慢性阻塞性肺疾病合并肌少症的研究进展
Research Progress of Chronic Obstructive Pulmonary Disease Complicated with Sarcopenia
DOI: 10.12677/ACM.2023.134954, PDF, HTML, XML, 下载: 262  浏览: 417 
作者: 张 颖*:华北理工大学研究生学院,河北 唐山;韩书芝#:河北省人民医院老年呼吸内科,河北 石家庄
关键词: 慢性阻塞性肺疾病肌少症发病机制COPD Sarcopenia Pathogenesis
摘要: 慢性阻塞性肺疾病是呼吸系统最常见的慢性疾病,肌少症是其重要合并症,肌少症严重影响慢性阻塞性肺疾病的进展和预后。本文章对慢性阻塞性肺疾病合并肌少症的流行病学、诊断标准、发病机制及干预措施进行综述,以此提高临床医生对慢性阻塞性肺疾病合并肌少症的认识,期望改善疾病的转归和预后。
Abstract: Chronic obstructive pulmonary disease (COPD) is the most common chronic disease of the respira-tory system, and sarcopenia is an important complication. Sarcopenia seriously affects the progres-sion and prognosis of COPD. This article reviews the epidemiology, diagnostic criteria, pathogenesis and intervention measures of chronic obstructive pulmonary disease complicated with sarcopenia, so as to improve clinicians’ understanding of chronic obstructive pulmonary disease complicated with sarcopenia, and to improve the outcome and prognosis of the disease.
文章引用:张颖, 韩书芝. 慢性阻塞性肺疾病合并肌少症的研究进展[J]. 临床医学进展, 2023, 13(4): 6820-6825. https://doi.org/10.12677/ACM.2023.134954

1. 引言

慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD)简称为慢阻肺,是以持续呼吸道症状和气流受限为主要特征的慢性呼吸系统疾病。是临床上常见的呼吸系统疾病,中国40岁以上成人患病率为13.7%,致残率及死亡率很高 [1] 。COPD的肺外合并症会影响COPD的进展和预后,肌少症则是COPD重要的合并症之一 [2] ,具体表现为与年龄增长相关的骨骼肌质量下降伴有肌肉力量下降和/或活动能力减退的老年综合征,会显著增加患者摔倒、骨折、残疾、死亡的风险 [1] 。一项纳入了336例住院患者的研究显示,肌少症患者发生骨折的风险高达40%,远超于无肌少症患者 [3] 。Okumura等对230例术后患者的资料分析发现骨骼肌面积的减少及质量的降低是总生存率及无病生存率下降的独立危险因素 [4] 。国外一项研究发现,稳定期COPD中肌少症的患病率为14.5%,且患病率随着年龄、GOLD分级增加而上升 [5] [6] ;而我国目前尚未有COPD合并肌少症患病率的调查报告。由于COPD合并肌少症的研究较少且临床上重视度不足,本文对现阶段COPD合并肌少症的研究进展进行综述,以期为后续研究及临床诊治提供一定的参考价值。

2. COPD合并肌少症的流行病学

有研究表明中国慢性阻塞性肺病的总体流行率在1.20%至8.87%之间,平均为5.87%。在包括35岁人群在内的研究中,慢性阻塞性肺病的患病率明显较低,这与发现慢性阻塞性肺疾病的患病率随特定人群年龄段的增长而升高的结果一致。总体趋势是,男性COPD患病率(7.76%)高于女性(4.07%),农村地区(7.62%)高于城市地区(6.09%) [7] 。从慢性阻塞性肺病患者获得的数据表明,身体成分的变化与运动能力低、生活质量指数差和死亡率增加有关 [8] 。肌减少前期的特征是肌肉质量低,而肌减少是一种更严重的综合征,定义为肌肉质量低并伴有虚弱,这会导致老年人的功能能力受损和残疾 [9] 。土耳其一项纳入219例患者的研究显示,COPD患者的肌少症的患病率为29.7% [10] 。2020年欧洲一项纳入59人的研究显示,COPD患者住院期间肌少症的患病率为48% [11] 。一项纳入416例40岁以上COPD患者的荟萃分析研究显示,COPD患者合并肌少症的概率为27.5%。由于人种的体质差异,欧洲、亚洲、国际肌少症工作组对于肌少症的诊断标准不同,从而导致使用不同诊断标准的研究结果存在较大的差别,但总体而言,大多数研究均表明COPD患者中肌少症的患病率高于普通人群 [12] 。

3. COPD合并肌少症的诊断标准

COPD的诊断主要依靠肺功能,做肺通气功能检查时,病人在吸入支气管扩张剂后第一秒用力呼气容积与用力肺活量的比值小于70%即可诊断为COPD。肌少症的诊断主要以肌肉力量、肌肉质量和活动能力三点为评价指标。2010年,欧洲老年肌少症工作组发布的肌少症专家共识(EWGSOP1)提出,肌少症是指以骨骼肌质量和/或力量丧失为特征的综合症。EWGSOP1将肌少症分为3个时期,分别为肌少症前期、肌少症和严重肌少症。肌少症前期一般是指出现肌肉质量的减少但肌肉力量和活动能力正常。肌少症通常是指肌肉质量减少,且肌肉力量及活动能力均降低。当肌肉质量、肌肉力量、活动能力都显著降低时则被认为处于严重肌少症时期 [13] 。2019年EWGSOP2对肌少症有了新的解释,使用低肌力作为肌少症评估的重要参数。当发现肌肉力量下降时可视为肌少症可能。若肌肉力量、数量及质量同时下降,则诊断为肌少症。当出现肌肉力量、肌肉数量和质量、活动能力均降低时则诊断为严重肌少症 [14] 。生物电阻抗、双能X射线吸收测定法、计算机断层扫描及磁共振成像法通常被用来评估肌肉质量,这些测量是在患者禁食、不想小便、不戴金属物品(如项链、戒指或手表)的情况下进行的。肌肉力量主要通过使用握力测力计测量患者的握力来进行评估。在优势手上进行三次连续测量,并记录每个患者的最高值。通常采用步行试验、平衡试验、座椅起立试验来评估患者的活动能力 [15] 。

4. COPD合并肌少症的发病机制

肌少症是由多种因素引起的,不仅包括炎症反应、能量代谢紊乱、氧化应激和慢性缺氧等,还可能与口服糖皮质激素、肌肉废用以及吸烟等因素相关 [16] [17] 。

4.1. 炎症反应

COPD是最常见的呼吸系统慢性炎症性疾病。炎性因子会进入血液循环,进一步造成全身性炎性反应 [18] 。疾病过程中长期存在活跃的炎症因子,如C反应蛋白、肿瘤坏死因子-α、白介素-6、白介素-8等。这些炎症因子可以通过多种方式影响骨骼肌的多种生理功能,包括促进骨骼肌蛋白质的分解代谢,减少蛋白质的合成,造成骨骼肌损耗,从而导致肌少症 [19] 。已有研究发现,通过抑制白介素-6的水平可以改善小鼠的肌肉萎缩 [20] 。

4.2. 能量代谢紊乱

COPD患者机体常常为高代谢状态,系统性炎症增强、活动和饮食能量消耗增加都是COPD患者能量消耗增加的主要因素。另外,抑郁、呼吸困难以及烟草中的尼古丁的作用可引起患者食欲下降,从而导致COPD患者能量摄入减少,加重了能量代谢紊乱,进一步导致肌肉合成代谢减少 [21] 。有研究发现,味觉变化、疼痛、口干等因素都可以影响食欲,导致能量摄入减少。

4.3. 氧化应激和慢性缺氧

COPD患者氧化应激水平通常是升高的,尤其是肌肉萎缩的患者,氧化剂不仅仅对蛋白质、脂质以及DNA的结构造成破坏,还通过多种途径介导肌肉萎缩 [22] [23] 。骨骼肌的氧化应激在加快蛋白分解和肌肉萎缩的速度的同时,也可以使肌细胞的线粒体受损,影响细胞分化增殖 [24] 。因为COPD患者存在长期的气流受限,常处于慢性缺氧的状态。慢性缺氧不仅可以通过炎症,也可以和氧化应激相互作用促使肌肉组织代谢失衡,加速肌肉的分解及消耗,导致肌少症的发生 [25] 。

除此之外,激素的使用、活动减少等因素都从不同的角度影响骨骼肌的分解代谢,加快骨骼肌的消耗。以上各种机制彼此之间相互协同作用,加快骨骼肌消耗进程。当病人骨骼肌消耗到一定程度就会导致肌少症的发生,最终导致病人生活质量下降。

5. COPD合并肌少症的干预措施

目前COPD合并肌少症尚无特效药物,主要是早发现、早干预。其治疗的首选方案主要是进行肺康复及营养干预,通过药物来辅助治疗,从而达到改善临床症状和预后的目的。

5.1. 非药物治疗

5.1.1. 肺康复

肺康复的是指对患者的病情进行完整的评估之后,为其定制的治疗措施,包括健康教育、自身行为改变和运动训练 [26] 。Attwell等研究发现,肺康复对COPD患者症状有明显改善 [27] 。Jones等对COPD合并肌少症患者进行肺康复,发现其手握力、4 m步速明显改善,一部分患者不再符合肌少症的标准 [28] 。

5.1.2. 营养支持

营养支持是COPD患者的重要治疗手段,充分的热量摄入能增加肌肉质量,改善生活质量。一项纳入263名COPD患者的研究发现营养不良和肌少症的患病率分别为20.7%和28.0%,营养不良患者肌少症的患病率显著增高 [29] 。Rondanelli M研究发现,补充乳清蛋白和必需氨基酸,可提高肌肉质量和手握力 [30] 。欧洲肠外营养学会建议COPD患者蛋白质日摄入量为1.5 g/kg,重症患者可达到2.0 g/kg [31] 。

5.2. 药物治疗

有研究表明,茶碱可以用于抗炎治疗,以改善肌肉力量,可作为支持肺康复的辅助治疗措施。HOSTRUP M研究发现支气管扩张剂能增加骨骼肌肌原纤维蛋白合成速率,调节亮氨酸代谢,促进蛋白质合成 [32] [33] [34] 。糖皮质激素是控制COPD患者病情的重要药物,但会减少肌肉蛋白质的合成,所以应适量使用 [35] 。

6. 总结和展望

综上所述,COPD和肌少症关系密切,COPD患者容易罹患肌少症。同时,肌少症会加剧COPD患者病情的恶化及不良预后。尽管近些年对于COPD合并肌少症国内外已经有初步的了解,但仍需进行进一步的临床试验和研究来预防疾病进展及改善疾病预后。同时,应对COPD合并肌少症的病人进行早期筛查,从而尽早进行干预,避免出现病情恶化及不良预后。

参考文献

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Vogelmeier, C.F., Román-Rodríguez, M., Singh, D., et al. (2020) Goals of COPD Treatment: Focus on Symptoms and Exacerbations. Respiratory Medicine, 166, Article ID: 105938.
https://doi.org/10.1016/j.rmed.2020.105938
[2] Halpin, D.M.G., Criner, G.J., Papi, A., et al. (2021) Global Initia-tive for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease. The 2020 GOLD Science Committee Report on COVID-19 and Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 203, 24-36.
https://doi.org/10.1164/rccm.202009-3533SO
[3] 陈可铭, 徐胜前, 徐月辰, 等. 肌少症-骨量减少/骨质疏松与类风湿关节炎患者合并脊柱骨质疏松性骨折发生的相关性研究[J]. 中国骨质疏松杂志, 2020, 26(7): 1018-1022+1082.
[4] Okumura, S., Kaido, T., Hamaguchi, Y., et al. (2015) Impact of Preoperative Quality as Well as Quantity of Skeletal Muscle on Survival after Resection of Pancreatic Cancer. Surgery, 157, 1088-1098.
https://doi.org/10.1016/j.surg.2015.02.002
[5] Chen, L.K., Woo, J., Assantachai, P., et al. (2020) Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. Journal of the American Medi-cal Directors Association, 21, 300-307.
https://doi.org/10.1016/j.jamda.2019.12.012
[6] Smith, M.C. and Wrobel, J.P. (2014) Epidemiology and Clinical Impact of Major Comorbidities in Patients with COPD. International Journal of Chronic Obstructive Pulmonary Dis-ease, 9, 871-888.
https://doi.org/10.2147/COPD.S49621
[7] Zhu, B., Wang, Y., Ming, J., et al. (2018) Disease Burden of COPD in China: A Systematic Review. International Journal of Chronic Obstructive Pulmonary Disease, 13, 1353-1364.
https://doi.org/10.2147/COPD.S161555
[8] Tunsupon, P. and Mador, M.J. (2017) The Influence of Body Composition on Pulmonary Rehabilitation Outcomes in Chronic Obstructive Pulmonary Disease Patients. Lung, 195, 729-738.
https://doi.org/10.1007/s00408-017-0053-y
[9] Cruz-Jentoft, A.J., Landi, F., Schneider, S.M., et al. (2014) Prevalence of and Interventions for Sarcopenia in Ageing Adults: A Systematic Review. Report of the Interna-tional Sarcopenia Initiative (EWGSOP and IWGS). Age and Ageing, 43, 748-759.
https://doi.org/10.1093/ageing/afu115
[10] Demircioğlu, H., Cihan, F.G., Kutlu, R., et al. (2020) Frequency of Sarcopenia and Associated Outcomes in Patients with Chronic Obstructive Pulmonary Disease. Turkish Journal of Med-ical Sciences, 50, 1270-1279.
https://doi.org/10.3906/sag-1909-36
[11] Perrot, L., Greil, A., Boirie, Y., et al. (2020) Prevalence of Sarcopenia and Malnutrition during Acute Exacerbation of COPD and after 6 Months Recovery. European Journal of Clinical Nu-trition, 74, 1556-1564.
https://doi.org/10.1038/s41430-020-0623-6
[12] Sepúlveda-Loyola, W., Osadnik, C., Phu, S., et al. (2020) Diag-nosis, Prevalence, and Clinical Impact of Sarcopenia in COPD: A Systematic Review and Meta-Analysis. Journal of Cachexia, Sarcopenia and Muscle, 11, 1164-1176.
https://doi.org/10.1002/jcsm.12600
[13] Cruz-Jentoft, A.J., Baeyens, J.P., Bauer, J.M., et al. (2010) Sarcopenia: European Consensus on Definition and Diagnosis: Report of the European Working Group on Sarcopenia in Older Peo-ple. Age and Ageing, 39, 412-423.
https://doi.org/10.1093/ageing/afq034
[14] Cruz-Jentoft, A.J., Bahat, G., Bauer, J., et al. (2019) Sarcopenia: Re-vised European Consensus on Definition and Diagnosis. Age and Ageing, 48, 16-31.
https://doi.org/10.1093/ageing/afy169
[15] Cruz-Jentoft, A.J., Bahat, G., Bauer, J., et al. (2019) Sarcopenia: Re-vised European Consensus on Definition and Diagnosis. Age and Ageing, 48, 601.
https://doi.org/10.1093/ageing/afz046
[16] Sanders, K.J., Kneppers, A.E., Van De Bool, C., et al. (2016) Cachexia in Chronic Obstructive Pulmonary Disease: New Insights and Therapeutic Perspective. Journal of Cachexia, Sarcopenia and Muscle, 7, 5-22.
https://doi.org/10.1002/jcsm.12062
[17] Lewis, A., Lee, J.Y., Donaldson, A.V., et al. (2016) Increased Expression of H19/miR-675 Is Associated with a Low Fat-Free Mass Index in Patients with COPD. Journal of Cachexia, Sarcope-nia and Muscle, 7, 330-344.
https://doi.org/10.1002/jcsm.12078
[18] Sinden, N.J. and Stockley, R.A. (2010) Systemic Inflammation and Comorbidity in COPD: A Result of “Overspill” of Inflammatory Mediators from the Lungs? Review of the Evidence. Thorax, 65, 930-936.
https://doi.org/10.1136/thx.2009.130260
[19] Byun, M.K., Cho, E.N., Chang, J., et al. (2017) Sarcopenia Corre-lates with Systemic Inflammation in COPD. International Journal of Chronic Obstructive Pulmonary Disease, 12, 669-675.
https://doi.org/10.2147/COPD.S130790
[20] Yakabe, M., Ogawa, S., Ota, H., et al. (2018) Inhibition of Interleukin-6 Decreases Atrogene Expression and Ameliorates Tail Suspension-Induced Skeletal Muscle Atrophy. PLOS ONE, 13, e0191318.
https://doi.org/10.1371/journal.pone.0191318
[21] Broekhuizen, R., Wouters, E.F., Creutzberg, E.C., et al. (2006) Raised CRP Levels Mark Metabolic and Functional Impairment in Advanced COPD. Thorax, 61, 17-22.
https://doi.org/10.1136/thx.2005.041996
[22] 赵云静, 杨晓蕾, 尹粉英, 等. 慢性阻塞性肺疾病合并肌少症的发病机制[J]. 中国老年保健医学, 2023, 21(1): 110-113.
[23] 谢灿辉, 黄丹, 黎东明. 慢性阻塞性肺疾病合并肌少症的研究进展[J]. 中国医学创新, 2022, 19(26): 179-183.
[24] Donaldson, A.V., Maddocks, M., Martolini, D., et al. (2012) Muscle Function in COPD: A Complex Interplay. International Journal of Chronic Obstructive Pulmonary Dis-ease, 7, 523-535.
https://doi.org/10.2147/COPD.S28247
[25] Kent, B.D., Mitchell, P.D. and Mcnicholas, W.T. (2011) Hypoxemia in Patients with COPD: Cause, Effects, and Disease Progression. International Journal of Chronic Obstructive Pulmonary Disease, 6, 199-208.
https://doi.org/10.2147/COPD.S10611
[26] Spruit, M.A., Singh, S.J., Garvey, C., et al. (2013) An Official Amer-ican Thoracic Society/European Respiratory Society Statement: Key Concepts and Advances in Pulmonary Rehabilitation. American Journal of Respiratory and Critical Care Medicine, 188, e13-e64.
[27] Attwell, L. and Vassallo, M. (2017) Response to Pulmonary Rehabilitation in Older People with Physical Frailty, Sarcopenia and Chronic Lung Disease. Geriatrics (Basel, Switzerland), 2, 9.
https://doi.org/10.3390/geriatrics2010009
[28] Jones, S.E., Maddocks, M., Kon, S.S., et al. (2015) Sarcopenia in COPD: Prevalence, Clinical Correlates and Response to Pulmonary Rehabilitation. Thorax, 70, 213-218.
https://doi.org/10.1136/thoraxjnl-2014-206440
[29] De Blasio, F., Di Gregorio, A., De Blasio, F., et al. (2018) Malnutrition and Sarcopenia Assessment in Patients with Chronic Obstructive Pulmonary Dis-ease According to International Diagnostic Criteria, and Evaluation of Raw BIA Variables. Respiratory Medicine, 134, 1-5.
https://doi.org/10.1016/j.rmed.2017.11.006
[30] Rondanelli, M., Klersy, C., Terracol, G., et al. (2016) Whey Protein, Amino Acids, and Vitamin D Supplementation with Physical Activity Increases Fat-Free Mass and Strength, Functionality, and Quality of Life and Decreases Inflammation in Sarcopenic Elderly. The American Journal of Clinical Nutrition, 103, 830-840.
https://doi.org/10.3945/ajcn.115.113357
[31] Van Wetering, C.R., Hoogendoorn, M., Broekhuizen, R., et al. (2010) Efficacy and Costs of Nutritional Rehabilitation in Muscle-Wasted Patients with Chronic Obstructive Pulmonary Disease in a Community-Based Setting: A Prespecified Subgroup Analysis of the INTERCOM Trial. Journal of the American Medical Directors Association, 11, 179-187.
https://doi.org/10.1016/j.jamda.2009.12.083
[32] Hostrup, M., Reitelseder, S., Jessen, S., et al. (2018) Be-ta(2)-adrenoceptor Agonist Salbutamol Increases Protein Turnover Rates and Alters Signalling in Skeletal Muscle after Resistance Exercise in Young Men. The Journal of Physiology, 596, 4121-4139.
https://doi.org/10.1113/JP275560
[33] Lee, P., Birzniece, V., Umpleby, A.M., et al. (2015) Formoterol, a Highly β2-Selective Agonist, Induces Gender-Dimorphic Whole Body Leucine Metabolism in Humans. Metabolism: Clinical and Experimental, 64, 506-512.
https://doi.org/10.1016/j.metabol.2014.12.005
[34] Toledo, M., Penna, F., Oliva, F., et al. (2016) A Multifactorial Anti-Cachectic Approach for Cancer Cachexia in a Rat Model Undergoing Chemotherapy. Journal of Cachexia, Sarco-penia and Muscle, 7, 48-59.
https://doi.org/10.1002/jcsm.12035
[35] Barberan-Garcia, A., Rodríguez, D.A., Blanco, I., et al. (2015) Non-Anaemic Iron Deficiency Impairs Response to Pulmonary Rehabilitation in COPD. Respirology (Carlton, Vic), 20, 1089-1095.
https://doi.org/10.1111/resp.12591