CD4+T淋巴细胞在侵袭性肺部真菌感染的研究进展
Research Progress of CD4+T Lymphocytes in Invasive Pulmonary Fungal Infection
DOI: 10.12677/ACM.2023.134921, PDF, HTML, XML, 下载: 213  浏览: 330 
作者: 高亚梅, 徐思成*:新疆医科大学第一附属医院,新疆 乌鲁木齐
关键词: CD4+T淋巴细胞侵袭性真菌病侵袭性肺部真菌感染CD4+T Lymphocytes Invasive Mycosis Invasive Pulmonary Fungal Infection
摘要: 威胁生命的侵袭性肺部真菌感染(Invasive pulmonary fungal infection)的发病率正在增加,特别是在免疫功能低下的患者中,成功解决IFD需要多种不同的免疫细胞参与。本文主要综述了人类CD4+T淋巴细胞对IFD主要病原体的免疫反应的证据,以及淋巴细胞群在抗真菌免疫中作用的最新发现和见解,以加深淋巴细胞在抗真菌中作用机制的理解,为改进抗真菌治疗提供新的思路。
Abstract: The incidence rate of life threatening invasive pulmonary fungal infection is increasing, especially in patients with low immune function. A variety of different immune cells are needed to successfully solve IFD. This article mainly reviews the evidence of the immune response of human CD4+T lym-phocytes to the main pathogens of IFD, as well as the latest findings and insights on the role of lym-phocyte groups in antifungal immunity, in order to deepen the understanding of the mechanism of lymphocytes in antifungal immunity, and provide new ideas for improving antifungal therapy.
文章引用:高亚梅, 徐思成. CD4+T淋巴细胞在侵袭性肺部真菌感染的研究进展[J]. 临床医学进展, 2023, 13(4): 6572-6576. https://doi.org/10.12677/ACM.2023.134921

1. 引言

侵袭性肺部真菌感染(Invasive pulmonary fungal infection, IPFD)是临床中一种常见的机会性真菌感染 [1] 。随近年来激素、抗肿瘤药物、免疫抑制剂的大量应用,肿瘤及获得性免疫缺陷综合征 [2] 发病率的逐年上升,骨髓及器官移植的成熟化开展,免疫功能低下人群已日益增多,耐药性日益显著。侵袭性真菌已成为继细菌后的第二重要感染源,发病率 [3] 及死亡率逐年上升 [4] [5] [6] ,相关统计数据显示,侵袭性真菌感染比例可占到医院获得性感染的8%~15%,在器官移植受者真群体中的发病率为20%~40%,而在艾滋病患者发生真菌感染的可能性高达90%,尽管抗真菌的非药物问世,但IFI的发病率仍有明显升高的趋势。每年影响全球数十万严重的免疫功能低下患者 [2] ,逐渐成为恶性肿瘤、获得性免疫缺陷综合症及器官移植等重大疾病患者致死的直接原因 [7] ,成为影响重症监护室内重症感染患者病死率的重要因素之一,严重威胁免疫缺陷患者的生命。

IPFD在健康个体中很少见,其发生和恶化通常与免疫抑制和其他导致免疫功能受损的疾病有关 [8] [9] 。在免疫缺陷人群的病死率更高达39%~100%。长期以来,中性粒细胞数量或功能缺陷一直被认为是宿主易发生侵袭性肺真菌病的关键危险因素,但在最近的临床研究发现机体对真菌病原体的免疫反应涉及多种类型的免疫细胞 [10] [11] [12] 。且免疫细胞类型的个体重要性及其各自的免疫反应因特定的真菌病原体而有很大差异。例如,隐球菌和肺孢子虫引起的IFD主要发生在HIV引起的CD4+T细胞缺失的患者身上 [13] [14] 。中性粒细胞功能障碍或中性粒细胞减少被认为是增加侵袭性曲霉菌病和念珠菌病 [8] 风险的主要宿主因素。此外,越来越多的证据表明,淋巴细胞在宿主防御曲霉和念珠菌病 [15] 中也发挥了重要作用。这主要反映在缺乏CD4+ T细胞的艾滋病患者对白色念珠菌、烟曲霉、新型隐球菌、荚膜组织胞浆菌和耶氏肺孢子虫高度敏感。

目前关于淋巴细胞介导的抗真菌免疫的研究大多集中于适应性免疫系统中,如传统的CD4和CD8T细胞、B细胞 [16] [17] 和NK细胞 [18] 。CD4+T辅助性细胞在抗真菌免疫中的重要性随着艾滋病患者真菌感染发生率和严重程度的增加而凸显出来,CD4+T细胞的严重缺失使其更易受到各种真菌病原体的机会性感染,如念珠菌、隐球菌、肺孢子虫、曲霉、青霉菌、链孢杆菌和酵母物种 [13] [14] 。可见CD4T淋巴细胞在侵袭性真菌感染中的重要性,本文主要就CD4+T淋巴细胞在IPFI中的作用机制及T淋巴细胞在临床的运用进展进行综述。

2. CD4+T淋巴细胞的作用机制

CD4+T细胞主要由抗原呈递细胞激活,抗原呈递细胞将真菌抗原呈递到MHC II类分子上,并提供协同刺激和细胞因子信号,触发初始CD4+T细胞极化到不同的T辅助性T细胞(Th)亚群,且控制真菌感染涉及Th细胞亚型间的微妙平衡,即Th1、Th2、Th9、Th17和调节性T细胞(Treg),所有这些细胞都在对真菌的免疫应答中发挥作用,尽管有些贡献可能是致病的,也可能是有益的 [19] [20] 。Th1反应通过产生IFNγ、TNF和GMCSF来增强吞噬细胞的功能,并通过促进B细胞产生调理抗真菌抗体来提供对真菌的保护性免疫。小鼠模型已经证明了Th1免疫的保护作用,例如,曲霉的树突状细胞过继移植通过激活产生IFN-γ的T淋巴细胞 [21] ,增强了小鼠异体造血干细胞移植受体对侵袭性曲霉病的抵抗力。在嗜中性粒细胞减少的小鼠 [22] 和T细胞来源的IFN-γ水平中,曲霉特异性Th1细胞的转移对侵袭性曲霉病具有保护作用,IFN-γ水平与肺组织胞浆菌 [23] 清除相关。

富含细胞因子IL-1、IL-23和IL-6的环境选择了Th17细胞的极性化。Th17细胞释放IL-17A、IL-17F和IL-22。IL-17A促进中性粒细胞招募,并在白色念珠菌感染的解决中发挥关键的、非冗余的作用,这在敲除小鼠模型和IL-17通路基因缺陷的案例中得到了证实 [24] 。然而,与白色念珠菌 [25] 相比,烟曲霉似乎更能触发Th1显性反应,IL-17反应更弱。IL-17是一种多效性细胞因子,可促进致病性炎症的发生和病原体的清除。例如,IL-23缺陷的小鼠在白念珠菌灌胃或烟熏念珠菌鼻内感染后,真菌负担降低,提示Th17细胞可能对抗真菌宿主防御不利 [26] 。先天性Th1或Th17途径分子缺陷的患者真菌感染的发生率增加,提示这些效应细胞在抗真菌免疫中发挥重要作用 [27] [28] 。

Th 2型应答(以IL-13、IL-4、IL-5、IL-10、IL-13和IL-24的表达为特征)通常对真菌病原体清除无效,并可促进真菌持续存在并引发有害的过敏性炎症,例如Th2细胞产生IL-5和嗜酸性粒细胞流入肺部导致过敏性支气管肺曲霉病 [19] 。Th2细胞因子IL-4和IL-10在小鼠感染模型中与疾病进展相关 [22] 。用各种曲霉属抗原接种小鼠显示,这些抗原驱动保护性Th1和有害Th2应答,并且Th1应答对随后的病原体暴露具有保护性。

3. T淋巴细胞的在IPFD中的运用进展

免疫缺陷个体中侵袭性肺部真菌感染的发生率正在增加,抗真菌药物耐药性也在增加 [29] ,这一问题因现有抗真菌药物的缺乏而加剧。在治疗机会性真菌感染时,临床面临的挑战是控制病原体的传播,同时限制缺失的自身免疫反应。这对于免疫功能未受损的个体(如干细胞移植受者)尤其具有挑战性,因为抗真菌药物的功效可能会受到药物相互作用和副作用的阻碍,这可能会阻止长期使用或剂量增加。干细胞移植受者的适应性免疫恢复需要一段时间,因此,通过基于细胞或细胞因子的免疫疗法促进这一过程已被提出作为减少侵袭性真菌感染的治疗途径 [8] [30] [31] 。一些涉及单克隆抗体和小分子抑制剂的靶向免疫系统成分的治疗方法已被批准用于感染性、自身免疫性疾病和癌症的治疗。最近,细胞免疫疗法包括转移效应细胞,激活和扩大体外或设计以提高目标的特异性或功能,随着表达嵌合抗原受体的T细胞(CAR-T细胞)被批准用于某些癌症的治疗,已经走到了前沿。

此外,真菌特异性T细胞的表型差异已在循环和粘膜间的间隔间被注意到。例如,在烟曲霉抗原刺激的情况下,来自健康成人献血者外周血的特异性效应记忆CD4+T细胞表现出主要的Th1表型,而来自细支气管灌洗液的曲霉特异性效应记忆CD4+T细胞表现出Th17表型,IL-17显著产生,IFN-γ很少 [32] 。这表明在循环T细胞和组织驻留T细胞亚群之间存在显著差异,在单个解剖位置评估免疫反应可能是误导。因此,需要进一步的工作来优化利用非常规淋巴细胞的免疫治疗潜力。

4. 小结与展望

T淋巴细胞在侵袭性肺部真菌感染中发挥着重要作用,尤其是CD4+T淋巴细胞。尽管CD4+T淋巴细胞及其亚群作为免疫效应因子的应用仍有待研究,但此类细胞驱动真菌感染患者体内真菌物种发生反应,从而为潜在免疫治疗靶点提供依据,使其可能在未来侵袭性真菌疾病的治疗中有一席之地。然而,在淋巴细胞的抗真菌特性被成功用于免疫治疗之前,还需要进行更多的研究,诸如成本等问题也需要解决。

NOTES

*通讯作者。

参考文献

[1] (2020) The Chinese Guidelines for the Diagnosis and Treatment of Invasive Fungal Disease in Patients with Hematolog-ical Disorders and Cancers (the 6th Revision). Chinese Journal of Internal Medicine, 59, 754-763.
[2] Brown, G.D., Denning, D.W., Gow, N.A., et al. (2012) Hidden Killers: Human Fungal Infections. Science Translational Medicine, 4, 165rv13.
https://doi.org/10.1126/scitranslmed.3004404
[3] Ye, F., Xie, J.X., Zeng, Q.S., et al. (2012) Retrospec-tive Analysis of 76 Immunocompetent Patients with Primary Pulmonary Cryptococcosis. Lung, 190, 339-346.
https://doi.org/10.1007/s00408-011-9362-8
[4] Hsu, L.Y., Lee, D.G., Yeh, S.P., et al. (2015) Epidemiology of Invasive Fungal Diseases among Patients with Haematological Disorders in the Asia-Pacific: A Prospective Observa-tional Study. Clinical Microbiology and Infection, 21, 594.e7-11.
https://doi.org/10.1016/j.cmi.2015.02.019
[5] Valentine, J.C., Morrissey, C.O., Tacey, M.A., et al. (2020) A Pop-ulation-Based Analysis of Attributable Hospitalisation Costs of Invasive Fungal Diseases in Haematological Malignancy Patients Using Data Linkage of State-Wide Registry and Costing Databases: 2009-2015. Mycoses, 63, 162-171.
https://doi.org/10.1111/myc.13033
[6] Jeong, W., Keighley, C., Wolfe, R., et al. (2019) The Epidemiology and Clinical Manifestations of Mucormycosis: A Systematic Review and Meta-Analysis of Case Reports. Clinical Microbi-ology and Infection, 25, 26-34.
https://doi.org/10.1016/j.cmi.2018.07.011
[7] Liao, Y., Chen, M., Hartmann, T., et al. (2013) Epidemiology of Opportunistic Invasive Fungal Infections in China: Review of Literature. Chinese Medical Journal, 126, 361-368.
[8] Lionakis, M.S. and Levitz, S.M. (2018) Host Control of Fungal Infections: Lessons from Basic Studies and Human Cohorts. Annual Review of Immunology, 36, 157-191.
https://doi.org/10.1146/annurev-immunol-042617-053318
[9] Gao, Y. and Soubani, A. (2019) Advances in the Diagnosis and Management of Pulmonary Aspergillosis. Advances in Respiratory Medicine, 87, 231-243.
https://doi.org/10.5603/ARM.2019.0061
[10] Wald, A., Leisenring, W., Van Burik, J.A., et al. (1997) Epidemiol-ogy of Aspergillus Infections in a Large Cohort of Patients Undergoing Bone Marrow Transplantation. The Journal of Infectious Diseases, 175, 1459-1466.
https://doi.org/10.1086/516480
[11] Kontoyiannis, D.P. and Bodey, G.P. (2002) Invasive Aspergillosis in 2002: An Update. European Journal of Clinical Microbiology & Infectious Diseases, 21, 161-172.
https://doi.org/10.1007/s10096-002-0699-z
[12] Marr, K.A., Carter, R.A., Crippa, F., et al. (2002) Epidemiology and Outcome of Mould Infections in Hematopoietic Stem Cell Transplant Recipients. Clinical Infectious Diseases, 34, 909-917.
https://doi.org/10.1086/339202
[13] Kaur, R., Dhakad, M.S., Goyal, R., et al. (2016) Spectrum of Op-portunistic Fungal Infections in HIV/AIDS Patients in Tertiary Care Hospital in India. Canadian Journal of Infectious Diseases and Medical Microbiology, 2016, Article ID: 2373424.
https://doi.org/10.1155/2016/2373424
[14] Benito, N., Moreno, A., Miro, J.M., et al. (2012) Pulmonary Infections in HIV-Infected Patients: An Update in the 21st Century. European Respiratory Journal, 39, 730-745.
https://doi.org/10.1183/09031936.00200210
[15] Van de Veerdonk, F.L. and Netea, M.G. (2010) T-Cell Subsets and Antifungal Host Defenses. Current Fungal Infection Reports, 4, 238-243.
https://doi.org/10.1007/s12281-010-0034-6
[16] Speakman, E.A., Dambuza, I.M., Salazar, F., et al. (2020) T Cell Antifungal Immunity and the Role of C-Type Lectin Receptors. Trends in Immunology, 41, 61-76.
https://doi.org/10.1016/j.it.2019.11.007
[17] Verma, A., Wüthrich, M., Deepe, G., et al. (2014) Adaptive Immunity to Fungi. Cold Spring Harbor Perspectives in Medicine, 5, a019612.
https://doi.org/10.1101/cshperspect.a019612
[18] Schmidt, S., Tramsen, L. and Lehrnbecher, T. (2017) Natural Killer Cells in Antifungal Immunity. Frontiers in Immunology, 8, 1623.
https://doi.org/10.3389/fimmu.2017.01623
[19] Mcdermott, A.J. and Klein, B.S. (2018) Helper T-Cell Responses and Pulmonary Fungal Infections. Immunology, 155, 155-163.
https://doi.org/10.1111/imm.12953
[20] Dewi, I.M.W., Van de Veerdonk, F.L. and Gresnigt, M.S. (2017) The Multifaceted Role of T-Helper Responses in Host De-fense against Aspergillus fumigatus. Journal of Fungi (Basel), 3, 55.
https://doi.org/10.3390/jof3040055
[21] Bozza, S., Perruccio, K., Montagnoli, C., et al. (2003) A Dendritic Cell Vaccine against Invasive Aspergillosis in Allogeneic Hematopoietic Transplantation. Blood, 102, 3807-3814.
https://doi.org/10.1182/blood-2003-03-0748
[22] Cenci, E., Mencacci, A., Bacci, A., et al. (2000) T Cell Vaccina-tion in Mice with Invasive Pulmonary Aspergillosis. The Journal of Immunology, 165, 381-388.
https://doi.org/10.4049/jimmunol.165.1.381
[23] Lin, J.S. and Wu-Hsieh, B.A. (2004) Functional T Cells in Pri-mary Immune Response to Histoplasmosis. International Immunology, 16, 1663-1673.
https://doi.org/10.1093/intimm/dxh168
[24] Sparber, F. and Leibundgut-Landmann, S. (2019) Interleukin-17 in Antifungal Immunity. Pathogens, 8, 54.
https://doi.org/10.3390/pathogens8020054
[25] Chai, L.Y., Van De Veerdonk, F., Marijnissen, R.J., et al. (2010) Anti-Aspergillus Human Host Defence Relies on Type 1 T Helper (Th1), Rather than Type 17 T Helper (Th17), Cellular Immunity. Immunology, 130, 46-54.
https://doi.org/10.1111/j.1365-2567.2009.03211.x
[26] Curtis, M.M. and Way, S.S. (2009) Interleukin-17 in Host Defence against Bacterial, Mycobacterial and Fungal Pathogens. Immunology, 126, 177-185.
https://doi.org/10.1111/j.1365-2567.2008.03017.x
[27] De Beaucoudrey, L., Samarina, A., Bustamante, J., et al. (2010) Revisiting Human IL-12Rβ1 Deficiency: A Survey of 141 Patients from 30 Countries. Medicine, 89, 381-402.
https://doi.org/10.1097/MD.0b013e3181fdd832
[28] Cypowyj, S., Picard, C., Maródi, L., et al. (2012) Immunity to Infection in IL-17-Deficient Mice and Humans. European Journal of Immunology, 42, 2246-2254.
https://doi.org/10.1002/eji.201242605
[29] Wiederhold, N.P. (2017) Antifungal Resistance: Current Trends and Future Strategies to Combat. Infection and Drug Resistance, 10, 249-259.
https://doi.org/10.2147/IDR.S124918
[30] Kumaresan, P.R., Da Silva, T.A. and Kontoyiannis, D.P. (2017) Meth-ods of Controlling Invasive Fungal Infections Using CD8+ T Cells. Frontiers in Immunology, 8, 1939.
https://doi.org/10.3389/fimmu.2017.01939
[31] Lauruschkat, C.D., Einsele, H. and Loeffler, J. (2018) Immuno-modulation as a Therapy for Aspergillus Infection: Current Status and Future Perspectives. Journal of Fungi (Basel), 4, 137.
https://doi.org/10.3390/jof4040137
[32] Jolink, H., De Boer, R., Hombrink, P., et al. (2017) Pulmonary Im-mune Responses against Aspergillus fumigatus Are Characterized by High Frequencies of IL-17 Producing T-Cells. Journal of Infection, 74, 81-88.
https://doi.org/10.1016/j.jinf.2016.10.010