老年肱骨近端骨折的治疗进展
Advances in the Treatment of Proximal Hu-meral Fractures in the Elderly
DOI: 10.12677/ACM.2023.134926, PDF, HTML, XML, 下载: 249  浏览: 7,189 
作者: 范 龙, 金鹏宇, 张 杰:青岛大学青岛医学院,山东 青岛 ;孟 晔*:康复大学青岛医院(青岛市市立医院),山东 青岛
关键词: 肱骨骨折骨质疏松内固定关节置换Humeral Fracture Osteoporosis Internal Fixation Joint Replacement
摘要: 肱骨近端骨折是临床常见的老年骨质疏松性骨折,多数无明显移位的肱骨近端骨折的老年患者接受保守治疗效果良好。采用非手术方式治疗移位的肱骨近端骨折效果较差,常因畸形愈合而导致患者肩部疼痛和活动受限,严重削弱其生活自理能力,需行手术治疗。但是采用切开复位内固定治疗老年肱骨近端骨折仍面临以下困境:由于骨质疏松,骨折常合并压缩性骨缺损,解剖复位粉碎性骨折难以实现;常见内固定器械无法维持骨质疏松性骨折复位至愈合。目前对于移位的老年肱骨近端骨折选择何种内固定治疗方式仍然缺乏共识。笔者通过复习新的指南及文献,论述老年肱骨近端骨折适宜的治疗策略。
Abstract: Proximal humeral fracture is a common osteoporotic fracture in the elderly. Most elderly patients without significant displaced proximal humeral fractures receive good results with conservative treatment. Non-operative treatment of displaced proximal humeral fractures is less effective and often results in shoulder pain and limited mobility due to deformity healing, which severely impairs the patient’s ability to care for himself and requires surgical treatment. However, the treatment of displaced proximal humeral fractures by incisional internal fixation still faces the following dilem-mas: due to osteoporosis, fractures are often combined with compression bone defects, and ana-tomical reduction of comminuted fractures is difficult to achieve; common internal fixation devices are unable to maintain osteoporotic fractures until they heal. There is still a lack of consensus on the choice of internal fixation treatment for displaced proximal humeral fractures in the elderly. By reviewing new guidelines and literature, the author discusses the appropriate treatment strategy for proximal humeral fractures in the elderly.
文章引用:范龙, 金鹏宇, 张杰, 孟晔. 老年肱骨近端骨折的治疗进展[J]. 临床医学进展, 2023, 13(4): 6610-6622. https://doi.org/10.12677/ACM.2023.134926

1. 引言

肱骨近端骨折(Proximal Humeral Fracture, PHF)好发于65岁以上老年人群,是仅次于桡骨远端骨折和髋部骨折后第三常见的骨质疏松性骨折 [1] [2] 。随着人口不断老龄化和居民人均预期寿命的增加,PHF的发生率急剧上升,预计到2030年将增加两倍,其中骨质疏松是重要影响因素 [3] [4] 。虽然老年PHF多由低能量的创伤引起,但骨折常合并压缩性骨缺损,解剖复位粉碎性骨折难以实现,并且常见的内固定器械无法维持骨质疏松性骨折复位至愈合,是临床治疗的难点。老年PHF的治疗方式主要包括保守治疗、内固定和关节置换 [5] 。Rangan等 [6] 的临床研究结果显示,在移位性PHF发生后2年内,手术组与非手术组在平均牛津肩关节评分(Oxford Shoulder Score, OSS)、心理评分和并发症发生情况等方面的差异均无统计学意义(P > 0.05),提示保守治疗与手术治疗移位性PHF的总体疗效相近。因缺乏循证医学证据的支持,目前对于这类骨折适宜的治疗策略仍然缺乏共识。笔者通过复习新的指南及文献,论述老年肱骨近端骨折适宜的治疗策略,为临床提供参考。

2. 基础理论

2.1. 肱骨近端解剖

肱骨近端的骨性结构主要由四部分构成,分别为肱骨头、大结节、小结节及肱骨干近端。臂丛神经和腋窝血管伴行于解剖颈的下方 [7] (见图1)。当PHF发生时,上述骨性解剖结构之间的稳态遭到破坏,相应附着其上的肩袖肌腱继发功能障碍,进而导致肩关节运动功能失常。因此,肱骨近端骨性结构的解剖重建对于PHF患者术后肩关节功能的顺利恢复有重要意义。刘蓬然 [8] 等在研究中通过使用E-3D数字医疗建模软件测得我国PHF患者的肱骨近端骨骼的解剖参数,并将其与Iannotti [9] 、Robertson [10] 、Hertel [11] 等的研究进行比较,发现我国人群的肱骨近端解剖参数(如肱骨高度HH、肱骨头关节曲面率半径ROC等)均明显小于欧美国家的人群,并提出国内PHF患者术后较高的并发症发生率可能与产自欧美的骨科内植物不完全适配相关联的假设。术前通过运用骨骼三维重建、模拟复位等技术以及术中使用国人个性化的骨科内植物能更好地改善预后。

Figure 1. a. Anatomy of the humerus; b. Schematic diagram of the anatomy of the shoulder vessels and nerves

图1. a. 肱骨解剖结构;b. 肩部血管、神经解剖示意图

2.2. 肱骨头血供

肱骨头的血供主要由旋肱前动脉,旋肱后动脉,肩胛上、下动脉,胸肩峰动脉和肱深动脉组成的吻合支提供 [12] (见图2)。近年来,Hettrich等 [12] 研究发现约64%的肱骨头血供是由旋肱后动脉提供。术前制定老年PHF治疗方案时,首先应判断患者术后是否存在肱骨头缺血坏死的可能性,术中应尽可能地避免过度剥离骨折周围软组织而造成的肱骨近端的营养血管(尤其是旋肱后动脉)的损伤,降低肱骨头的坏死率 [13] 。

Figure 2. Schematic diagram of blood supply to the humeral head

图2. 肱骨头血供示意图

3. PHF分型和诊断

3.1. PHF分型

现有的PHF分型原则都基本遵循Codman原理 [14] 。早在1934年,Codman将肱骨近端分为四个部分,即肱骨头、大小结节和肱骨干,并在此基础上提出按照骨折累及的范围将PHF进行分型(见图3)。

Figure 3. Codman Trauma classification a. Greater tubercle, b. lesser tubercle, c. head fragment, d. shaft fragment

图3. 肱骨近端骨折Codman分型

自1970年发表至今,Neer分型仍是目前最常用的PHF分型 [15] (见图4)。Neer将移位的PHF定义为:肩关节X线片显示骨折块与肱骨头之间移位 > 1 cm或骨折块之间成角 > 45˚。按照Neer分型,由于PHF各分型间变异较大,无法通过建立随机对照试验来进行临床疗效的比较。

Figure 4. Neer Trauma classification

图4. 肱骨近端骨折Neer分型

AO分型于1987年首次发布并且在临床运用中不断更新 [16] (见图5)。常见的PHF按照粉碎程度和关节面的累及与否,可分为关节外两部分、关节外三部分、关节内四部分骨折等。

Hertel分型发表于2004年(见图6),它将不同的骨折平面之间进行组合,形成12种基本的PHF类型 [17] 。Hertel指出在确定骨折分型时还需要考虑到肱骨近端内侧距的完整性和形态等问题。肱骨头内侧铰链结构的完整性情况和连接肱骨头内侧皮质的长度是预测PHF是否容易发生肱骨头创伤性坏死的重要指标 [18] 。当发生内侧铰链结构断裂、内侧距明显移位以及内侧距皮质长度 < 8 mm时,往往肱骨头发生创伤性坏死的可能性较大。

Figure 5. AO Trauma classification

图5. 肱骨近端骨折AO分型

Figure 6. Hertel Trauma classification

图6. 肱骨近端骨折Hertel分型

3.2. 局部骨量判断

骨质疏松症是一种全身性骨骼疾病,造成骨的力学强度下降,骨骼的脆性增加,进而增加骨折发生的风险 [19] 。局部骨量的判断对于手术治疗老年PHF有着重要意义,其不仅直接影响骨块对螺钉的把持力,也对骨折愈合产生影响 [20] 。

骨骼强度取决于胶原蛋白和矿物质成分,目前临床常用的双能X线吸收测定法(dual energy X-ray absorptiometry, DEXA) [21] 测定的骨密度值仅能反映肱骨近端矿物质成分,无法全面评估肱骨近端的局部骨量。我们可以通过高分辨率MRI和微定量CT (Micro-QCT)来测定肱骨近端骨小梁的显微空间结构以及骨胶原等有机成分的组成,更准确地评估患者骨质疏松的程度,有利于术前制定完善的治疗方案。

4. 老年PHF的治疗

老年PHF的诊疗需要多学科的协作,在全面评估患者的健康状况、预期恢复目标后,需综合各学科的会诊意见来制定个体化治疗方案并及时调整。

4.1. 非手术治疗

采用非手术方式治疗PHF的疗效与患者的年龄、骨质疏松程度、骨折移位程度、骨折类型等相关 [6] [22] ,多数无明显移位(<1 cm, < 45˚)的老年PHF患者接受保守治疗的效果良好 [23] 。移位性PHF经保守治疗后,常发生畸形愈合而导致患肩疼痛、活动受限,以致其生活自理能力下降,严重影响患者的生活独立性,加重社会负担。对于骨折明显移位的患者,在综合考量自身情况和各种治疗方案的利弊后,也可以选择非手术治疗。

临床上,闭合复位不同类型的PHF难易程度不一,首先需确认骨折周围重要的神经、血管无损伤。具体实施可遵循“以远端凑近端”的原理来纠正骨折块之间的对位关系:对于肱骨干内移程度较小的PHF患者,可选择放置衬垫于其腋窝下方来改善和维持对位;而对于肱骨干内移明显,且移位大于干骺端直径的50%及以上的PHF患者,通常在麻醉下进行手法复位。

骨折复位满意后通过佩戴肩关节外展支具来限制肩关节的运动以维持复位。依靠患肢自身重力可提供一个持续向下的牵引力,有利于改善局部的肿胀、疼痛,有利于维持PHF断端的对位、对线关系。骨折后疼痛的缓解可以通过限制肩关节运动和服用镇痛类药物等措施。鼓励患者早期进行肘关节和腕关节的主动活动以对抗失用性萎缩。指导患者定期复查,并观察骨折移位情况是否进展,重点监测骨折周围神经、血管损伤等并发症的发生情况。在恢复初期,患者肩关节的康复训练需在康复师指导下进行,由肩关节被动活动逐渐过渡到适应性对抗,直至回归日常生活。PHF非手术治疗的疗效绝大部分取决于患者自身,康复训练的质量极大地影响肩关节功能的恢复。

4.2. 手术治疗

4.2.1. 切开复位钢板内固定

肱骨近端解剖型锁定钢板相较于传统钢板在移位的PHF治疗中的使用占比呈明显的上升趋势 [24] 。肱骨近端解剖型锁定钢板由于锁定螺钉和钢板之间具有成角稳定性,并且结合内侧距螺钉后能够系统性提高内固定整体力学的稳定性,有效对抗因肩袖肌腱牵拉引起的内翻应力,维持骨折复位至愈合 [25] 。

为了便于骨折的牵引复位和术中透视以了解内固定位置、螺钉深度,手术体位一般选择仰卧位或沙滩椅位。临床常用的手术入路为经三角肌、胸大肌入路和经三角肌入路,Sohn等 [26] 的研究结果显示,上述两种不同手术入路治疗PHF具有相似的临床和影像学结果,但是经三角肌入路造成的创伤更小并且手术时间更短。Boileau [27] 通过对比第3代髓内钉与前2代髓内钉治疗PHF的疗效差异时发现,大、小结节的解剖复位和牢靠固定是术后肩关节功能恢复的关键。相较于传统钢板,肱骨近端解剖锁定钢板在设计上于钢板的近端预留了缝合孔(见图7),术中可通过利用缝线来加强大、小结节的固定,并同时修复和加强受损的肩袖肌腱,有利于术后肩关节功能的恢复。针对骨质疏松的老年PHF患者,通过双皮质法固定骨折远端可以有效增强内固定的稳定性。

Figure 7. a. Schematic diagram of anatomical locking plate internal fixation of the proximal humerus; b. X-ray of proximal humerus after anatomical locking plate internal fixation; c. X-ray after double plate internal fixation of the proximal humerus

图7. a. 肱骨近端解剖型锁定钢板内固定示意图;b. 肱骨近端解剖型锁定钢板内固定术后X线片;c. 肱骨近端双钢板内固定术后X线片

目前已有多项前瞻性的随机双盲对照试验结果表明,相比非手术治疗,采用切开复位钢板内固定治疗PHF能相对提高患者的生活自理能力,但总体上手术相关并发症发生率高达49%,以致其疗效并不明显区别于非手术治疗 [6] [28] 。Sproul等 [29] 的研究结果显示,在排除肱骨头内翻畸形愈合后的总体并发症发生率为33%,约有14%的患者因术后并发症而接受二次手术。为了减少螺钉切出、肩峰撞击等并发症的发生,可通过术中多角度透视来调整钢板位置及螺钉长度 [29] 。结合手术治疗经验,利用万向交锁螺钉来改变锁定螺钉的固定方向可以避免螺钉穿出肱骨头。对于合并严重骨质疏松的患者,可在穿透肱骨外侧皮质后改用测深器抵住内侧皮质进行测深,置入较测深短4 mm的螺钉,并结合术中多角度透视来预防原发性螺钉穿透 [30] 。

锁定钢板的力学稳定性和肱骨内侧距息息相关。Osterhoff等 [31] 的研究结果显示,粉碎性肱骨内侧距能否纠正和维持可作为判断患者预后情况的独立预测因素。目前主要通过运用肱骨解剖锁定钢板结合内侧距螺钉、双钢板内固定以及髓腔内植骨等技术来重建和支撑肱骨内侧距 [25] 。

解剖锁定钢板上用于支撑肱骨近端内下方的螺钉又称为肱骨内侧距螺钉 [32] [33] ,肱骨距螺钉的理想植入区域为肱骨头的内下方,螺钉方向呈斜向上,深度达肱骨头软骨下4~5 mm。有研究结果表明,位于肱骨头内下方约25%区域内的所有螺钉均可起支撑肱骨内侧柱的作用 [34] 。Flatow等 [35] 在研究中指出,术中不必为过度追求肱骨内侧距的解剖复位而进行骨折周围软组织的广泛剥离,肱骨内侧柱轻度内翻、嵌插的骨折类型相对稳定,通过锁定钢板结合内侧距螺钉能有效维持这类骨折复位至愈合。

Schliemann等 [25] 在研究如何提高锁定钢板内固定治疗PHF的稳定性时提出,可以通过锁定钢板结合肱骨近端髓腔内植骨和附加钢板来应对肱骨内侧距无法解剖复位或无法得到有效支撑和固定等情况。Gardner [36] 最先提出通过锁定钢板结合肱骨近端髓腔内同种异体腓骨植骨可用于PHF后骨不连的治疗。髓腔内腓骨植骨可填补PHF的压缩性骨缺损,起重建肱骨内侧距和支撑肱骨头的作用,不仅提高了肱骨近端的局部骨量,同时也增强了锁定钢板内固定整体的稳定性,能更好地维持骨折复位 [37] 。肱骨髓腔因腓骨的植入而变窄或消失的问题不容忽视,致使患肩难以进行二期翻修。Schliemann [25] 提示,同种异体腓骨不仅费用高昂,并且和其他异体移植物一样,也同样存在感染、排异反应等风险。

PHF的双钢板内固定是指在外侧钢板固定的基础上,额外附加钢板进行内固定 [25] (见图7)。采用双钢板内固定治疗PHF可以更好地支撑肱骨内侧柱,有效减少骨折术后的复位丢失 [38] 。双钢板内固定术适用于PHF伴粉碎性内侧距无法复位和维持,且不宜行关节置换的患者。附加的辅助钢板一般选择微型小钢板,肱骨干骺端的前侧、内侧及后侧均可放置,实际运用中应参照不同的骨折类型来确定最佳方案。于前侧放置辅助钢板不仅易于操作,也可避免骨折周围软组织的广泛剥离,能较好地保留肱骨头的残存血供 [39] 。虽然于内侧放置辅助钢板对于肱骨内侧距的支撑最为直接,但术后留有与肱骨头发生撞击的可能,而且腋神经和旋肱前动脉一旦损伤,严重的并发症接踵而至 [40] 。于肱骨干骺端的后侧放置辅助钢板不仅能对后方起直接的支撑作用,也可同时纠正PHF伴发的后倾移位和内翻畸形,但是容易损伤旋肱后动脉和肩袖肌腱,易导致肱骨头缺血坏死和术后肩关节外旋功能的失常 [41] 。

近年来,AO通过总结肱骨近端解剖锁定钢板治疗骨质疏松性PHF的经验来不断改进内固定器械的设计,用以提高其整体生物力学的稳定性 [42] ,但是这些新器材的实际临床疗效还有待进一步观察。

4.2.2. 髓内钉内固定

从近端曲型非锁定型到近端直型锁定型,肱骨近端交锁髓内钉系统的设计不断迭代更新。Dilisio等 [43] 的研究指出,髓内钉内固定治疗老年PHF的疗效与其产品设计的改进、PHF的类型、患者的年龄等因素有关,手术相关并发症的发生也与其设计上的缺陷息息相关。

第1代髓内钉治疗PHF的骨折愈合率和并发症的发生率均较高 [44] :1) 髓内钉近端为曲型设计,插入点位于冈上肌止点附近,易发生肩袖肌腱的医源性损伤;2) 螺钉松动、退钉和继发复位丢失的发生和非锁定型交锁设计有关。为了有效减少术后骨折复位丢失和肩袖医源性损伤的发生率,Von Rüden [45] 率先提出了髓内钉近端直型设计的概念。采用近端直型设计的髓内钉治疗的PHF患者的术后肩关节功能恢复良好,但仍然无法有效减少螺钉松动等并发症的发生率 [43] [46] 。

T2型肱骨髓内钉系统采用锁定型设计,通过于主钉与螺钉之间置入高分子聚乙烯以实现螺钉的锁定固定模式,从而有效降低了退钉、内固定松动等并发症的发生率 [47] 。

目前,近端直型锁定型肱骨近端髓内钉系统被广泛运用于PHF的治疗。Hessmann等 [48] 在研究中使用多维度、多平面的锁定螺钉固定肱骨骨折的近端,通过附加“钉中钉”来增强内固定整体的稳定性。第3代肱骨近端髓内钉系统适用于几乎所有类型的PHF (见图8)。Wu等 [49] 通过对比肱骨近端解剖锁定钢板与MultiLoc髓内钉内固定治疗PHF的疗效中发现,两者的治疗效果相当,但是髓内钉在术后疼痛的缓解、肩关节功能恢复方面优于锁定钢板。髓内钉设计的理论优势在于:1) 对骨折周围软组织的创伤小,有利于保留骨折残存的血供;2) 患者术后早期疼痛缓解迅速,有利于改善肩关节功能;3) 髓内钉为中心性固定,力矩较锁定钢板短,相比锁定钢板能承受更高的初始轴向负载和扭转负载 [50] 。髓内钉的理论优势能否在实际疗效中体现仍需循证医学证据的支持 [51] 。

Figure 8. a & b. MultiLoc Humeral Nailing System; c & d. X-ray after intramedullary nailing of the humerus

图8. a & b. 多维锁定肱骨髓内钉系统;c & d. 肱骨髓内钉内固定术后X线片

4.2.3. 肩关节置换

人工肩关节置换术主要适用于:1) 肱骨解剖颈骨折;2) 肱骨近端四部分骨折;3) 肱骨头劈裂骨折;4) PHF合并脱位;5) 伴重度骨质疏松症等。以往的治疗方式以半肩、全肩关节置换为主,近年来反置式人工肩关节置换在治疗PHF的占比有所增加。

1) 人工半肩关节置换术:Nijs等 [52] 基于以往的研究观察分析急性PHF采用半肩置换的临床疗效时发现,治疗的结果没有明显区别于非手术治疗(见图9)。肱骨大结节能否解剖重建和愈合是肩关节功能恢复的关键。Boileau [53] 认为,半肩关节置换术后肩袖的功能异常与大结节的愈合情况有关,大结节畸形愈合或不愈合均导致人工肩关节不稳。通常术中利用高强度缝线将肱骨大结节与人工肩关节假体缝合固定,对于老年骨质疏松的PHF患者,由于其肱骨大结节的局部骨量低下,较容易发生因缝线切割致使大结节的固定失效。Borowsky等 [54] 通过生物力学实验证明,缝合线在经历8000次肱盂关节运动后即出现骨骼、肌腱的切割现象,最终导致缝合线松动、移位。Lambert等 [55] 的研究结果提示,术中肱骨大结节残存血供的留存有利于大结节的愈合。

2) 反置式人工肩关节置换术:近年来,反置式人工肩关节置换的适应症在肩袖骨关节病的基础上逐渐扩展至老年PHF的治疗 [56] (见图10)。Chalmers等 [56] 的临床研究结果表明,接受反置式人工肩关节置换术的患者在术后疼痛缓解、肩关节功能恢复等方面均明显优于接受半肩置换的患者。Brorson等 [57] 的研究结果显示,反置式人工肩关节的远期存活率显著高于半肩置换。

Chalmers [56] 认为,反置式人工肩关节的运动主要依赖于三角肌,肱骨大结节的愈合情况对患者肩关节功能的恢复影响较小。但是肱骨大结节的骨折愈合能够提高关节假体的稳定性并降低脱位的发生率。Visser等 [58] 经统计发现,腋神经损伤的发生率与肱骨近端骨折块的移位程度相关,约50%老年PHF患者合并有腋神经损伤。Werner等 [59] 的研究结果显示,患者接受反置式人工肩关节置换术后患肢普遍延长约2.6 cm,这可能会加重腋神经的损伤。反置式人工肩关节置换术后的主要动力肌为三角肌,其主要受腋神经的支配,无论何种原因导致三角肌失去腋神经的支配都将是灾难性的,补救措施相当有限。

3) 人工肩关节置换平台系统:Brorson等 [57] 的研究得出,导致半肩置换失败的主要原因和肱骨大结节的固定失效和不愈合相关,可通过二期手术进行反置式人工关节的翻修来改善预后。人工肩关节置换平台系统的特点:肱骨柄是人工半肩关节假体和反置式关节假体的可共享部件。当半肩关节置换失败后进行二期翻修时,可在原肱骨柄的基础上,通过仅更换肩胛盂部分假体而将其转为反置式人工肩关节(见图11)。

Figure 9. a & b. Shoulder Joint Replacement System; c. Post-operative x-ray of artificial hemi-shoulder joint replacement

图9. a & b. 肩关节置换系统;c. 人工半肩关节置换术后X线片

Figure 10. a & b. Inverted artificial shoulder joint prosthesis; c & d & e. Post-operative x-ray of a reverse shoulder arthroplasty

图10. a & b. 反置式人工肩关节假体;c & d & e. 反置式人工肩关节置换术后X线片

Figure 11. a & b. Artificial shoulder joint replacement platform system; c. Artificial shoulder arthroplasty pattern diagram; d. Humeral stem prosthesis

图11. a & b. 人工肩关节置换平台系统;c. 人工肩关节置换术模式图;d. 肱骨柄假体

5. 总结

老年肱骨近端骨折的治疗目标是解除疼痛、恢复功能、尽可能地降低并发症发生率。即便目前老年肱骨近端骨折治疗方式的选择仍然缺乏临床循证医学证据的支持,人工肩关节置换被认为是可靠的治疗选择。在治疗老年肱骨近端骨折前,首先应明确骨折的类型和潜在风险,综合考量患者的健康状况、心理状态和治疗意愿,在多学科协助下制定个体化的最佳方案。当然,还有更多的新技术、新材料不断涌现,其疗效还有待更多的临床实践进一步检验。

NOTES

*通讯作者。

参考文献

[1] Passaretti, D., Candela, V., Sessa, P., et al. (2017) Epidemiology of Proximal Humeral Fractures: A Detailed Survey of 711 Patients in a Metropolitan Area. Journal of Shoulder and Elbow Surgery, 26, 2117-2124.
https://doi.org/10.1016/j.jse.2017.05.029
[2] Omid, R., Trasolini, N.A., Stone, M.A., et al. (2021) Principles of Locking Plate Fixation of Proximal Humerus Fractures. Journal of the American Academy of Orthopaedic Surgeons, 29, e523-e535.
https://doi.org/10.5435/JAAOS-D-20-00558
[3] Palvanen, M., Kannus, P., Niemi, S., et al. (2006) Update in the Epidemiology of Proximal Humeral Fractures. Clinical Orthopaedics and Related Research®, 442, 87-92.
https://doi.org/10.1097/01.blo.0000194672.79634.78
[4] Court-Brown, C.M. and Caesar, B. (2006) Epidemiolo-gy of Adult Fractures: A Review. Injury, 37, 691-697.
https://doi.org/10.1016/j.injury.2006.04.130
[5] 马明太, 付中国. 肱骨近端骨折治疗的决策分析[J]. 中国骨与关节杂志, 2019, 8(7): 482-485.
[6] Rangan, A., Handoll, H., Brealey, S., et al. (2015) Surgical vs Nonsurgical Treatment of Adults with Displaced Fractures of the Proximal Humerus: The PROFHER Randomized Clinical Trial. JAMA, 313, 1037-1047.
https://doi.org/10.1001/jama.2015.1629
[7] Moatshe, G., Marchetti, D.C., Chahla, J., et al. (2018) Qualitative and Quantitative Anatomy of the Proximal Humerus Muscle Attachments and the Axillary Nerve: A Cadaveric Study. Ar-throscopy, 34, 795-803.
https://doi.org/10.1016/j.arthro.2017.08.301
[8] 刘蓬然, 申澳, 吕静, 等. 三维立体可视化测量国人肱骨近端解剖学参数[J]. 中国临床解剖学杂志, 2022, 40(1): 10-16.
[9] Iannotti, J.P., Gabriel, J.P., Schneck, S.L., et al. (1992) The Normal Glenohumeral Relationships. An Anatomical Study of One Hundred and Forty Shoulders. The Journal of Bone and Joint Surgery. American Volume, 74, 491-500.
https://doi.org/10.2106/00004623-199274040-00004
[10] Robertson, D.D., Yuan, J., Bigliani, L.U., et al. (2000) Three-Dimensional Analysis of the Proximal Part of the Humerus: Relevance to Arthroplasty. The Journal of Bone and Joint Surgery. American Volume, 82, 1594-1602.
https://doi.org/10.2106/00004623-200011000-00013
[11] Hertel, R., Knothe, U. and Ballmer, F.T. (2002) Geome-try of the Proximal Humerus and Implications for Prosthetic Design. Journal of Shoulder and Elbow Surgery, 11, 331-338.
https://doi.org/10.1067/mse.2002.124429
[12] Hettrich, C.M., Boraiah, S., Dyke, J.P., et al. (2010) Quantitative Assessment of the Vascularity of the Proximal Part of the Humerus. The Journal of Bone and Joint Surgery. American Volume, 92, 943-948.
https://doi.org/10.2106/JBJS.H.01144
[13] 吴晓明, 王蕾. 浅谈髓内钉治疗肱骨近端骨折的利弊[J]. 中华肩肘外科电子杂志, 2016, 4(4): 193-198.
[14] Wendt, K.W., Jaeger, M., Verbruggen, J., et al. (2021) ESTES Recommen-dations on Proximal Humerus Fractures in the Elderly. European Journal of Trauma and Emergency Surgery, 47, 381-395.
https://doi.org/10.1007/s00068-020-01437-7
[15] Neer, C.S. (1970) Displaced Proximal Humeral Fractures. I. Classification and Evaluation. The Journal of Bone and Joint Surgery. American Volume, 52, 1077-1089.
https://doi.org/10.2106/00004623-197052060-00001
[16] Marongiu, G., Leinardi, L., Congia, S., et al. (2020) Re-liability and Reproducibility of the New AO/OTA 2018 Classification System for Proximal Humeral Fractures: A Com-parison of Three Different Classification Systems. Journal of Orthopaedics and Traumatology, 21, 4.
https://doi.org/10.1186/s10195-020-0543-1
[17] Iordens, G.I., Mahabier, K.C., Buisman, F.E., et al. (2016) The Reliability and Reproducibility of the Hertel Classification for Comminuted Proximal Humeral Fractures Compared with the Neer Classification. Journal of Orthopaedic Science, 21, 596-602.
https://doi.org/10.1016/j.jos.2016.05.011
[18] Hertel, R., Hempfing, A., Stiehler, M., et al. (2004) Predictors of Humeral Head Ischemia after Intracapsular Fracture of the Proximal Humerus. Journal of Shoulder and Elbow Surgery, 13, 427-433.
https://doi.org/10.1016/j.jse.2004.01.034
[19] Komadina, R. (2008) Hip, Osteoporosis: New Paradigm. European Journal of Trauma and Emergency Surgery, 34, 163-170.
https://doi.org/10.1007/s00068-007-7004-x
[20] Helfen, T., Sprecher, C.M., Eberli, U., et al. (2017) High-Resolution Tomography-Based Quantification of Cortical Porosity and Cortical Thickness at the Surgical Neck of the Humerus during Aging. Calcified Tissue International, 101, 271-279.
https://doi.org/10.1007/s00223-017-0279-y
[21] Wong, C.P., Gani, L.U. and Chong, L.R. (2020) Dual-Energy X-Ray Absorptiometry Bone Densitometry and Pitfalls in the Assessment of Osteoporosis: A Primer for the Practicing Clinician. Archives of Osteoporosis, 15, 135.
https://doi.org/10.1007/s11657-020-00808-2
[22] Hanson, B., Neidenbach, P., De Boer, P., et al. (2009) Function-al Outcomes after Nonoperative Management of Fractures of the Proximal Humerus. Journal of Shoulder and Elbow Surgery, 18, 612-621.
https://doi.org/10.1016/j.jse.2009.03.024
[23] Gaebler, C., Mcqueen, M.M. and Court-Brown, C.M. (2003) Mini-mally Displaced Proximal Humeral Fractures: Epidemiology and Outcome in 507 Cases. Acta Orthopaedica Scandinavi-ca, 74, 580-585.
https://doi.org/10.1080/00016470310017992
[24] Bell, J.E., Leung, B.C., Spratt, K.F., et al. (2011) Trends and Variation in Incidence, Surgical Treatment, and Repeat Surgery of Proximal Humeral Fractures in the Elderly. The Jour-nal of Bone and Joint Surgery. American Volume, 93, 121-131.
https://doi.org/10.2106/JBJS.I.01505
[25] Schliemann, B., Wähnert, D., Theisen, C., et al. (2015) How to Enhance the Stability of Locking Plate Fixation of Proximal Humerus Fractures? An Overview of Current Biomechanical and Clinical Data. Injury, 46, 1207-1214.
https://doi.org/10.1016/j.injury.2015.04.020
[26] Sohn, H.S., Jeon, Y.S., Lee, J., et al. (2017) Clinical Comparison between Open Plating and Minimally Invasive Plate Osteosynthesis for Displaced Proximal Humeral Fractures: A Pro-spective Randomized Controlled Trial. Injury, 48, 1175-1182.
https://doi.org/10.1016/j.injury.2017.03.027
[27] Boileau, P., D’ollonne, T., Bessière, C., et al. (2019) Displaced Humeral Surgical Neck Fractures: Classification and Results of Third-Generation Percutaneous Intramedullary Nailing. Journal of Shoulder and Elbow Surgery, 28, 276-287.
https://doi.org/10.1016/j.jse.2018.07.010
[28] Brouwer, M.E., Reininga, I.H.F., El Moumni, M., et al. (2019) Outcomes of Operative and Nonoperative Treatment of 3- and 4-Part Proximal Humeral Fractures in Elderly: A 10-Year Retrospective Cohort Study. European Journal of Trauma and Emergency Surgery, 45, 131-138.
https://doi.org/10.1007/s00068-017-0890-7
[29] Sproul, R.C., Iyengar, J.J., Devcic, Z., et al. (2011) A Systematic Review of Locking Plate Fixation of Proximal Humerus Fractures. Injury, 42, 408-413.
https://doi.org/10.1016/j.injury.2010.11.058
[30] 李波, 熊文峰, 张世民. 锁定钢板治疗肱骨近端骨折中螺钉穿透关节面的研究进展[J]. 中国修复重建外科杂志, 2021, 35(4): 403-408.
[31] Osterhoff, G., Hoch, A., Wanner, G.A., et al. (2012) Calcar Comminution as Prognostic Factor of Clinical Outcome after Locking Plate Fixation of Proxi-mal Humeral Fractures. Injury, 43, 1651-1656.
https://doi.org/10.1016/j.injury.2012.04.015
[32] Gardner, M.J., Weil, Y., Barker, J.U., et al. (2007) The Im-portance of Medial Support in Locked Plating of Proximal Humerus Fractures. Journal of Orthopaedic Trauma, 21, 185-191.
https://doi.org/10.1097/BOT.0b013e3180333094
[33] Shin, M.J., Kim, H., Kim, D.M., et al. (2021) Role of Inferomedial Supporting Screws for Secondary Varus Deformity in Non-Osteoporotic Proximal Humerus Fracture: A Biomechanical Study. Archives of Orthopaedic and Trauma Surgery, 141, 1517-1523.
https://doi.org/10.1007/s00402-020-03627-9
[34] Padegimas, E.M., Zmistowski, B., Lawrence, C., et al. (2017) Defining Optimal Calcar Screw Positioning in Proximal Humerus Fracture Fixation. Journal of Shoulder and Elbow Surgery, 26, 1931-1937.
https://doi.org/10.1016/j.jse.2017.05.003
[35] Flatow, E.L. (2016) Proximal Humeral Fractures: Is Some Varus Acceptable? Commentary on an Article by Marc Schnetzke, MD, et al.: “Quality of Reduction Influences Outcome after Locked-Plate Fixation of Proximal Humeral Type-C Fractures”. The Journal of Bone and Joint Surgery. American Vol-ume, 98, e97.
https://doi.org/10.2106/JBJS.16.00804
[36] Gardner, M.J., Boraiah, S., Helfet, D.L., et al. (2008) Indirect Medial Reduction and Strut Support of Proximal Humerus Fractures Using an Endosteal Implant. Journal of Orthopaedic Trauma, 22, 195-200.
https://doi.org/10.1097/BOT.0b013e31815b3922
[37] Lee, S.H., Han, S.S., Yoo, B.M., et al. (2019) Outcomes of Locking Plate Fixation with Fibular Allograft Augmentation for Proximal Humeral Fractures in Osteoporotic Patients: Comparison with Locking Plate Fixation Alone. The Bone & Joint Journal, 101-b, 260-265.
https://doi.org/10.1302/0301-620X.101B3.BJJ-2018-0802.R1
[38] He, Y., Zhang, Y., Wang, Y., et al. (2017) Biomechanical Evaluation of a Novel Dualplate Fixation Method for Proximal Humeral Fractures without Medial Support. Journal of Orthopaedic Surgery and Research, 12, 72.
https://doi.org/10.1186/s13018-017-0573-4
[39] Theopold, J., Marquas, B., Fakler, J., et al. (2016) The Bicipital Groove as a Landmark for Reconstruction of Complex Proximal Humeral Fractures with Hybrid Double Plate Osteo-synthesis. BMC Surgery, 16, 10.
https://doi.org/10.1186/s12893-016-0125-6
[40] Park, S.G. and Ko, Y.J. (2019) Medial Buttress Plating for Hu-merus Fractures with Unstable Medial Column. Journal of Orthopaedic Trauma, 33, e352-e359.
https://doi.org/10.1097/BOT.0000000000001515
[41] Choi, S., Kang, H. and Bang, H. (2014) Technical Tips: Dualplate Fixation Technique for Comminuted Proximal Humerus Fractures. Injury, 45, 1280-1282.
https://doi.org/10.1016/j.injury.2014.04.029
[42] Foruria, A.M., Martinez-Catalan, N., Valencia, M., et al. (2021) Proximal Humeral Fracture Locking Plate Fixation with Anatomic Reduction, and a Short-and-Cemented-Screws Con-figuration, Dramatically Reduces the Implant Related Failure Rate in Elderly Patients. JSES International, 5, 992-1000.
https://doi.org/10.1016/j.jseint.2021.06.004
[43] Dilisio, M.F., Nowinski, R.J., Hatzidakis, A.M., et al. (2016) In-tramedullary Nailing of the Proximal Humerus: Evolution, Technique, and Results. Journal of Shoulder and Elbow Sur-gery, 25, e130-e138.
https://doi.org/10.1016/j.jse.2015.11.016
[44] Giannoudis, P.V., Xypnitos, F.N., Dimitriou, R., et al. (2012) Inter-nal Fixation of Proximal Humeral Fractures Using the Polarus Intramedullary Nail: Our Institutional Experience and Re-view of the Literature. Journal of Orthopaedic Surgery and Research, 7, 39.
https://doi.org/10.1186/1749-799X-7-39
[45] Von Rüden, C., Trapp, O., Hierholzer, C., et al. (2015) Intramedul-lary Nailing vs. Locking Plate Osteosynthesis in Proximal Humeral Fractures: Long-Term Outcome. Unfallchirurg, 118, 686-692.
https://doi.org/10.1007/s00113-013-2530-y
[46] Sosef, N., Van Leerdam, R., Ott, P., et al. (2010) Minimal Inva-sive Fixation of Proximal Humeral Fractures with an Intramedullary Nail: Good Results in Elderly Patients. Archives of Orthopaedic and Trauma Surgery, 130, 605-611.
https://doi.org/10.1007/s00402-009-1027-1
[47] Stedtfeld, H.W. and Mittlmeier, T. (2007) Fixation of Proximal Humeral Fractures with an Intramedullary Nail: Tipps and Tricks. European Journal of Trauma and Emergency Surgery, 33, 367-374.
https://doi.org/10.1007/s00068-007-7094-5
[48] Hessmann, M.H., Nijs, S., Mittlmeier, T., et al. (2012) Internal Fixation of Fractures of the Proximal Humerus with the MultiLoc Nail. Operative Orthopädie und Traumatologie, 24, 418-431.
https://doi.org/10.1007/s00064-011-0085-z
[49] Wu, L., Jiang, Y., Cao, X., et al. (2021) Efficacies and Complications of Internal Fixations with PHILOS Plate and Intramedullary Multiloc(®) Nails in the Surgical Treatment of Proximal Humerus Fractures. American Journal of Translational Research, 13, 11786-11796.
[50] 高峰, 王秀会, 周小小, 等. 交锁髓内钉与锁定钢板内固定治疗Neer 2、3部分肱骨近端骨折疗效比较[J]. 中国骨与关节损伤杂志, 2017, 32(7): 702-705.
[51] Wang, G., Mao, Z., Zhang, L., et al. (2015) Meta-Analysis of Locking Plate versus In-tramedullary Nail for Treatment of Proximal Humeral Fractures. Journal of Orthopaedic Surgery and Research, 10, 122.
https://doi.org/10.1186/s13018-015-0242-4
[52] Nijs, S. and Broos, P. (2009) Outcome of Shoulder Hemiarthro-plasty in Acute Proximal Humeral Fractures: A Frustrating Meta-Analysis Experience. Acta Orthopaedica Belgica, 75, 445-451.
[53] Boileau, P., Krishnan, S.G., Tinsi, L., et al. (2002) Tuberosity Malposition and Migration: Reasons for Poor Outcomes after Hemiarthroplasty for Displaced Fractures of the Proximal Humerus. Journal of Shoulder and Elbow Surgery, 11, 401-412.
https://doi.org/10.1067/mse.2002.124527
[54] Borowsky, K.A., Prasad, V.R., Wear, L.J., et al. (2013) Is Failure of Tuberosity Suture Repair in Hemi-Arthroplasty for Fracture Mechanical? Journal of Shoulder and Elbow Surgery, 22, 971-978.
https://doi.org/10.1016/j.jse.2012.09.002
[55] Lambert, S.M. (2018) Ischaemia, Healing and Outcomes in Proximal Humeral Fractures. EFORT Open Reviews, 3, 304-315.
https://doi.org/10.1302/2058-5241.3.180005
[56] Chalmers, P.N., Slikker, W., Mall, N.A., et al. (2014) Reverse Total Shoulder Arthroplasty for Acute Proximal Humeral Fracture: Comparison to Open Reduction-Internal Fixation and Hemiarthroplasty. Journal of Shoulder and Elbow Surgery, 23, 197-204.
https://doi.org/10.1016/j.jse.2013.07.044
[57] Brorson, S., Salomonsson, B., Jensen, S.L., et al. (2017) Revision after Shoulder Replacement for Acute Fracture of the Proximal Humerus. Acta Orthopaedica, 88, 446-450.
https://doi.org/10.1080/17453674.2017.1307032
[58] Visser, C.P., Coene, L.N., Brand, R., et al. (2001) Nerve Lesions in Proximal Humeral Fractures. Journal of Shoulder and Elbow Surgery, 10, 421-427.
https://doi.org/10.1067/mse.2001.118002
[59] Werner, B.S., Daggett, M., Carrillon, Y., et al. (2015) Evaluation of Lengthening in Reverse Shoulder Arthroplasty Comparing X-Rays and Computerised Tomography. International Or-thopaedics, 39, 2389-2394.
https://doi.org/10.1007/s00264-015-2780-0