基因多态性与他汀类药物疗效相关性研究进展
Gene Polymorphism and Efficacy of Statins Correlation Research Progress
DOI: 10.12677/ACM.2023.134968, PDF, HTML, XML, 下载: 265  浏览: 415  国家自然科学基金支持
作者: 苏比努尔·居热提:新疆医科大学第一附属医院心血管内科,新疆 乌鲁木齐;付真彦*:新疆医科大学第一附属医院心脏中心冠心病二科,新疆 乌鲁木齐
关键词: 基因多态性他汀心血管疾病药物疗效Gene Polymorphism Statins Cardiovascular Disease Drug Efficacy
摘要: 遗传变异导致了个体间药代动力学和药效学差异,这可能会影响对治疗药物的反应。尽管有研究表明几种候选基因与他汀类药物疗效相关,但尚未出现指导他汀类药物治疗的临床相关药物基因组学测试,本文以可能与他汀抵抗相关的基因做一综述。
Abstract: Genetic variation leads to individual differences in pharmacokinetics and pharmacodynamics, which may affect the response to therapeutic drugs. Although some studies have shown that several candidate genes are associated with the efficacy of statins, there are no clinically relevant phar-macogenomic tests that guide the treatment of statins. This article reviews the genes that may be related to statin resistance.
文章引用:苏比努尔·居热提, 付真彦. 基因多态性与他汀类药物疗效相关性研究进展[J]. 临床医学进展, 2023, 13(4): 6911-6916. https://doi.org/10.12677/ACM.2023.134968

1. 引言

心血管疾病(Cardiovascular Disease, CVD)是引起我国人群死亡的最主要原因,其死亡人数约占总死亡人群的40% [1] 。血脂异常与动脉粥样硬化在心血管疾病的发生发展中起着至关重要的作用。动脉粥样硬化是血管内粥样斑块形成为特征的一种慢性炎症性血管疾病,其发病机制目前形成了脂质浸润和氧化应激等多种学说。由于内皮屏障功能受损,LDL-C沉积在动脉壁上,并被细胞外基质大分子保留在内膜内,随后单核细胞迁入内膜,氧化型低密度脂蛋白(Ox-LDL)与巨噬细胞的清道夫受体结合而被摄取,形成泡沫细胞,平滑肌细胞增殖,激活血管炎症并形成脂质核心 [2] [3] 。高脂血症患者血粘度更高,血流缓慢,血液中的脂质容易沉积于血管壁导致动脉粥样斑块的发生。动脉多年累积暴露于LDL-C是疾病发生和发展的主要决定因素 [4] ,家族性高胆固醇血症患者在早期达到LDL-C负担阈值,并过早发展为动脉粥样硬化性心血管疾病,这一观察结果支持LDL-C在动脉粥样硬化中的因果作用 [5] 。低密度脂蛋白胆固醇(LDL-C)是动脉粥样硬化的独立危险因素,而他汀类药物可以有效降低血浆LDL-C。大量研究表明,LDL-C降低1 mmol/L,心血管风险就会降低20% [6] [7] 。他汀类药物治疗可以有效降低发病率的同时还能降低死亡率,因此在CVD一级和二级预防中运用非常广泛。然而在临床应用中,他汀类药物在疗效和安全性方面表现出巨大的个体差异,其中一些与遗传因素有关 [8] 。

2. 他汀类药物作用机制

他汀类药物一方面通过抑制肝脏细胞内胆固醇合成的限速酶,即3-羟基-3-甲基戊二酰辅酶A还原酶(HMGCR),来限制肝内胆固醇的生物合成 [9] ,随后,血液到肝脏的胆固醇运输增加,由此血液中胆固醇浓度的减少减缓了动脉粥样硬化的进展。另一方面他汀类药物通过抑制脂质HMGCR而减少甲基戊酸的合成,血浆低密度脂蛋白胆固醇受体(low density lipoprotein, LDLR)的表达升高,从而肝细胞对血液内LDL的吸收增加 [10] [11] [12] 。

他汀类药物疗效通过LDL-C的降低来量化,而服用他汀类药物降脂治疗的患者LDL-C下降率在25%~50%之间变化 [13] [14] ,尽管他汀类药物的临床疗效已在大型随机对照实验中得到证实 [7] ,但遗传因素导致部分患者即使在多次调整药物计量后仍然无法实现胆固醇水平的充分降低 [15] 。由于个体间遗传变异,导致人群对他汀类药物无反应或疗效不佳有关。

3. 基因多态性与药物作用疗效

运用药物基因组学的方法,通过研究参与药物吸收、转运、代谢以及排泄相关基因对他汀类药物疗效的影响,从而寻找可以评价他汀类药物疗效的基因靶点,将其应用到临床上,可以为个体化治疗和精准医疗提供理论依据。

3.1. 他汀类药物疗效与HMGCR基因多态性

HMGCR对他汀类药物药效学至关重要,研究表明HMGCR单倍型7 (H7)由rs17244841、rs3846662和rs17238540三个单核苷酸多态性(SNP)位点编码,其携带者对他汀类药物的敏感性低 [16] [17] 。Alejandro等人研究显示 [18] ,在智利人群中HMGCR rs17671591多态性与阿托伐他汀治疗后血浆低密度脂蛋白胆固醇显著降低,高密度脂蛋白胆固醇浓度升高有相关性。Ruth 等人 [19] 纳入100名西班牙人群的随机对照研究显示,HMGCR c.1564-106A > G与他汀类药物疗效降低有相关性。HMGCR c.1564-106A > G变体通过影响剪接,导师模板RNA中缺乏外显子13,相应的缺陷蛋白很难与他汀类药物结合,从而阻碍他汀类药物的降脂作用 [20] 。综上所述,影响HMGCR活性的变体必然会影响他汀类药物疗效。

3.2. 他汀类药物疗效与SLCO1B1基因多态性

大剂量他汀类药物会增加其不良作用的发生,如横纹肌溶解、肝功能障碍、肌病等 [21] 。尽管他汀类药物可以有效降低CVD风险,但由于其毒副作用的发生,患者往往自行停药,因此影响他汀类药物的疗效。SLCO1B1位于12号染色体,包含14个外显子,该基因编码有机阴离子转运蛋白家族的肝脏特异性成员,是一种跨膜蛋白,介导多种内源性化合物的摄取。研究表明,SLCO1B1 c.521T > C多态性与他汀类药物引起的横纹肌溶解和肌病最相关 [22] [23] 。在治疗这类患者时,应考虑到这种风险。综上所述,他汀类药物疗效和毒副作用与遗传多态性存在关联,SLCO1B1基因检测运用到临床工作中,作为评价他汀类药物安全性的遗传标记,为患者提供安全有效的降脂方案,增加患者的依从性的同时可减少停药率。

3.3. 他汀类药物药效与APOE基因多态性

载脂蛋白E(APOE)是乳糜微粒、极低密度脂蛋白和高密度脂蛋白的主要组成部分,与胆固醇代谢密切相关。APOE位于19号染色体上,含有299个氨基酸,是一种由肝脏合成和分泌的糖基化蛋白。APOE参与脂质分布,并介导乳糜微粒、极低密度脂蛋白和高密度脂蛋白与LDLR的高亲和力结合,导致脂蛋白的吸收和降解,此外减缓了甘油三酯的脂解速率 [24] 。Mega等人研究显示,APOE2 c.526C > T变异携带者对他汀类药物疗效更好。我国刘艳辉等人研究显示 [25] ,APOE4 c.338T > C变异携带者对他汀类药物不敏感,这与高辉等人 [26] 研究结果一致。总而言之,APOE2 c.526C > T变异携带者通过增加脂蛋白与LDLR的结合力,从而增加受体介导的血浆LDL颗粒的内吞作用;APOE4 c.338T > C变异体携带者与其受体的结合力减弱,因此他汀类药物疗效欠 [27] 。

3.4. 他汀类药物疗效与ABC家族

ATP结合盒(ABC)转运蛋白是一种ATP驱动的膜转运蛋白,包括7种不同的亚组ABC1,MDR/TAP,MRP,ALD,OABP,GCN20,White。ABC利用ATP水解释放的能量在膜上转运各种小分子物质,他汀类药物及其代谢产物可通过胆汁和尿液排出,ABCB1将他汀类药物和代谢产物从干细胞运输到胆汁,参与药物的外排 [28] 。

Koya等人研究显示 [29] ,日本人群众ABCB1基因rs2032582位点基因多态性与阿托伐他汀导致的肝脏毒性显著相关(P = 0.00068, OR:2.59 [1.49, 4.50]),G等位基因可能是他汀类药物引起肝脏毒性的风险因素。这可能是由于G等位基因携带者肝细胞流向胆汁的流出活性较低,导致他汀类药物在肝内蓄积,诱导肝毒性。Michel等人研究显示 [30] ,ABCB1基因rs2032582位点CC基因型患者与TT/TC等位基因型相比,阿托伐他汀降脂疗效较低(P = 0.034),而肌病的发生率较低(P = 0.043)。总而言之,ABCB1影响他汀类药物的肠道吸收组织渗透和外排,其基因多态性导致转运蛋白功能受损影响药物疗效的同时还会增加药物副作用的发生率增加。

3.5. 他汀类药物疗效与胆固醇酯转运蛋白(CETP)基因多态性

CETP编码胆固醇酯转移蛋白的合成,胆固醇酯转移蛋白存在于血浆中,其参与胆固醇酯从高密度脂蛋白向其它脂蛋白的转移。CETP位于16号染色体,由17个外显子组成,在脾脏和脂肪组织中高表达。Gu G等人 [31] 研究显示,我国汉族人群CETP c.629C > A多态性与血清胆固醇水平和阿托伐他汀降脂作用相关,CC基因型患者LDL-C和脂蛋白(a)水平更低,表现出较好的降脂作用,这与Gao J等人 [32] 研究结果是一致的。鉴于CETP遗传变异与心血管疾病风险之间的关联,CETP抑制剂问世,但此类药物在临床试验过程中存在争议 [33] 。CETP基因变异会影响他汀类药物疗效,针对他汀不敏感人群选择合适的药物以及这些人群能否在CETP抑制剂中获益,临床上还需要进一步研究。

4. 小结

尽管基因多态性对他汀类药物疗效的影响相关研究很多,除了本文所述的精选基因外,研究者揭示了许多可能影响他汀类药物疗效的候选基因,如(LDLR,PCSK9,LPA,COQ2,CETP,KIF6等),但由于人群个体差异,突变频率不同,至今没有一个基因可以用来评估他汀类药物疗效和安全性,因此急需开发适合中国人群的他汀类药物基因组学生物标志物以预测治疗效果 [34] 。综上所述,编码胆固醇吸收、转运、外排相关的基因变异对他汀类药物的疗效和安全性影响很大。药效学效应可以由药代动力学效应产生,也可以由药理学靶点的变化产生,因此在临床用药过程中,对靶基因进行检测,对不同基因型人群选择合适的药物,使得疾病得到有效控制的同时还能减少社会经济负担。

基金项目

国家自然科学基金(81970380)。

NOTES

*通讯作者。

参考文献

[1] Wang, W., Jiang, B., Sun, H., et al. (2017) Prevalence, Incidence, and Mortality of Stroke in China: Results from a Na-tionwide Population-Based Survey of 480 687 Adults. Circulation, 135, 759-771.
https://doi.org/10.1161/CIRCULATIONAHA.116.025250
[2] Borén, J. and Williams, K.J. (2016) The Central Role of Arterial Retention of Cholesterol-Rich Apolipoprotein-B-Containing Lipoproteins in the Pathogenesis of Athero-sclerosis: A Triumph of Simplicity. Current Opinion in Lipidology, 27, 473-483.
https://doi.org/10.1097/MOL.0000000000000330
[3] Libby, P., Buring, J.E., Badimon, L., et al. (2019) Athero-sclerosis. Nature Reviews Disease Primers, 5, Article No. 56.
https://doi.org/10.1038/s41572-019-0106-z
[4] Ference, B.A., Ginsberg, H.N., Graham, I., et al. (2017) Low-Density Lipoproteins Cause Atherosclerotic Cardiovascular Disease. 1. Evidence from Genetic, Epidemiologic, and Clinical Studies. A Consensus Statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal, 38, 2459-2472.
https://doi.org/10.1093/eurheartj/ehx144
[5] Nordestgaard, B.G., Chapman, M.J., Humphries, S.E., et al. (2013) Familial Hypercholesterolaemia Is Underdiagnosed and Undertreated in the General Population: Guidance for Clinicians to Prevent Coronary Heart Disease: Consensus Statement of the European Atherosclerosis Society. European Heart Journal, 34, 3478-3490.
https://doi.org/10.1093/eurheartj/eht273
[6] Amarenco, P. and Labreuche, J. (2009) Lipid Management in the Pre-vention of Stroke: Review and Updated Meta-Analysis of Statins for Stroke Prevention. The Lancet Neurology, 8, 453-463.
https://doi.org/10.1016/S1474-4422(09)70058-4
[7] Baigent, C., Keech, A., Kearney, P.M., et al. (2005) Efficacy and Safety of Cholesterol-Lowering Treatment: Prospective Meta-Analysis of Data from 90,056 Participants in 14 Ran-domised Trials of Statins. Lancet, 366, 1267-1278.
https://doi.org/10.1016/S0140-6736(05)67394-1
[8] Guan, Z.-W., Wu, K.-R., Li, R., et al. (2019) Pharmaco-genetics of Statins Treatment: Efficacy and Safety. Journal of Clinical Pharmacy and Therapeutics, 44, 858-867.
https://doi.org/10.1111/jcpt.13025
[9] Istvan, E.S. and Deisenhofer, J. (2001) Structural Mechanism for Statin In-hibition of HMG-CoA Reductase. Science, 292, 1160-1164.
https://doi.org/10.1126/science.1059344
[10] Sirtori, C.R. (2014) The Pharmacology of Statins. Pharmacological Research, 88, 3-11.
https://doi.org/10.1016/j.phrs.2014.03.002
[11] Brown, M.S. and Goldstein, J.L. (1997) The SREBP Pathway: Regulation of Cholesterol Metabolism by Proteolysis of a Membrane-Bound Transcription Factor. Cell, 89, 331-340.
https://doi.org/10.1016/S0092-8674(00)80213-5
[12] 任新宇, 周玉杰, 马茜. 他汀类药物作用机制的研究进展[J]. 中国医药, 2016, 11(3): 442-447.
[13] Ridker, P.M., Danielson, E., Fonseca, F.A., et al. (2008) Rosuvastatin to Prevent Vascular Events in Men and Women with Elevated C-Reactive Protein. New England Journal of Medicine, 359, 2195-2207.
https://doi.org/10.1056/NEJMoa0807646
[14] Downs, J.R., Clearfield, M., Weis, S., et al. (1998) Primary Preven-tion of Acute Coronary Events with Lovastatin in Men and Women with Average Cholesterol Levels: Results of AFCAPS/TexCAPS. JAMA, 279, 1615-1622.
https://doi.org/10.1001/jama.279.20.1615
[15] Mangravite, L.M., Thorn, C.F. and Krauss, R.M. (2006) Clinical Implications of Pharmacogenomics of Statin Treatment. The Pharmacogenomics Journal, 6, 360-374.
https://doi.org/10.1038/sj.tpj.6500384
[16] Krauss, R.M., Mangravite, L.M., Smith, J.D., et al. (2008) Variation in the 3-Hydroxyl-3-Methylglutaryl Coenzyme A Reductase Gene Is Associated with Racial Differences in Low-Density Lipoprotein Cholesterol Response to Simvastatin Treatment. Circulation, 117, 1537-1544.
https://doi.org/10.1161/CIRCULATIONAHA.107.708388
[17] Donnelly, L.A., Doney, A.S., Dannfald, J., et al. (2008) A Paucimorphic Variant in the HMG-CoA Reductase Gene Is Associated with Lipid-Lowering Response to Statin Treatment in Diabetes: A GoDARTS Study. Pharmacogenetics and Genomics, 18, 1021-1026.
https://doi.org/10.1097/FPC.0b013e3283106071
[18] Cuevas, A., Fernández, C., Ferrada, L., et al. (2016) HMGCR rs17671591 SNP Determines Lower Plasma LDL-C after Atorvastatin Therapy in Chilean Individuals. Basic & Clinical Pharmacology & Toxicology, 118, 292-297.
https://doi.org/10.1111/bcpt.12493
[19] Cano-Corres, R., Candás-Estébanez, B., Padró-Miquel, A., et al. (2018) Influence of 6 Genetic Variants on the Efficacy of Statins in Patients with Dyslipidemia. Journal of Clinical Laboratory Analysis, 32, e22566.
https://doi.org/10.1002/jcla.22566
[20] Medina, M.W., Gao, F., Ruan, W., Rotter, J.I. and Krauss, R.M. (2008) Alternative Splicing of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Is Associated with Plasma Low-Density Lipoprotein Cholesterol Response to Simvastatin. Circulation, 118, 355-362.
https://doi.org/10.1161/CIRCULATIONAHA.108.773267
[21] Bays, H., Cohen, D.E., Chalasani, N. and Harri-son, S.A. (2014) An Assessment by the Statin Liver Safety Task Force: 2014 Update. Journal of Clinical Lipidology, 8, S47-S57.
https://doi.org/10.1016/j.jacl.2014.02.011
[22] Talameh, J.A. and Kitzmiller, J.P. (2014) Pharmacogenet-ics of Statin-Induced Myopathy: A Focused Review of the Clinical Translation of Pharmacokinetic Genetic Variants. Journal of Pharmacogenomics & Pharmacoproteomics, 5, Article ID: 100012.
https://doi.org/10.4172/2153-0645.1000128
[23] Sivkov, A., Chernus, N., Gorenkov, R., et al. (2021) Relationship between Genetic Polymorphism of Drug Transporters and the Efficacy of Rosuvastatin, atorvastatin and simvastatin in Patients with Hyperlipidemia. Lipids in Health and Disease, 20, Article No. 157.
https://doi.org/10.1186/s12944-021-01586-7
[24] Tudorache, I.F., Trusca, V.G., and Gafencu, A.V. (2017) Apolipoprotein E—A Multifunctional Protein with Implications in Various Pathologies as a Result of Its Structural Fea-tures. Computational and Structural Biotechnology Journal, 15, 359-365.
https://doi.org/10.1016/j.csbj.2017.05.003
[25] 刘艳辉, 董婧, 陆燕, 等. SLCO1B1521 T>C和APOE基因多态性对阿托伐他汀调脂疗效及安全性的影响[J]. 药学实践杂志, 2021, 39(3): 245-248.
[26] 高辉, 王杨, 陈婉婷, 卫波. SLCO1B1和APOE基因多态性与他汀类药物疗效的相关性[J]. 实用医学杂志, 2019, 35(14): 2300-2303.
[27] Mahley, R.W. (2016) Central Nervous System Lipoproteins: ApoE and Regulation of Cholesterol Me-tabolism. Arteriosclerosis, Thrombosis, and Vascular Biology, 36, 1305-1315.
https://doi.org/10.1161/ATVBAHA.116.307023
[28] Neumann, J., Rose-Sperling, D and Hellmich, U.A. (2017) Diverse Relations between ABC Transporters and Lipids: An Overview. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1859, 605-618.
https://doi.org/10.1016/j.bbamem.2016.09.023
[29] Fukunaga, K., Nakagawa, H., Ishikawa, T., Kubo, M. and Mushiroda, T. (2016) ABCB1 Polymorphism Is Associated with Atorvastatin-Induced Liver Injury in Japanese Popula-tion. BMC Genomic Data, 17, Article No. 79.
https://doi.org/10.1186/s12863-016-0390-5
[30] Hoenig, M.R., Walker, P.J., Gurnsey, C., Beadle, K. and Johnson, L. (2011) The C3435T Polymorphism in ABCB1 Influences Atorvastatin Efficacy and Muscle Symptoms in a High-Risk Vascular Cohort. Journal of Clinical Lipidology, 5, 91-96.
https://doi.org/10.1016/j.jacl.2011.01.001
[31] Gu, G.-L., Xu, X.-L., Yang, Q.-Y. and Zeng, R.-L. (2014) Effect of CETP Polymorphism on Atorvastatin Lipid-Regulating Effect and Clinical Prognosis of Patients with Coronary Heart Disease. Medical Science Monitor, 20, 2824-2829.
https://doi.org/10.12659/MSM.892711
[32] Gao, J., Cong, H.L., Mao, Y.M., et al. (2013) Influence of CETP Gene-629C/A Polymorphism on the Efficacy of Atorvastatin Treatment and Clinical Outcome. Chinese Journal of Medi-cal Genetics, 30, 553-558. (In Chinese)
[33] Rader, D.J. and Degoma, E.M. (2014) Future of Cholesteryl Ester Trans-fer Protein Inhibitors. Annual Review of Medicine, 65, 385-403.
https://doi.org/10.1146/annurev-med-050311-163305
[34] Kitzmiller, J.P., Binkley, P.F., Pandey, S.R., et al. (2013) Statin Pharmacogenomics: Pursuing Biomarkers for Predicting Clinical Outcomes. Discovery Medicine, 16, 45-51.