实验足以诊断胰岛素瘤。

3.2. 影像学定位

常规影像学方法包括经腹超声、CT、MRI等。其中经腹超声受医生水平、肥胖、肠气等影响,平均灵敏度32.6% [37] 。计算机断层扫描可监测出70%~80%瘤体。MRI敏感性为35%~63% [38] 。增强CT、MRI为临床术前手术定位及明确肿瘤有无转移常用手段,且MRI在明确有无肝转移方面较CT敏感。当术前非侵入性检查定位失败时,可考虑选择性动脉钙刺激静脉采血(ASVS),其敏感性为62.5%~100% [37] 。超声内镜(EUS)灵敏度较高,为82%~93% [39] ,且EUS联合细针穿刺活检有助于确诊、定位隐匿病变。

近来,核医学技术发展迅速,许多新兴分子成像技术应用于临床诊断。生长抑素受体显像(SRS)利用生长抑素受体高亲和力结合生长抑素合成类似物,常用于pNET定位。但胰岛素瘤中仅40%~50%表达生长抑素受体2 (somatostatin receptor 2, SSTR2),因此SRS敏感性仅有25% [40] 。90%以上胰岛素瘤均表达GLP-1受体,受体密度为正常胰岛β细胞6~12倍 [41] 。基于上述理论基础,68Ga-Exendin-4 PET/CT用于检测胰岛素瘤,其灵敏度为97.7% [42] 。但因恶性胰岛素瘤GLP-1R表达率仅36% [43] ,故10%胰岛素瘤中恶性肿瘤患者应用此检查手段准确性会降低。

4. 治疗

手术切除仍是目前治愈该病唯一有效手段,治愈率 > 95% [44] 。保留器官功能的胰腺部分切除术是胰岛素瘤标准术式,且不需清扫淋巴结 [45] 。对于恶性或难治复发性胰岛素瘤应积极采取手术切除,可联合化学栓塞(TACE)、放射栓塞(SIRT)、射频消融(RFA)、高强度聚焦超声(HIFU)、全身药物治疗等以提高患者生存率 [46] 。

用177-Lutetium标记生长抑素类似物(somatostatin analogues, SSAs)进行肽受体放射性核素疗法(PRRT)可缓解SSTR2阳性的难治性胰岛素瘤患者临床症状 [47] 。

全身药物治疗常用于术前血糖控制及手术无法治愈患者。

二氮嗪为K-ATP通道开放剂,可刺激α-肾上腺素能受体从而直接抑制β细胞释放胰岛素;它还可能通过抑制cAMP,使其浓度升高及增强糖原分解。该类药物常作为胰岛素瘤一线用药 [48] ,在良性胰岛素瘤中有效率为50%~60% [49] 。但二氮嗪可致水钠潴留、恶心、多毛等,可能需要与利尿剂结合使用,使用时应注意上述不良反应。

患者二氮嗪不耐受时,生长抑素类似物也可用于胰岛素瘤治疗。其可特异性结合SSTR2从而抑制胰岛素异常分泌从而达到缓解症状的目的。但因其也可抑制胰高血糖素、生长激素等升糖激素分泌,故有时可引发严重低血糖 [50] 。胰岛素瘤SSTR2表达较低,故此类药物仅对40%~60%患者有效 [51] 。一项研究表明,与奥曲肽相比,兰曲肽能更好地控制低血糖 [52] 。我国胰腺神经内分泌肿瘤诊疗指南认为,对于G1级和Ki67 < 10%的pNETs,若其SRI阳性,SSAs可作为一线诊疗方案 [53] 。SSAs常见不良反应主要有腹痛、腹泻、胆石症、胃肠胀气等。

糖皮质激素通过糖异生及增加体内胰岛素抵抗,可一定程度缓解低血糖症状 [54] 。胰高血糖素可提高体内血糖水平,但同时也可刺激胰岛素分泌,故需权衡利弊使用此药 [55] 。

链脲佐菌素(STZ)、5-氟尿嘧啶(5-FU)、阿霉素等细胞毒性药物可运用于晚期转移性胰岛素瘤。全身化疗适应症包括胰岛素瘤Ki67值 > 10%、使用SSAs治疗期间病情进展、症状恶化等。ENETS指南指出标准化疗方案阿霉素联合STZ可致60%以上患者肿瘤减小,低血糖症状缓解时间延长至1.5年 [46] 。在两项随机对照研究中,STZ、阿霉素联合使用时疾病缓解率约在22%~33% [56] 。50%使用5-FU联合STZ治疗患者出现了3~4级细胞毒性,甚至5%病例出现中毒死亡 [57] 。ECOG进行的一项前瞻性随机2期临床试验中对比单独使用替莫唑胺和替莫唑胺联合卡培他滨疗效,发现卡培他滨联合替莫唑胺可显著改善无进展生存时间(progression free survival, PFS)和总生存期(overall survival, OS),且副作用较5-FU联合STZ小 [58] 。

目前靶向治疗也应用于胰岛素瘤治疗中。雷帕霉素(mTOR)抑制剂依维莫司可抑制肿瘤血管生成、细胞增殖。国外随机对照临床试验中表明,依维莫司显著延长了晚期进展性pNETs患者PFS [59] 。酪氨酸激酶抑制剂舒尼替尼可抑制血管内皮生长因子受体(VEFGR)及血小板衍生生长因子受体(PDGFR),从而抑制肿瘤生长。一项随机、双盲第3阶段临床试验表明,舒尼替尼不仅显著延长恶性胰岛素瘤患者无进展生存期,还提高了总体生存期 [60] 。上述两种药物均可用于晚期转移性胰岛素瘤治疗。

5. 预后

87.5%的患者手术切除后低血糖症状消失,10年生存率为88% [2] [61] 。研究表明,恶性胰岛素瘤10年生存率为29%,且初次手术复发概率高 [2] 。所有胰岛素瘤均有恶性潜能,故患者均应随访。随访内容主要包括血糖、血清胰岛素、血清C肽、腹部B超、腹部MR等指标。

6. 结论

随着68Ga-Exendin-4 PET/CT、ASVS等检查手段发展,人们对胰岛素瘤认识得越来越充分,该病也由既往的罕见病转变为少见病。对于恶性胰岛素瘤和难治性复发性胰岛素瘤,可以使用依莫司维、舒尼替尼等靶向药物,一定程度上可延长患者生存期。目前胰岛素瘤发病机制尚不完全明确,故仍需进一步研究,便于更好地诊断治疗该病。

参考文献

[1] Okabayashi, T., Shima, Y., Sumiyoshi, T., et al. (2013) Diagnosis and Management of Insulinoma. World Journal of Gastroenterology, 19, 829-837.
https://doi.org/10.3748/wjg.v19.i6.829
[2] Service, F.J., McMahon, M.M., O’Brien, P.C. and Ballard, D.J. (1991) Functioning Insulinoma—Incidence, Recurrence, and Long-Term Survival of Pa-tients: A 60-Year Study. Mayo Clinic Proceedings, 66, 711-719.
https://doi.org/10.1016/S0025-6196(12)62083-7
[3] Wild, A., Langer, P., Ramaswamy, A., Chaloupka, B. and Bartsch, D.K. (2001) A Novel Insulinoma Tumor Suppressor Gene Locus on Chromosome 22q with Potential Prognos-tic Implications. The Journal of Clinical Endocrinology & Metabolism, 86, 5782-5787.
https://doi.org/10.1210/jcem.86.12.8089
[4] Jiang, W.J., Liu, T.H., Chen, J., Gao, J., Wu, S.F. and Chen, Y.J. (2004) Frequent Loss of Heterozygosity at MEN-1 gene and Chromosome 22q in Insulinomas and Its Significance. Chi-nese Medical Journal, 84, 1705-1709.
[5] 蒋卫君, 刘彤华, 陈杰, 等. 胰岛素瘤频发MEN-1抑癌基因及22q的杂合缺失及其意义[J]. 中华医学杂志, 2004(20): 37-41.
[6] Jonkers, Y.M., Claessen, S.M., Feuth, T., et al. (2006) Novel Candidate Tumour Suppressor Gene Loci on Chromosomes 11q23-24 and 22q13 Involved in Human Insulinoma Tumourigenesis. The Journal of Pathology, 210, 450-458.
https://doi.org/10.1002/path.2072
[7] Li, J.W.Y., Hua, X., Reidy-Lagunes, D. and Untch, B.R. (2018) MENIN Loss as a Tissue-Specific Driver of Tumorigenesis. Molecular and Cellular Endocrinology, 469, 98-106.
https://doi.org/10.1016/j.mce.2017.09.032
[8] Bertolino, P., Tong, W.M., Herrera, P.L., Casse, H., Zhang, C.X. and Wang, Z.Q. (2003) Pancreatic Beta-Cell-Specific Ablation of the Multiple Endocrine Neoplasia Type 1 (MEN1) Gene Causes Full Penetrance of Insulinoma Development in Mice. Cancer Research, 63, 4836-4841.
[9] 段佳悦. 通过外显子组基因测序发现2个MEN1基因突变可导致散发性胰岛素细胞瘤[D]: [硕士学位论文]. 石家庄: 河北医科大学, 2018.
[10] Dejeux, E., Olaso, R., Dousset, B., et al. (2009) Hypermethylation of the IGF2 Differentially Methylated Region 2 Is a Specific Event in Insulinomas Leading to Loss-of-Imprinting and Overexpression. Endo-crine-Related Cancer, 16, 939-952.
https://doi.org/10.1677/ERC-08-0331
[11] 李旭. 胰岛素瘤定性诊断及IGF2在其发病中的作用研究[D]: [硕士学位论文]. 上海: 上海交通大学, 2017.
[12] Cao, Y., Gao, Z., Li, L., et al. (2013) Whole Exome Sequencing of Insulinoma Reveals Recurrent T372R Mutations in YY1. Nature Communications, 4, Arti-cle No. 2810.
https://doi.org/10.1038/ncomms3810
[13] Hong, X., Qiao, S., Li, F., et al. (2020) Whole-Genome Sequencing Reveals Distinct Genetic Bases for Insulinomas and Non-Functional Pancreatic Neuroendocrine Tumours: Leading to a New Classification System. Gut, 69, 877-887.
https://doi.org/10.1136/gutjnl-2018-317233
[14] Tuttle, R.L., Gill, N.S., Pugh, W., et al. (2001) Regulation of Pancreatic Beta-Cell Growth and Survival by the Serine/Threonine Protein Kinase Akt1/PKBalpha. Nature Medicine, 7, 1133-1137.
https://doi.org/10.1038/nm1001-1133
[15] Zhou, W., Gong, L., Li, X., et al. (2018) Screening Key Candidate Genes and Pathways Involved in Insulinoma by Microarray Analysis. Medicine (Baltimore), 97, e10826.
https://doi.org/10.1097/MD.0000000000010826
[16] Yin, Y.J., Salah, Z., Maoz, M., et al. (2003) Oncogenic Transformation Induces Tumor Angiogenesis: A Role for PAR1 Activation. FASEB Journal, 17, 163-174.
https://doi.org/10.1096/fj.02-0316com
[17] Wojtukiewicz, M.Z., Hempel, D., Sierko, E., Tucker, S.C. and Honn, K.V. (2019) Endothelial Protein C Receptor (EPCR), Protease Activated Receptor-1 (PAR-1) and Their Interplay in Cancer Growth and Metastatic Dissemination. Cancers (Basel), 11, Article No. 51.
https://doi.org/10.3390/cancers11010051
[18] Kreutter, G., Kassem, M., El Habhab, A., et al. (2017) Endothelial Microparticles Released by Activated Protein C Protect Beta Cells through EPCR/PAR1 and Annexin A1/FPR2 Path-ways in Islets. Journal of Cellular and Molecular Medicine, 21, 2759-2772.
https://doi.org/10.1111/jcmm.13191
[19] Yamanaka, Y., Friess, H., Büchler, M., Beger, H.G., Gold, L.I. and Korc, M. (1993) Synthesis and Expression of Transforming Growth Factor beta-1, beta-2, and beta-3 in the Endocrine and Ex-ocrine Pancreas. Diabetes, 42, 746-756.
https://doi.org/10.2337/diab.42.5.746
[20] Heidegger, I., Fotakis, G., Offermann, A., et al. (2022) Comprehensive Characterization of the Prostate Tumor Microenvironment Identifies CXCR4/CXCL12 Crosstalk as a Novel Antiangio-genic Therapeutic Target in Prostate Cancer. Molecular Cancer, 21, Article No. 132.
https://doi.org/10.1186/s12943-022-01597-7
[21] Daniel, S.K., Seo, Y.D. and Pillarisetty, V.G. (2020) The CXCL12-CXCR4/CXCR7 Axis as a Mechanism of Immune Resistance in Gastrointestinal Malignancies. Seminars in Cancer Biology, 65, 176-188.
https://doi.org/10.1016/j.semcancer.2019.12.007
[22] Luo, N., Chen, D.D., Liu, L., Li, L. and Cheng, Z.P. (2019) CXCL12 Promotes Human Ovarian Cancer Cell Invasion through Suppressing ARHGAP10 Expression. Biochemical and Biophysical Research Communications, 518, 416-422.
https://doi.org/10.1016/j.bbrc.2019.07.098
[23] Qin, Y., Wang, F., Ni, H., et al. (2021) Cancer-Associated Fibro-blasts in Gastric Cancer Affect Malignant Progression via the CXCL12-CXCR4 Axis. Journal of Cancer, 12, 3011-3023.
https://doi.org/10.7150/jca.49707
[24] Ilhan, A., Nabokikh, A., Maj, M., et al. (2009) CXCL12/SDF-1 Over-Expression in Human Insulinomas and Its Biological Relevance. Molecular and Cellular Endocrinology, 298, 1-10.
https://doi.org/10.1016/j.mce.2008.10.015
[25] Molkentin, J.D. (2000) The Zinc Finger-Containing Transcription Factors GATA-4, -5, and -6. Ubiquitously Expressed Regulators of Tissue-Specific Gene Expression. Journal of Bio-logical Chemistry, 275, 38949-38952.
https://doi.org/10.1074/jbc.R000029200
[26] 魏美林. Gata6在胰岛素瘤中的作用及机制研究[D]: [硕士学位论文]. 上海: 上海交通大学, 2015.
[27] Gu, M., Guan, J., Zhao, L., Ni, K., Li, X. and Han, Z. (2013) Correlation of ECM1 Expression Level with the Pathogenesis and Metastasis of Laryngeal Carcinoma. International Journal of Clinical and Experimental Pathology, 6, 1132-1137.
[28] Chen, H., Jia, W.D., Li, J.S., et al. (2011) Extracellular Matrix Protein 1, a Novel Prognostic Factor, Is Associated with Metastatic Potential of Hepatocellular Carcinoma. Medical Oncology, 28, S318-S325.
https://doi.org/10.1007/s12032-010-9763-1
[29] Zhang, Y. and Weinberg, R.A. (2018) Epithelial-to-Mesenchymal Transition in Cancer: Complexity and Opportunities. Frontiers in Medicine, 12, 361-373.
https://doi.org/10.1007/s11684-018-0656-6
[30] Thompson, E.W., Newgreen, D.F. and Tarin, D. (2005) Carcino-ma Invasion and Metastasis: A Role for Epithelial-Mesenchymal Transition? Cancer Research, 65, 5991-5995.
https://doi.org/10.1158/0008-5472.CAN-05-0616
[31] Escot, S., Willnow, D., Naumann, H., Di Francescantonio, S. and Spagnoli, F.M. (2018) Robo Signalling Controls Pancreatic Progenitor Identity by Regulating Tead Transcription Factors. Nature Communications, 9, Article No. 5082.
https://doi.org/10.1038/s41467-018-07474-6
[32] Chen, H.T., Liu, H., Mao, M.J., et al. (2019) Crosstalk between Autophagy and Epithelial-Mesenchymal Transition and Its Application in Cancer Therapy. Molecular Cancer, 18, 101.
https://doi.org/10.1186/s12943-019-1030-2
[33] Michael, I.P., Saghafinia, S. and Hanahan, D. (2019) A Set of microRNAs Coordinately Controls Tumorigenesis, Invasion, and Metastasis. Proceedings of the National Academy of Sciences of the United States of America, 116, 24184-24195.
https://doi.org/10.1073/pnas.1913307116
[34] Wei, J., Liu, X., Wu, J., et al. (2016) Diagnosis and Surgical Man-agement of Insulinomas in 33 Consecutive Patients at a Single Institution. Langenbeck’s Archives of Surgery, 401, 1019-1025.
https://doi.org/10.1007/s00423-016-1496-y
[35] Garcia-Carbonero, R., Sorbye, H., Baudin, E., et al. (2016) ENETS Consensus Guidelines for High-Grade Gastroenteropancreatic Neuroendocrine Tumors and Neuroendo-crine Carcinomas. Neuroendocrinology, 103, 186-194.
https://doi.org/10.1159/000443172
[36] Hirshberg, B., Livi, A., Bartlett, D.L., et al. (2000) Forty-Eight-Hour Fast: The Diagnostic Test for Insulinoma. The Journal of Clinical Endocrinology & Metabolism, 85, 3222-3226.
https://doi.org/10.1210/jcem.85.9.6807
[37] Mehrabi, A., Fischer, L., Hafezi, M., et al. (2014) A Systematic Re-view of Localization, Surgical Treatment Options, and Outcome of Insulinoma. Pancreas, 43, 675-686.
https://doi.org/10.1097/MPA.0000000000000110
[38] Antwi, K., Fani, M., Heye, T., et al. (2018) Comparison of Glucagon-Like Peptide-1 Receptor (GLP-1R) PET/CT, SPECT/CT and 3T MRI for the Localisation of Occult Insulino-mas: Evaluation of Diagnostic Accuracy in a Prospective Crossover Imaging Study. European Journal of Nuclear Medi-cine and Molecular Imaging, 45, 2318-2327.
https://doi.org/10.1007/s00259-018-4101-5
[39] ASGE Standards of Practice Committee, Eloubeidi, M.A., Decker, G.A., et al. (2016) The Role of Endoscopy in the Evaluation and Management of Patients with Solid Pancreatic Neoplasia. Gastrointestinal Endoscopy, 83, 17-28.
https://doi.org/10.1016/j.gie.2015.09.009
[40] Sharma, P., Arora, S., Karunanithi, S., et al. (2016) Somatostatin Receptor Based PET/CT Imaging with 68Ga- DOTA-Nal3-Octreotide for Localization of Clinically and Biochemically Suspected Insulinoma. The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 60, 69-76.
[41] 罗亚平, 潘青青, 霍力, 李方. 胰高血糖素样肽-1受体显像定位诊断胰岛素瘤的研究进展[J]. 中国科学: 生命科学, 2021, 51(8): 1072-1084.
[42] Velikyan, I. and Eriksson, O. (2020) Advances in GLP-1 Receptor Targeting Radiolabeled Agent Development and Prospective of Theranostics. Theranostics, 10, 437-461.
https://doi.org/10.7150/thno.38366
[43] Wild, D., Christ, E., Caplin, M.E., et al. (2011) Glucagon-Like Peptide-1 versus Somatostatin Receptor Targeting Reveals 2 Distinct Forms of Malignant Insulinomas. Journal of Nuclear Medi-cine, 52, 1073-1078.
https://doi.org/10.2967/jnumed.110.085142
[44] Ito, T., Igarashi, H. and Jensen, R.T. (2012) Pancreatic Neuroen-docrine Tumors: Clinical Features, Diagnosis and Medical Treatment: Advances. Best Practice & Research Clinical Gas-troenterology, 26, 737-753.
https://doi.org/10.1016/j.bpg.2012.12.003
[45] 韩序, 楼文晖. 胰腺神经内分泌肿瘤的外科决策[J]. 肝胆外科杂志, 2021, 29(3): 168-170.
[46] de Herder, W.W., Niederle, B., Scoazec, J.Y., et al. (2006) Well-Differentiated Pan-creatic Tumor/Carcinoma: Insulinoma. Neuroendocrinology, 84, 183-188.
https://doi.org/10.1159/000098010
[47] Cuccurullo, V., Di Stasio, G.D. and Mansi, L. (2019) Physiopathological Premises to Nuclear Medicine Imaging of Pancreatic Neuroendocrine Tumours. Current Radiopharmaceuticals, 12, 98-106.
https://doi.org/10.2174/1874471012666190206094555
[48] Burr, I.M., Marliss, E.B., Stauffacher, W. and Renold, A.E. (1971) Diazoxide Effects on Biphasic Insulin Release: “Adrenergic” Suppression and Enhancement in the Perifused Rat Pancreas. Journal of Clinical Investigation, 50, 1444-1450.
https://doi.org/10.1172/JCI106628
[49] Niitsu, Y., Minami, I., Izumiyama, H., et al. (2019) Clinical Outcomes of 20 Japanese Patients with Insulinoma Treated with Di-azoxide. Endocrine Journal, 66, 149-155.
https://doi.org/10.1507/endocrj.EJ18-0353
[50] Healy, M.L., Dawson, S.J., Murray, R.M., Zalcberg, J. and Jefford, M. (2007) Severe Hypoglycaemia after Long-Acting Octreotide in a Patient with an Unrecognized Malignant Insulinoma. Internal Medicine Journal, 37, 406-409.
https://doi.org/10.1111/j.1445-5994.2007.01371.x
[51] Mathur, A., Gorden, P. and Libutti, S.K. (2009) Insulinoma. Surgical Clinics of North America, 89, 1105-1121.
https://doi.org/10.1016/j.suc.2009.06.009
[52] Yamaoka, K., Nagashima, S., Okada, N., et al. (2021) A Case of Insulinoma with Hypoglycemia That Was Better Managed with Lanreotide than Octreotide. Clinical Case Reports, 9, e04118.
https://doi.org/10.1002/ccr3.4118
[53] 吴文铭, 陈洁, 白春梅, 等. 中国胰腺神经内分泌肿瘤诊疗指南(2020) [J]. 协和医学杂志, 2021, 12(4): 460-480.
[54] Cryer, P.E., Axelrod, L., Grossman, A.B., et al. (2009) Evaluation and Management of Adult Hypoglycemic Disorders: An Endocrine Society Clinical Practice Guideline. The Journal of Clinical Endocrinology & Metabolism, 94, 709-728.
https://doi.org/10.1210/jc.2008-1410
[55] Habibollahi, P., Bai, H.X., Sanampudi, S., Soulen, M.C. and Dagli, M. (2020) Effectiveness of Liver-Directed Therapy for the Management of Intractable Hypoglycemia in Metastatic Insulino-ma. Pancreas, 49, 763-767.
https://doi.org/10.1097/MPA.0000000000001569
[56] Rougier, P. and Mitry, E. (2000) Chemotherapy in the Treatment of Neuroendocrine Malignant Tumors. Digestion, 62, 73-78.
https://doi.org/10.1159/000051859
[57] Broder, L.E. and Carter, S.K. (1973) Pancreatic Islet Cell Carcinoma. II. Results of Therapy with Streptozotocin in 52 Patients. Annals of Internal Medicine, 79, 108-118.
https://doi.org/10.7326/0003-4819-79-1-108
[58] Cives, M. and Strosberg, J.R. (2018) Gastroenteropancreatic Neuroendocrine Tumors. CA: A Cancer Journal for Clinicians, 68, 471-487.
https://doi.org/10.3322/caac.21493
[59] Yao, J.C., Shah, M.H., Ito, T., et al. (2011) Everolimus for Advanced Pancreatic Neuroendocrine Tumors. The New England Journal of Medicine, 364, 514-523.
https://doi.org/10.1056/NEJMoa1009290
[60] Brown, E., Watkin, D., Evans, J., Yip, V. and Cuthbertson, D.J. (2018) Multidisciplinary Management of Refractory Insulinomas. Clinical Endocrinology (Oxford), 88, 615-624.
https://doi.org/10.1111/cen.13528
[61] Peltola, E., Hannula, P., Huhtala, H., et al. (2021) Long-Term Morbidity and Mortality in Patients Diagnosed with an Insulinoma. European Journal of Endocrinology, 185, 577-586.
https://doi.org/10.1530/EJE-21-0230