维持性血液透析患者发生心血管事件的非传统影响因素分析
Analysis of Non-Traditional Factors Influencing Cardiovascular Events in Maintenance Hemodialysis Patients
DOI: 10.12677/ACM.2023.134869, PDF, HTML, XML, 下载: 189  浏览: 308 
作者: 李 珂:延安大学附属医院肾内科,陕西 延安
关键词: MHDCVE因素MHD CVE Factor
摘要: 目前我国慢性肾脏病(Chronic kidney disease, CKD)的发病率越来越高,导致维持性血液透析(Maintenance hemodialysis, MHD)患者人数急剧增加,其中心血管事件(Cardiovascular event, CVE)是MHD患者死亡的主要原因。本文旨在对MHD患者发生CVE的非传统危险因素进行综述,为今后临床工作提供更多的指导意义。
Abstract: Currently, the increasing incidence of Chronic kidney disease (CKD) has led to a sharp increase in the number of patients with Maintenance hemodialysis (MHD). Cardiovascular event (CVE) is the main cause of death in MHD patients. This paper aims to review the non-traditional risk factors for CVE in MHD patients, and provide more guidance for future clinical work.
文章引用:李珂. 维持性血液透析患者发生心血管事件的非传统影响因素分析[J]. 临床医学进展, 2023, 13(4): 6168-6175. https://doi.org/10.12677/ACM.2023.134869

1. 引言

随着经济的迅速发展,我国人民饮食内容和生活方式发生了很大的变化,这使得我国人口的主要疾病已从传染病转变为非传染性疾病,而CKD是非传染性疾病中占重要比例的一种疾病,已经成为目前公民极度重视的公共健康问题。据统计,全球CKD的患病率为9.1% [1] 。我国部分CKD患者在就诊时已经发展为终末期肾脏病(End stage renal disease, ESRD),最终不得不接受肾脏替代治疗,尤其是血液透析治疗 [2] 。长时间的血液透析会引发很多并发症,其中心血管疾病(Cardiovascular diseases, CVD)是患者发病和死亡的主要原因 [3] [4] 。

除了如年龄、性别、吸烟史、高血压、糖尿病、血脂代谢异常、缺乏体力劳动等传统危险因素外,还有长期透析等引发的并发症如肾性贫血、矿物质代谢紊乱、慢性微炎症状态、氧化应激、营养不良、尿毒症毒素聚积等非传统危险因素,都参与了MHD患者发生心血管事件的整个过程 [5] 。本研究主要探讨MHD患者发生CVE的非传统相关危险影响因素,如下所示。

2. 贫血

根据2021年改善全球预后(KDIGO)临床实践指南,CKD患者发生的贫血被定义为男性血红蛋白(Hb) < 130 g/L,非孕妇女性Hb < 120 g/L [6] 。MHD患者往往存在不同程度的贫血,主要原因是肾功能减退导致促红细胞生成素(EPO)生成绝对或相对不足,以及体内慢性微炎症、营养不良和毒素堆积等综合因素参与而发生的贫血 [7] 。据统计,MHD患者贫血的发生率、住院率和死亡率很高。在美国非透析依赖型CKD患者中,随着患者年龄的增加,贫血的患病率从18岁的28.0%增加到66岁的将近50% [8] 。美国一项研究发现,当MHD患者血红蛋白水平低于11 g/dL时,其住院风险增加18%至38%不等 [9] 。作为心血管事件的非传统因素,丹麦一项对CKD患者的研究发现,贫血与主要不良心血管事件、住院和全因死亡的风险增加有关 [10] 。并且研究显示,血红蛋白每下降5 g/L,心肌缺血发生率增加3~6倍,左心室肥厚的危险性增加32% [11] 。关于MHD患者贫血引发心血管疾病发生的机制,原因尚不完全清楚,推测可能与其携氧能力下降引起组织的氧供减少、心脏负荷增加有关。研究表明,贫血可引起透析期间患者身体发生一些变化,尤其长时间处于这种状态中会导致交感神经兴奋、心率上升以及心肌细胞缺氧,进而出现心肌肥厚和血管重塑等表现,最终导致心力衰竭、心肌梗死等心血管疾病的发生 [12] 。目前很多研究数据表明微炎症状态是一个肾性贫血患者发生心血管事件相关性很强的因素。肾性贫血患者血红蛋白偏低,会出现肿瘤坏死因子-α、白细胞介素-6等炎症因子增多、免疫力下降,使得机体常常处于微炎症状态 [13] 。这些细胞因子可以抑制肾EPO的产生,这可能解释了促红细胞生成素反应减弱的原因,同时它们也抑制骨髓红系祖细胞增殖,干扰各种免疫应答的发生,使得脂质过氧化物等堆积,加重MDH患者贫血的发生发展,最终可能导致心肌的损伤 [14] 。

3. 矿物质代谢紊乱

矿物质代谢紊乱在临床中是MHD患者很常见的并发症之一,可表现为低血钙、高血磷以及甲状旁腺激素等相关调节激素的紊乱、骨营养不良、骨质疏松、血管及软组织钙化 [15] 。由于肾功能逐渐损害,钙的吸收受到阻碍,加上维生素D水平的减少以及磷的排泄减少,导致体内高血磷和低血钙,引起机体继发性甲旁亢,继而发生钙异位沉积引起血管钙化,尤其是动脉内膜和中膜部位,是心血管疾病发生及死亡的独立危险因素 [16] 。Foley等人 [17] 在四百多名ESKD患者的研究中,发现低血钙和高血磷与MHD患者死亡率独立相关, 而后发现PTH引发的高血钙与CVE的死亡率有显著的相关性。关于MHD患者钙磷水平紊乱导致CVE发生的生化机制并没有完全明确。研究表明,血磷水平升高会诱发成纤维细胞生长因子-23 (FGF-23)和甲状旁腺激素(PTH)的合成分泌增加,而FGF-23和PTH均可增加尿液中磷酸盐的排泄,减少骨化三醇的生成,血磷水平越高,预示着CVE发生的风险越高 [18] [19] [20] 。血液中钙、磷浓度的增加促进血管中钙磷复合物沉积,尤其高血磷会导致血管平滑肌细胞释放一种与细胞外基质结合的基质小泡,小泡中含有碱性磷酸酶(ALP),会导致骨样钙化斑块形成从而促进CVD的发生发展 [21] [22] 。

如上述所示,FGF-23是一种由破骨细胞和骨细胞分泌的蛋白质,抑制甲状旁腺中1,25-羟基维生素D的合成来降低磷水平 [23] ,与血管钙化、心室肥大、动脉粥样硬化预后以及心血管事件的发生和死亡率显著相关,FGF-23升高会使MHD患者全因死亡率升高25%,使发生CVD事件的相关风险增加22% [24] 。高钙低磷引发血管钙化还涉及许多其他因素,如骨保护素水平异常等,还需要进一步探索。

4. 慢性炎症

MHD患者出现的慢性炎症是一种缓慢、持续性的免疫炎症,主要表现为全身循环中炎性细胞因子如白介素-1 (interleukin-1, IL-1)、白介素-6 (interleukin-6, IL-6)、C反应蛋白(CRP)、肿瘤坏死因子-α (TNF-α)、单核细胞螯合蛋白-1 (MCP-1)等水平的升高 [25] 。在MHD治疗的早期,中性粒细胞发生凋亡而会短暂减少。抗髓过氧化物酶抗体(MPO)是一种抗中性粒细胞胞质抗体(ANCA),MPO的释放增加以及血液和透析膜接触后补体的替代和凝集素途径激活引起的中性粒细胞过度减少被认为是MHD患者慢性炎症发生的一种病理机制 [26] [27] 。研究表明,大多数炎症相关生物标记物在MHD患者中升高,这些生物标记物和此类患者CVE的发生相关。

4.1. 白介素-6 (IL-6)

IL-6广泛表达于淋巴细胞中。Thang等人在对将近50名长期血液透析患者进行随访后发现,在MHD患者中,IL-6相较于CRP对心血管疾病有更准确的预测意义,能更好的反应炎症和心血管疾病的关系,也是此类患者CVD死亡率的强预测因子 [28] [29] 。同样Song等人通过对照研究发现,健康组血浆IL-6水平明显比缺血性卒中患者的高 [30] 。研究表明,IL-6可促进巨噬细胞生成,巨噬细胞被IL-6激活后会分泌趋化单核细胞的蛋白质,这种蛋白质将单核细胞聚集到内皮下参与斑块形成,同时巨噬细胞吞噬低密度脂蛋白并分泌相关蛋白溶解酶,参与泡沫细胞的形成,引起斑块破裂,增加CVE的发生风险 [31] 。不仅如此,IL-6可以通过代谢、促进内皮功能紊乱和促凝血等机制参与动脉粥样硬化斑块的形成,它还可以诱导同样在动脉粥样硬化形成中发挥作用的T细胞增殖分化。由此可以确定IL-6是MHD患者发生CVD必不可少的因素。

4.2. C反应蛋白(CRP)

CRP是一种常见的炎性细胞因子,通常表达于平滑肌细胞、巨噬细胞、内皮细胞和淋巴细胞等细胞中。CRP由于其直接的促炎效应,可以说是CKD与心血管疾病之间的桥梁 [32] 。流行病学资料显示,CRP水平与CVD风险密切相关。一般人群中,CRP被认为是CVD风险的独立预测因子,当CRP水平为 > 3.0时,冠心病风险增加超过50% [33] ,而血液透析患者由于体内尿毒症毒素的作用及持续性炎症状态的存在,使其发生CVD的风险更高。据研究,CRP能抑制内皮细胞粘附分子等而导致内皮功能障碍,并与泡沫细胞等沉积在血管壁内,通过诱导白细胞粘附迁移、激活补体系统释放氧自由基增加炎症反应,造成血管内皮损伤,参与动脉粥样硬化的形成过程,从而进一步诱导心血管事件的发生、发展 [34] 。

5. 氧化应激

由于患者长期的血液透析,氧化应激(oxidative stress, OS)在MHD患者不良事件的发生中起着不可忽视的作用。炎症和OS之间有着密切的联系:炎症可以诱导OS,后者反过来增加炎症状态 [35] 。机体遭受一定的有害刺激后会产生大量的活性氧自由基(Reactive oxygen radicals, ROS),氧化应激被定义为机体ROS等的产生和消除之间的平衡被打破,从而使组织细胞受损 [36] 。研究证明,OS在血液透析中非常常见,并通过促进肾缺血、刺激肾小球细胞损伤、诱导细胞凋亡和刺激产生炎症来促进肾损害的发展 [37] 。此外,OS与肾性贫血和心血管等疾病相关,是MHD患者死亡率和发病率的独立预测因子 [38] [39] 。大量证据表明,心血管疾病中ROS的主要来源是由膜相关酶复合物NADPH氧化酶产生的,该酶复合物在内皮细胞、心肌细胞及成纤维细胞产生大量的超氧阴离子( O 2 ) [40] [41] 。这些ROS可促进低密度脂蛋白(LDL)氧化、巨噬细胞招募的上调、内皮功能障碍以及通过胶原降解和斑块破裂进行的细胞外基质重塑,使心肌结构和功能发生改变,促进了心血管疾病的发生 [42] 。

6. 营养不良

MHD患者普遍存在营养不良的情况,血清白蛋白水平和BMI作为评估营养状况的工具,经常用于临床实践。关于透析患者发生营养不良的原因有以下几个方面:1) 蛋白质丢失和能量摄入不足。据统计患者每次血液透析有大约10 g左右的氨基酸被清除和200~480 kcal的能量丢失,同时伴随着多种维生素的丢失 [43] 。2) 炎症状态和毒素蓄积。MHD患者食欲减退、消化不良以及胃肠功能紊乱可能和微炎症状态有关,并且会使蛋白质分解代谢速度加快 [44] 。3) 激素紊乱。如PTH增加、胰岛素样生长因子-1 (IGF-1)水平降低等,可引起糖类、蛋白质及脂肪的代谢紊乱,导致负氮平衡 [45] 。4) 免疫力底下。免疫力底下的患者机体容易发生感染,一直处于高代谢状态,营养状况容易恶化。营养不良临床表现多为体重下降、乏力、消瘦等相关症状。随着透析时间的延长,一些营养相关的生化指标水平下降,如低白蛋白血症、低前白蛋白血症和低胆固醇血症。研究表明,营养不良是冠心病稳定期心肌损害患者发生CVD的独立危险因素 [46] 。根据全球营养不良领导倡议(GLIM)标准定义的营养不良与CVD患者身体功能低下和死亡风险增加有关,可以作为CVD患者预后的指标 [47] 。这可能是因为营养不良会导致机体合成代谢抵抗、血流量降低、内皮细胞再生功能受损、线粒体功能障碍和胰岛素抵抗等 [48] 。同样目前的证据表明营养不良和炎症密切相关,可以共同促进VCD的发生,至于如何共同引起CVD的机制没有完全明确,还需进一步探索。

7. 尿毒症毒素

尿毒症毒素是CKD患者随着病情发展而逐渐升高的有毒物质。目前已经证实尿毒症毒素会在CKD患者,尤其MHD患者并发CVD的发病率和死亡率中发挥重要作用。硫酸吲哚酚(in-doxyl sulfate, IS)和硫酸对甲酚(p-cresol sulfate, PCS)属于肠源性的蛋白质结合类尿毒症毒素(protein-bound uremic toxins, PBUTs),是公认的心血管毒素,尤其IS在CKD期间主要参与心血管疾病的发病机制。

7.1. 硫酸吲哚酚

IS是一种内皮毒素,主要由色氨酸代谢而来,色氨酸在体内被代谢为吲哚而被肠道吸收,继而在肝脏中代谢为IS [49] 。Barreto等人研究显示,IS浓度是不同阶段CKD患者死亡率和心血管事件的有力预测因子 [50] 。IS在CKD患者中大量积累,并对白蛋白具有高亲和力,这种情况阻碍了它被HD去除,因此浓度可比健康人增加50倍,主要参与CKD患者心血管疾病的发生 [51] 。在内皮细胞中,IS减少低氧诱导的内皮细胞祖细胞(EPC)迁移和毛细血管形成,抑制内皮细胞增殖 [52] 。同时,IS还能促进与内皮功能障碍有关的促氧化、促炎性活化,引发免疫炎症过程,这种功能障碍容易导致动脉硬化、血管修复改变 [53] 。据Chitalia等人研究表明IS还是一种潜在的CKD相关的促血栓因素,在血管平滑肌细胞中通过诱导组织因子,并以组织因子依赖的方式增加血管介入后血栓形成的风险 [54] 。IS还可以促进心肌细胞肥大,某实验发现,IS可提高心肌细胞内的ROS水平、抑制AMP活化蛋白激酶(AMPK)形成,从而导致培养的大鼠心肌细胞内蛋白质合成增加,细胞体积变大 [55] 。

7.2. 硫酸对甲酚

PCS是肠道厌氧菌对苯丙氨酸和酪氨酸分解的终产物,经肠道吸收后主要由肾小管分泌,随着尿液排出。健康的肾脏可以有效地清除PCS,但CKD患者由于肾脏功能的损伤,代谢毒物排泄出现障碍,从而引起PCS等毒物的蓄积 [56] 。研究显示,PCS是老年MHD患者全因死亡与发生心血管事件的独立危险因素,另一研究显示,在血清白蛋白较低的MHD患者中,水平较高的PCS患者发生心源性死亡风险较高 [57] [58] 。PCS通过增加白细胞、内皮细胞和血管平滑肌细胞中ROS的生成而诱导氧化应激。同时通过促进肾上腺素诱导的血管收缩、减少血管的管腔膜面积和促进心肌细胞凋亡来损害心血管组织,使心肌重塑,最终导致CVE的发生 [59] 。

8. 结论

综上所述,CKD患者尤其长期进行MHD的患者CVE的发生率及死亡率很高,且病理机制较为复杂,各种危险因素间相辅相成,比如尿毒症毒素能刺激内皮细胞产生细胞外小泡(EV)从而促进邻近细胞的钙和磷代谢效应 [60] 。尿毒症毒素如IS、PCS等联合营养不良参与CKD的炎症状态 [61] 。因此在临床诊疗和危险因素分析时需多方面考虑,有利于降低患者发病率和死亡率。同时有很多新型的非传统因素也会导致这种疾病的发生,通过临床和实验更好的研究是很有必要的。

参考文献

[1] Bikbov, B., Purcell, C.A., Levey, A.S., et al. (2020) Global, Regional and National Burden of Chronic Kidney Disease, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 395, 709-733.
[2] 张艾佳, 张睿, 张睿. 单中心维持性血液透析患者的流行病学特征[J]. 中国老年学杂志, 2019, 39(18): 4514-4516.
[3] Fox, C.S., Matsushita, K., Woodward, M., et al. (2012) Associations of Kidney Disease Measures with Mortality and End-Stage Renal Disease in Individuals with and without Diabetes: A Meta-Analysis of 1024977 Individuals. The Lancet, 380, 1662-1673.
https://doi.org/10.1016/S0140-6736(12)61350-6
[4] Mahmoodi, B.K., Matsushita, K., Woodward, M., et al. (2012) Associations of Kidney Disease Measures with Mortality and End-Stage Renal Disease in Individuals with and without Hypertension: A Meta-Analysis. The Lancet, 380, 1649-1661.
https://doi.org/10.1016/S0140-6736(12)61272-0
[5] Cozzolino, M., Mangano, M., Stucchi, A., Ciceri, P., Conte, F. and Galassi, A. (2018) Cardiovascular Disease in Dialysis Patients. Nephrology Dialysis Transplantation, 33, 1028-1034.
https://doi.org/10.1093/ndt/gfy174
[6] Bonomini, M., Del Vecchio, L., Sirolli, V. and Locatelli, F. (2016) New Treatment Approaches for the Anemia of CKD. American Journal of Kidney Diseases, 67, 133-142.
https://doi.org/10.1053/j.ajkd.2015.06.030
[7] Babitt, J.L. and Lin, H.Y. (2012) Mechanisms of Anemia in CKD. Journal of the American Society of Nephrology, 23, 1631-1634.
https://doi.org/10.1681/ASN.2011111078
[8] St Peter, W.L., Guo, H., Kabadi, S., et al. (2018) Prevalence, Treatment Patterns and Healthcare Resource Utilization in Medicare and Commercially Insured Non-Dialysis-Dependent Chronic Kidney Disease Patients with and without Anemia in the United States. BMC Nephrology, 19, 67-77.
[9] Lacson, E.J., Wang, W., Hakim, R.M., Teng, M. and Lazarus, J.M. (2009) Associates of Mortality and Hospitalization in Hemodialysis: Potentially Actionable Laboratory Variables and Vascular Access. American Journal of Kidney Diseases, 53, 79-90.
https://doi.org/10.1053/j.ajkd.2008.07.031
[10] Toft, G., Heide-Jørgensen, U., van Haalen, H., et al. (2020) Anemia and Clinical Outcomes in Patients with Non-Dialysis Dependent or Dialysis Dependent Severe Chronic Kidney Disease: A Danish Population-Based Study. Journal of Nephrology, 33, 147-156.
https://doi.org/10.1007/s40620-019-00652-9
[11] Madhumathi, R., Brian, J.G. and Per-Eira, A. (2013) Prospective Trials on Anemia of Chronic Disease: The Trial to Reduce Cardiovascular Events with Aranesp Therapy (TREAT). Kidney International, 64, S12-S19.
https://doi.org/10.1046/j.1523-1755.64.s87.21.x
[12] Sud, M. and Naimark, D.M. (2016) Cardiovascular Disease in Chronic Kidney Disease in 2015. Current Opinion in Nephrology and Hypertension, 25, 203-207.
https://doi.org/10.1097/MNH.0000000000000213
[13] Deswal, A., Petersen, N.J., Feldman, A.M., Young, J.B., White, B.G. and Mann, D.L. (2001) Cytokines and Cytokine Receptors in Advanced Heart Failure: An Analysis of the Cytokine Database from the Vesnarinone Trial (VEST). Circulation, 103, 2055-2059.
https://doi.org/10.1161/01.CIR.103.16.2055
[14] van der Meer, P., Voors, A.A., Lipsic, E., Smilde, T.D., van Gilst, W.H. and van Veldhuisen, D.J. (2004) Prognostic Value of Plasma Erythropoietin on Mortality in Patients with Chronic Heart Failure. Journal of the American College of Cardiology, 44, 63-67.
https://doi.org/10.1016/j.jacc.2004.03.052
[15] Uhlig, K., Berns, J.S., Kestenbaum, B., et al. (2010) KDOQI US Commentary on the 2009 KDIGO Clinical Practice Guideline for the Diagnosis, Evaluation and Treatment of CKD-Mineral and Bone Disorder (CKD-MBD). American Journal of Kidney Diseases, 55, 773-799.
https://doi.org/10.1053/j.ajkd.2010.02.340
[16] 吴珂, 彭荣. 高通量血液透析对维持性血液透析患者钙磷代谢及营养状况的影响[J]. 中外医学研究, 2021, 19(21): 171-173.
[17] Foley, R.N., Parfrey, P.S., Harnett, J.D., et al. (2013) Hypocalcemia, Morbidity and Mortality in End-Stage Renal Disease. Nature Reviews Nephrology, 9, 438-439.
[18] Lunyera, J. and Scialla, J.J. (2018) Update on Chronic Kidney Disease Mineral and Bone Disorder in Cardiovascular Disease. Seminars in Nephrology, 38, 542-558.
https://doi.org/10.1016/j.semnephrol.2018.08.001
[19] Naveh-Many, T. and Silver, J. (2017) The Pas de Trois of Vitamin D, FGF23 and PTH. Journal of the American Society of Nephrology, 28, 393-395.
https://doi.org/10.1681/ASN.2016090944
[20] Dominguez, J.R., Kestenbaum, B., Chonchol, M., et al. (2013) Relationships between Serum and Urine Phosphorus with All-Cause and Cardiovascular Mortality: The Osteoporotic Fractures in Men (MrOS) Study. American Journal of Kidney Diseases, 61, 555-563.
https://doi.org/10.1053/j.ajkd.2012.11.033
[21] Wang, T.K., Bolland, M.J., van Pelt, N.C., et al. (2010) Rela-tionships between Vascular Calcification, Calcium Metabolism, Bone Density and Fractures. Journal of Bone and Mineral Research, 25, 2777-2785.
https://doi.org/10.1002/jbmr.183
[22] Bansal, N., Xie, D., Tao, K., et al. (2016) Atrial Fibrillation and Risk of ESRD in Adults with CKD. Clinical Journal of the American Society of Nephrology, 11, 1189-1196.
https://doi.org/10.2215/CJN.10921015
[23] Erben, R.G. and Andrukhova, O. (2017) FGF23-Klotho Signaling Axis in the Kidney. Bone, 100, 62-68.
[24] Haynes, R. and Wheeler, D.C. (2013) Chronic Kidney Disease: Does Serum Phosphate Predict Death and ESRD in CKD Patients? Nature Reviews Nephrology, 9, 438-439.
https://doi.org/10.1038/nrneph.2013.128
[25] Hempel, J.C., Poppelaars, F., da Costa, M.G., Franssen, C.F., de Vlaam, T.P., Daha, M.R., Berger, S.P., Seelen, M.A.J. and Gaillard, C.A.J.M. (2017) Distinct In Vitro Complement Ac-tivation by Various Intravenous Iron Preparations. American Journal of Nephrology, 45, 49-59.
https://doi.org/10.1159/000451060
[26] Fukushi, T., Yamamoto, T., Yoshida, M., Fujikura, E., Miyazaki, M. and Nakayama, M. (2020) Enhanced Neutrophil Apoptosis Accompanying Myeloperoxidase Release during Hemodialysis. Scientific Reports, 10, Article No. 21747.
https://doi.org/10.1038/s41598-020-78742-z
[27] Yoon, J.W., Pahl, M.V. and Vaziri, N.D. (2007) Spontaneous Leukocyte Activation and Oxygen-Free Radical Generation in End-Stage Renal Disease. Kidney International, 71, 167-172.
https://doi.org/10.1038/sj.ki.5002019
[28] Braunwald, E. and Kloner, R.A. (1982) The Stunned Myo-cardium: Prolonged, Postischemic Ventricular Dysfunction. Circulation, 66, 1146-1149.
https://doi.org/10.1161/01.CIR.66.6.1146
[29] Sun, J., Axelsson, J., Machowska, A., et al. (2016) Biomarkers of Cardiovascular Disease and Mortality Risk in Patients with Advanced CKD. Clinical Journal of the American Society of Nephrology, 11, 1163-1172.
https://doi.org/10.2215/CJN.10441015
[30] Song, J.W., Song, K.S., Choi, J.R., et al. (2006) Plasma Level of IL-6 and Its Relationship to Procoagulant and Fibrinolytic Markers in Acute Ischemic Stroke. Yonsei Medical Journal, 47, 201-206.
https://doi.org/10.3349/ymj.2006.47.2.201
[31] Schuett, H., Luchtefeld, M., Grothusen, C., Grote, K. and Schieffer, B. (2009) How Much Is too Much? Interleukin-6 and Its Signalling in Atherosclerosis. Thrombosis and Haemostasis, 102, 215-222.
https://doi.org/10.1160/TH09-05-0297
[32] Palazzuoli, A., Gallotta, M., Iovine, F., et al. (2008) Anaemia in Heart Failure: A Common Inter Action with Renal Insufficiency Called the Cardio-Renal Anaemia Syndrome. International Journal of Clinical Practice, 62, 281-286.
https://doi.org/10.1111/j.1742-1241.2007.01650.x
[33] Buckley, D.I., Fu, R., Freeman, M., Rogers, K. and Helfand, M. (2009) C-Reactive Protein as a Risk Factor for Coronary Heart Disease: A Systematic Review and Me-ta-Analyses for the U.S. Preventive Services Task Force. Annals of Internal Medicine, 151, 483-495.
https://doi.org/10.7326/0003-4819-151-7-200910060-00009
[34] 饶甲环, 马煜盛, 龙洁旎, 等. 肾功能不全致心血管疾病机制的研究进展[J]. 广东医学, 2018, 39(15): 2388-2390.
[35] Sircana, A., De Michieli, F., Parente, R., Framarin, L., Leone, N., Berrutti, M., Paschetta, E., Bongiovanni, D. and Musso, G. (2018) Gut Microbiota, Hyperten-sion and Chronic Kidney Disease: Recent Advances. Pharmacological Research, 144, 390-408.
[36] 李佳, 魏善斋, 孙杰, 等. 维持性血液透析患者促红细胞生成素抵抗与炎症反应和氧化应激反应的关系[J]. 山东医药, 2018, 58(28): 65-67.
https://doi.org/10.3969/j.issn.1002-266X.2018.28.017
[37] Haugen, E. and Nath, K.A. (1999) The Involvement of Oxidative Stress in the Progression of Renal Injury. Blood Purification, 17, 58-65.
https://doi.org/10.1159/000014377
[38] Locatelli, F., Canaud, B., Eckardt, K.U., Stenvinkel, P., Wanner, C. and Zoccali, C. (2003) Oxidative Stress in End- Stage Renal Disease: An Emerging Threat to Patient Outcome. Nephrology, Dialysis, Transplantation, 18, 1272-1280.
https://doi.org/10.1093/ndt/gfg074
[39] Stenvinkel, P., Heimbürger, O., Paultre, F., Diczfalusy, U., Wang, T. and Berglund, L. (1999) Strong Association between Malnutrition, Inflammation and Atheroscle-rosis in Chronic Renal Failure. Kidney International, 55, 1899-1911.
https://doi.org/10.1046/j.1523-1755.1999.00422.x
[40] Cai, H. and Harrison, D.G. (2000) Endothelial Dysfunction in Cardiovascular Diseases: The Role of Oxidant Stress. Circulation Research, 87, 840-844.
https://doi.org/10.1161/01.res.87.10.840
[41] Lambeth, J.D. (2004) Nox Enzymes and the Biology of Reactive Oxygen. Nature Reviews Immunology, 4, 181-189.
https://doi.org/10.1038/nri1312
[42] Cave, A.C., Brewer, A.C., Narayanapanicker, A., Ray, R., Grieve, D.J., Walker, S. and Shah, A.M. (2006) NADPH Oxidases in Cardiovascular Health and Disease. Antioxidants & Redox Signaling, 8, 691-728.
https://doi.org/10.1089/ars.2006.8.691
[43] Liu, Y., Xiao, X., Qin, D.P., et al. (2016) Comparison of Intradialytic Parenteral Nutrition with Glucose or Amino Acid Mixtures in Maintenance Hemodialysis Patients. Nutrients, 8, Article 220.
https://doi.org/10.3390/nu8060220
[44] Jofré, R., Rodriguez-Benitez, P., López-Gómez, J.M. and Pe-rez-Garcia, R. (2006) Inflammatory Syndrome in Patients on Hemodialysis. Journal of the American Society of Neph-rology, 17, S274-S280.
https://doi.org/10.1681/ASN.2006080926
[45] 郭花斌, 辛宝, 闫建锋, 等. 维持性血液透析患者营养不良相关因素研究综述[J]. 陇东学院学报, 2019, 30(5): 96-100.
[46] Arikawa, R., Kanda, D., Ikeda, Y., Tokushige, A., Sonoda, T., Anzaki, K. and Ohishi, M. (2021) Prognostic Impact of Malnutrition on Cardiovascular Events in Coronary Artery Disease Patients with Myocardial Damage. BMC Cardiovascular Disorders, 21, Article No. 479.
https://doi.org/10.1186/s12872-021-02296-9
[47] Kootaka, Y., Kamiya, K., Hamazaki, N., Nozaki, K., Ichikawa, T., Nakamura, T., Yamashita, M., Maekawa, E., Reed, J.L., Yamaoka-Tojo, M., Matsunaga, A. and Ako, J. (2021) The GLIM Criteria for Defining Malnutrition Can Predict Physical Function and Prognosis in Patients with Cardiovascular Disease. Clinical Nutrition, 40, 146-152.
https://doi.org/10.1016/j.clnu.2020.04.038
[48] Covinsky, K.E., Palmer, R.M., Fortinsky, R.H., Counsell, S.R., Stewart, A.L., Kresevic, D., et al. (2003) Loss of Independence in Activities of Daily Living in Older Adults Hospitalized with Medical Illnesses: Increased Vulnerability with Age. Journal of the American Geriatrics Society, 51, 451-458.
https://doi.org/10.1046/j.1532-5415.2003.51152.x
[49] Meyer, T.W. and Hostetter, T.H. (2012) Uremic Solutes from Colon Microbes. Kidney International, 81, 949-954.
https://doi.org/10.1038/ki.2011.504
[50] Barreto, F.C., Barreto, D.V., Liabeuf, S., Meert, N., Glorieux, G., Temmar, M., Choukroun, G., Vanholder, R. and Massy, Z.A. (2009) Serum Indoxyl Sulfate Is Associated with Vascular Disease and Mortality in Chronic Kidney Disease Patients. Clinical Journal of the American Society of Nephrology, 4, 1551-1558.
https://doi.org/10.2215/CJN.03980609
[51] Niwa, T. (2010) Uremic Toxicity of Indoxyl Sulfate. Nagoya Journal of Medical Science, 72, 1-11.
[52] Hung, S.C., Kuo, K.-L., Huang, H.-L., Lin, C.C., Tsai, T.H., Wang, C.H., Chen, J.W., Lin, S.-J., Huang, P.H. and Tarng, D.-C. (2016) Indoxyl Sulfate Suppresses Endothelial Progenitor Cell-Mediated Neovascularization. Kidney International, 89, 574-585.
https://doi.org/10.1016/j.kint.2015.11.020
[53] Lano, G., Burtey, S. and Sallée, M. (2020) Indoxyl Sulfate, a Uremic Endotheliotoxin. Toxins, 12, Article 229.
https://doi.org/10.3390/toxins12040229
[54] Chitalia, V.C., Shivanna, S., Martorell, J., Balcells, M., Bosch, I., Kolandaivelu, K. and Edelman, E.R. (2013) Uremic Serum and Solutes Increase Post—Vascular Interventional Thrombotic Risk through Altered Stability of Smooth Muscle Cell Tissue Factor. Circulation, 127, 365-376.
https://doi.org/10.1161/CIRCULATIONAHA.112.118174
[55] Yang, K., Xu, X., Nie, L., Xiao, T., Guan, X., He, T., Yu, Y., Liu, L., Huang, Y., Zhang, J. and Zhao, J.H. (2015) Indoxyl Sulfate Induces Oxidative Stress and Hyper-trophy in Cardiomyocytes by Inhibiting the AMPK/UCP2 Signaling Pathway. Toxicology Letters, 234, 110-119.
https://doi.org/10.1016/j.toxlet.2015.01.021
[56] Meijers, B.K., Bammens, B., De Moor, B., Verbeke, K., Vanrenterghem, Y. and Evenepoel, P. (2008) Free P-Cresol Is Associated with Cardiovascular Disease in Hemodialysis Patients. Kidney International, 73, 1174-1180.
https://doi.org/10.1038/ki.2008.31
[57] Wu, I.W., Hsu, K.H., Hsu, H.J., Lee, C.C., Sun, C.Y., Tsai, C.J. and Wu, M.S. (2012) Serum Free P-Cresyl Sulfate Levels Predict Cardiovascular and All-Cause Mortality in Elderly Hemodialy-sis Patients—A Prospective Cohort Study. Nephrology Dialysis Transplantation, 27, 1169-1175.
https://doi.org/10.1093/ndt/gfr453
[58] Shafi, T., Sirich, T.L., Meyer, T.W., et al. (2017) Results of the HEMO Study Suggest that P-Cresol Sulfate and Indoxyl Sulfate Are Not Associated with Cardiovascular Outcomes. Kidney International, 92, 1484-1492.
https://doi.org/10.1016/j.kint.2017.05.012
[59] Gross, P., Massy, Z.A., Henaut, L., Boudot, C., Cagnard, J., March, C., Kamel, S., Drueke, T.B. and Six, I. (2015) Para-Cresyl Sulfate Acutely Impairs Vascular Reactivity and Induces Vascular Remodeling. Journal of Cellular Physiology, 230, 2927-2935.
https://doi.org/10.1002/jcp.25018
[60] Freise, C., Querfeld, U., Ludwig, A., Hamm, B., Schnorr, J. and Taupitz, M. (2021) Uraemic Extracellular Vesicles Augment Osteogenic Transdifferentiation of Vascular Smooth Muscle Cells via Enhanced AKT Signalling and PiT-1 Expression. Journal of Cellular and Molecular Medicine, 25, 5602-5614.
https://doi.org/10.1111/jcmm.16572
[61] Huang, S.S., Chen, Y.A., Chen, S.S., Chen, Y.J. and Lin, Y.K. (2016) Uremic Toxins—Novel Arrhythmogenic Factor in Chronic Kidney Disease—Related Atrial Fibrillation. Acta Cardiologica Sinica, 32, 259-264.