血流导向装置治疗颅内动脉瘤的研究进展
Research Progress on the Treatment of Intracranial Aneurysms with Flow Diverters
DOI: 10.12677/ACM.2023.134866, PDF, HTML, XML, 下载: 366  浏览: 546 
作者: 阿迪力江·艾则孜, 杜郭佳*:新疆医科大学第一附属医院神经外科,新疆 乌鲁木齐
关键词: 颅内动脉瘤血流导向装置蛛网膜下腔出血Intracranial Aneurysm Flow Diverters Subarachnoid Hemorrhage
摘要: 颅内动脉瘤(IAs)的血管内治疗在过去几十年中有了长足的发展。弹簧圈栓塞无法治疗所有动脉瘤,发生动脉瘤的载瘤动脉亦需要治疗,以及常规介入在治疗复杂动脉瘤的局限性推进了技术进步。颅内支架最初是为栓塞宽颈动脉瘤时支持弹簧圈而研发的。早期对支架状管状编织结构的研究孕育出了一种更复杂的结构,后来被称为分流器(flow diverter, FD),并进入临床应用。FDs最初用于治疗宽颈大或巨大的颈内动脉瘤。随后,我们见证了FDs应用的爆发式增长,并对其不断进行改进,引来了其在血管内治疗中的广泛应用。本文中,我们将从其作用机制及在不同场景下使用的优缺点做一综述。
Abstract: Endovascular treatment of intracranial aneurysms (IAs) has evolved considerably over the past decades. The technological advances have been driven by the experience that coils fail to com-pletely exclude all IAs from the blood circulation, the need to treat the diseased parent vessel segment leading to the aneurysm formation, and expansion of endovascular therapy to treat more complex IAs. Stents were initially developed to support the placement of coils inside wide neck aneurysms. However, early work on stent-like tubular braided structure led to a more sophisticated construct that then later was coined as a flow diverter (FD) and found its way into clinical application. FDs were initially used to treat wide-neck large and giant internal carotid artery aneu-rysms. We have witnessed an explosion in the application of FDs and subsequently their modifica-tions leading to their ubiquitous use in endovascular therapy.
文章引用:阿迪力江·艾则孜, 杜郭佳. 血流导向装置治疗颅内动脉瘤的研究进展[J]. 临床医学进展, 2023, 13(4): 6150-6155. https://doi.org/10.12677/ACM.2023.134866

1. 背景

随着Guido Guglielmi在20世纪90年代早期引入可拆卸线圈 [1] ,并增加了辅助装置(颅内支架、球囊、预成形和可成形微导管),血管内治疗成为了治疗破裂和(或)未破裂颅内动脉瘤(intracranial aneurysm, IA)手术的替代方法 [2] [3] 。然而,治疗后完全闭塞率占接受治疗患者的三分之一,复发率占五分之一 [4] 。如遇到较大的宽颈动脉瘤,由于其形态复杂、瘤颈宽大等原因,复发率可能更高。在一项针对破裂动脉瘤的国际研究中,动脉瘤栓塞术后完全闭塞率只有55%,24%的动脉瘤部分闭塞,而18%的动脉瘤无法治疗。动脉瘤栓塞的主要缺点在于高达40%的病例中难以将弹簧圈致密地置入到动脉瘤腔内,从而导致动脉瘤再通复发,尤其在大、巨大动脉瘤中更常见 [5] 。血流导向装置的出现,弥补了动脉瘤栓塞上述的不足 [6] [7] 。在这个过程中Wakhlo和Lieber等人推动了用于血管重建的腔内支架的开发,并将其称为“分流器”(flow diverters, FDs) [8] 。本文将对血流导向装置治疗颅内动脉瘤的研究进展做一综述。

2. 定义

FDs的主要目的是阻断载瘤动脉与动脉瘤体之间的血流,同时为血管提供血管内支架,以修复因动脉瘤形成的血管损伤。其治疗效果取决于血流导向装置本身与载瘤动脉、动脉瘤大小、侧支循环和穿支血管间的相互作用,其中最关键的是血流导向装置的空隙率和孔密度 [9] [10] 。孔隙率是指孔隙面积与装置总面积之比,孔密度是指单位面积内孔的总数。

孔隙率(%) = (总表面积 − 金属表面积)/总表面积 × 100%

研究表明,最大至70%的孔隙率和最小值18孔/平方毫米的孔密度是最理想的参数 [9] [11] [12] ,在这个参属下可实现最理想的动脉瘤闭塞率的同时保持被FDs覆盖的侧支血管长达3~6个月的血液供应 [9] [10] 。这是血流导向装置的一大特点。

血流导向装置另一个特点在于其释放过程当中的可预测性。即释放过程中FDs在血管内缩短的程度是可预测的,通过判断其缩短程度可选择合适的大小而避免误判 [13] [14] 。与此同时,随着虚拟仿真仪器的引用,术中可在术前即可预测FDs的变形特点,这些仪器的应用有助于缩短FDs产品参数与实际使用情况间的误差 [13] [14] 。

3. 作用机制

FDs的作用机制可分为三个阶段:血流动力学改变、血栓形成和内皮化 [15] 。血流动力学改变在放置FDs后立即发生。网孔产生的阻力限制血液流入动脉瘤,尽管造影时瘤体内可见造影剂显影,但是瘤体内的血流速度和相对压力随即明显降低 [12] 。随后通过复杂的途径立即激活血小板,在数天至数周内逐渐形成稳定的血栓(即血栓形成阶段)。动脉瘤内血栓的形成取决于动脉瘤及瘤颈的大小,血流导向装置的参数,患者自身血小板以及抗血小板药物的相互作用。在此过程中占位效应和(或)炎症可能会进一步加重,导致术前症状进一步加重(如有术前症状)。内皮化阶段可持续数月至数年,此过程中,无定形血栓最终转化为胶原蛋白,同时CD34+内皮祖细胞驱使FDs内皮化 [16] 。FDs支撑血管重塑并内皮化,同时胶原蛋白最终使动脉瘤变小。FDs的出现与发展为难以完成动脉瘤栓塞或显微手术的患者带来了另一种选择。

4. 抗血小板聚集

由于FDs是金属材质,需要双重抗血小板聚集治疗(dual antiplatelet therapy, DAPT)来降低血栓栓塞的风险。阿司匹林和氯吡格雷是最常用的抗血小板药物。在颅内未破裂动脉瘤治疗中使用抗血小板药物可降低围手术期血栓栓塞发生率 [17] [18] [19] ,抗血小板药物诱导颅内出血时有发生,如何把出血及血栓形成的发生率都降到最低,是困扰临床医生的难题。

5. FDs在Willis环及远端动脉瘤中的应用

由于Willis环及末端血管解剖特点,用FDs治疗远端的动脉瘤比较困难。载瘤动脉直径 ≤ 3 mm,而且常伴有重要分支血管和穿支血管,导致FDs治疗时缺血性并发症发生概率更高 [20] [21] [22] 。尽管远端动脉瘤中使用FDs达到了82%的动脉瘤闭塞率,仍发生了多达数十种并发症。在一项单中心研究指出,使用PED治疗A1段动脉瘤患者中8.3%患者发生了缺血性卒中 [18] 。在另一项研究中,PED治疗更远端的A2,M2,P2段动脉瘤,观察到7.7%患者发生了缺血性和(或)出血性并发症,其中4.6%位于M2段动脉瘤 [22] 。事实上,大脑中动脉动脉瘤发生缺血性并发症的风险较高 [23] 。

另一方面,远端血管弯曲度大,容易导致释放FDs时缩短明显 [24] 。再者,归因于前期FDs输送系统体积大、柔韧性不足,导致FDs难以准确释放,需要用多个FD来充分覆盖动脉瘤颈,从而增加缺血性并发症的发生 [25] 。部分专家建议遇到过于迂曲的血管时选择略微过大的装置来应对FDs的缩短 [24] 。然而这样会导致FDs过长,增加孔隙率,降低金属覆盖率,从而影响治疗效果。Cagnazzo等人使用前几代FDs治疗远端动脉瘤的荟萃分析中观察到,在484个治疗过的动脉瘤中,使用多个FDs比使用单个FD的闭塞趋势更高(OR 2.3,95% CI 0.8至7.2;p = 0.08),可能与装置尺寸过大有关 [23] 。

如FRED Jr., p48MW,SVB等新一代FDs的问世解决了前几代FDs在远端血管上遇到的技术难题。它们娇小的外形和可输送性有助于它们在弯曲的小血管中输送,以治疗具有挑战性的远端位置的动脉瘤,以至于能够以单个FDs实现前几代多个FDs才能达到的遮挡率 [20] [24] [26] [27] 。与此同时,体积的缩小也有可能随之带来了以FDs辅助弹簧圈栓塞来即时永久闭塞动脉瘤同时保护远端血管的可能性。Mario 等人进行的一项Silk Vista Baby (SVB)分流装置治疗颅内动脉瘤的研究中,报道了13例破裂动脉瘤患者行SVB辅助弹簧圈栓塞治疗,术后复查提示13例患者动脉瘤均完全闭塞,未发生缺血性并发症 [26] 。当然上述可能性仍需进一步仔细研究。

6. FDs在治疗破裂的颅内动脉瘤中的应用

如前面所提到,治疗急性破裂出血的复杂动脉瘤时,FDs可作为除介入栓塞及显微夹闭之外的第三种选择。血泡样动脉瘤的动脉瘤壁薄而脆弱,夹层动脉瘤和梭形动脉瘤没有真正意义上的动脉瘤颈,阔颈动脉瘤和位于血管分叉处的动脉瘤置入的弹簧圈稳定性不足,使得这些病变难以用常规显微夹闭术或栓塞术来治疗 [28] 。抗血小板药物的抗凝作用,以及FD置入后不会立即形成血栓闭塞动脉瘤,FDs治疗急性蛛网膜下出血时再出血风险依然高,因此FDs治疗急性蛛网膜下出血仍存在争议。最近一项meta分析中,评估了223例接受FD治疗动脉瘤破裂导致急性SAH患者。结果显示平均9.6个月的影像学随访中,动脉瘤即时闭塞率为32%,长期闭塞率为88.9%。总体而言,缺血性和出血性并发症分别为8%和7%,在后循环动脉瘤中和(或)置入多个FDs后并发症发生率更高 [25] 。

虽然还没有相关对照研究,新一代药物涂层装置(如Pipeline Shield,p48_HPC,Derivo等)配SAPT作为次选替代方案 [29] [30] 。Pipeline Shield配SAPT治疗急性动脉瘤破裂的一项研究共报道14例患者,其中2例发生动脉瘤再破裂出血,其中1例死亡。每日口服阿司匹林+注射肝素的治疗组出血事件和缺血事件发生率最高,发生率均为14.3%。而单用阿司匹林的治疗组缺血事件发生率仅为7.1%。每日两次服用阿司匹林组未发生并发症。aSAH发生7天后完全闭塞率为85.7% [26] 。p48_HPC配SAPT治疗的一项研究共报道8例急性动脉瘤破裂患者,4例术中幸好曾血栓,其中2例死于严重的脑血管痉挛。未发生术后再破裂出血。平均6个月的随访中,6例患者中5例动脉瘤完全闭塞 [30] 。

7. FDs在后循环动脉瘤中的应用

FDs治疗后循环动脉瘤的致死致残率均较高 [31] [32] [33] 。其中部分原因是由于FDs置入后后循环众多穿支血管或者装置内形成血栓从而导致严重脑梗。在一项单中心研究者,12例椎基底动脉瘤患者接受PED治疗,平均14.5个月的随访中,10例显示动脉瘤完全闭塞,1例出现缺血性并发症 [34] 。Bender等人的研究中,55例后循环动脉瘤患者接受PED治疗,术后6个月和12个月时的完全比赛率分别为68%和78%。5例(9%)发生严重的缺血性卒中,2例死亡。研究者建议后循环FDs置入患者术后24小时全身肝素化并终身使用双抗,以降低缺血性并发症发生的风险 [29] 。我们认为,FDs治疗后循环动脉瘤仍需要更多研究。

8. 结论

FDs已成为血管内治疗大部分颅内动脉瘤的新趋势。FDs的广泛应用、所总结的经验、科学技术的迅速发展在脑血管病治疗领域中开辟了新的道路。我们应该更加谨慎的进一步研究其有效性和安全性。此外,可用的设备种类繁多,需要神经介入医生至少精通其中的一种,同时进一步了解其他设备优势及局限性。随着FDs在多种临床场景中使用的增加,需要针对特定动脉瘤解剖结构、位置和形态进行设计定制,以涵盖更广泛的临床适应症。

NOTES

*通讯作者。

参考文献

[1] Guglielmi, G., Viñuela, F., Dion, J. and Duckwiler, G. (1991) Electrothrombosis of Saccular Aneurysms via Endovas-cular Approach: Part 2: Preliminary Clinical Experience. Journal of Neurosurgery, 75, 8-14.
https://doi.org/10.3171/jns.1991.75.1.0008
[2] Molyneux, A.J., Kerr, R.S.C., Yu, L.-M., et al. (2005) Interna-tional Subarachnoid Aneurysm trial (ISAT) of Neurosurgical Clipping versus Endovascular Coiling in 2143 Patients with Ruptured Intracranial Aneurysms: A Randomised Comparison of Effects on Survival, Dependency, Seizures, Rebleeding, Subgroups and Aneurysm Occlusion. The Lancet, 366, 809-817.
https://doi.org/10.1016/S0140-6736(05)67214-5
[3] Darsaut, T.E., Findlay, J.M., Magro, E., et al. (2017) Sur-gical Clipping or Endovascular Coiling for Unruptured Intracranial Aneurysms: A Pragmatic Randomised Trial. Journal of Neurology, Neurosurgery & Psychiatry, 88, 663-668.
https://doi.org/10.1136/jnnp-2016-315433
[4] Raymond, J., Guilbert, F., Weill, A., et al. (2003) Long-Term Angiographic Recurrences after Selective Endovascular treatment of Aneurysms with Detachable Coils. Stroke, 34, 1398-1403.
https://doi.org/10.1161/01.STR.0000073841.88563.E9
[5] Cha, K.S., Balaras, E., Lieber, B.B., et al. (2007) Modeling the Interaction of Coils with the Local Blood Flow after Coil Embolization of Intracranial Aneurysms. Journal of Biomechanical Engineering, 129, 873-879.
https://doi.org/10.1115/1.2800773
[6] Wakhloo, A.K., Lanzino, G., Lieber, B.B., Sadasivan, C. and Wakhloo, A.K. (1998) Stents for Intracranial Aneurysms: The Beginning of a New Endovascular Era? Neurosurgery, 43, 377-379.
https://doi.org/10.1097/00006123-199808000-00126
[7] Wakhloo, A.K. and Lieber, B.B. (2018) The Beginnings of Flow Diversion: A Historical Review. In: Park, M., Taussky, P. and Albuquerque, F.C., et al., Eds., Flow Diversion of Cerebral Aneurysms, Thieme Medical Publishers, New York.
[8] Wakhloo, A.K. and Gounis, M.J. (2014) Revolution in Aneurysm Treatment: Flow Diversion to Cure Aneurysms: A Paradigm Shift. Neurosurgery, 61, 111-120.
https://doi.org/10.1227/NEU.0000000000000392
[9] Sadasivan, C., Cesar, L., Seong, J., et al. (2009) An Original Flow Diversion Device for the Treatment of Intracranial Aneurysms: Evaluation in the Rabbit Elastase-Induced Model. Stroke, 40, 952-958.
https://doi.org/10.1161/STROKEAHA.108.533760
[10] Lieber, B.B. and Sadasivan, C. (2010) Endoluminal Scaffolds for Vascular Reconstruction and Exclusion of Aneurysms from the Cerebral Circulation. Stroke, 41, S21-S25.
https://doi.org/10.1161/STROKEAHA.110.595066
[11] Lieber, B.B., Stancampiano A.P. and Wakhloo, A.K. (1997) Alteration of Hemodynamics in Aneurysm Models by Stenting: Influence of Stent Porosity. Annals of Biomedical Engineering, 25, 460-469.
https://doi.org/10.1007/BF02684187
[12] Aenis, M., Stancampiano, A.P., Wakhloo, A.K. and Lieber, B.B. (1997) Modeling of Flow in a Straight Stented and Nonstented Side Wall Aneurysm Model. Journal of Biomechanical Engi-neering, 119, 206-212.
https://doi.org/10.1115/1.2796081
[13] Fernandez, H., Macho, J.M., Blasco, J., Roman, L.S., Mailaender, W., Serra, L. and Larrabide, I. (2015) Computation of the Change in Length of a Braided Device When Deployed in Realistic Vessel Models. International Journal of Computer Assisted Radiology and Surgery, 10, 1659-1665.
https://doi.org/10.1007/s11548-015-1230-1
[14] Ospel, J.M., Gascou, G., Costalat, V., Piergallini, L., Blackham, K.A. and Zumofen, D.W. (2019) Comparison of Pipeline Embolization Device Sizing Based on Conventional 2D Measurements and Virtual Simulation Using the Sim & Size Software: An Agreement Study. AJNR: American Journal of Neuroradiology, 40, 524-530.
https://doi.org/10.3174/ajnr.A5973
[15] Fiorella, D., Lylyk, P., Szikora, I., et al. (2009) Curative Cerebrovascular Reconstruction with the Pipeline Embolization Device: The Emergence of Definitive Endovascular Therapy for Intra-cranial Aneurysms. Journal of NeuroInterventional Surgery, 1, 56-65.
https://doi.org/10.1136/jnis.2009.000083
[16] Marosfoi, M., Langan, E.T., Strittmatter, L., et al. (2017) In Situ Tissue Engineering: Endothelial Growth Patterns as a Function of Flow Diverter Design. Journal of NeuroInterventional Surgery, 9, 994-998.
https://doi.org/10.1136/neurintsurg-2016-012669
[17] Ries, T., Buhk, J.H., Kucinski, T., Goebell, E., Grzyska, U., Zeumer, H. and Fiehler, J. (2006) Intravenous Administration of Acetylsalicylic Acid during Endovascular Treatment of Cerebral Aneurysms Reduces the Rate of Thromboembolic Events. Stroke, 37, 1816-1821.
https://doi.org/10.1161/01.STR.0000226933.44962.a6
[18] Hwang, G., Jung, C., Park, S.Q., Kang, H.S., Lee, S.H., Oh, C.W., Chung, Y.S., Han, M.H. and Kwon, O.-K. (2010) Thromboembolic Complications of Elective Coil Embolization of Unruptured Aneurysms: The Effect of Oral Antiplatelet Preparation on Periprocedural Thromboembolic Complication. Neurosurgery, 67, 743-748.
https://doi.org/10.1227/01.NEU.0000374770.09140.FB
[19] Yamada, N.K., Cross, D.T., Pilgram, T.K., Moran, C.J., Derdeyn, C.P. and Dacey, R.G. (2007) Effect of Antiplatelet Therapy on Thromboembolic Complications of Elective Coil Embolization of Cerebral Aneurysms. AJNR: American Journal of Neuroradiology, 28, 1778-1782.
https://doi.org/10.3174/ajnr.A0641
[20] Möhlenbruch, M.A., Kizilkilic, O., Killer-Oberpfalzer, M., Baltacioglu, F., Islak, C., Bendszus, M., Cekirge, S., Saatci, I. and Kocer, N. (2017) Multicenter Experience with FRED Jr Flow Re-Direction Endoluminal Device for Intracranial Aneurysms in Small Arteries. AJNR: American Journal of Neuro-radiology, 38, 1959-1965.
https://doi.org/10.3174/ajnr.A5332
[21] Al Kasab, S., Guerrero, W.R., Nakagawa, D., Samaniego E.A., Orte-ga-Gutierrez, S. and Hasan D. (2020) Safety and Efficacy of the Pipeline Embolization Device Use in the Outside Circle of Willis Located Intracranial Aneurysms: A Single-Center Experience. Interventional Neurology, 8, 83-91.
https://doi.org/10.1159/000495074
[22] Primiani, C.T., Ren, Z., Kan, P., et al. (2019) A2, M2, P2 Aneurysms and Beyond: Results of Treatment with Pipeline Embolization Device in 65 Patients. Journal of NeuroInterventional Surgery, 11, 903-907.
https://doi.org/10.1136/neurintsurg-2018-014631
[23] Cagnazzo, F., Perrini, P., Dargazanli, C., Lefevre, P.-H., Gascou, G., Morganti, R., Di Carlo, D., Derraz, I., Riquelme, C., Bonafe, A. and Costalat, V. (2019) Treatment of Unruptured Distal Anterior Circulation Aneurysms with Flow-Diverter Stents: A Meta-Analysis. AJNR: American Jour-nal of Neuroradiology, 40, 687-693.
https://doi.org/10.3174/ajnr.A6002
[24] Schob, S., Hoffmann, K.-T., Richter, C., et al. (2019) Flow Diversion beyond the Circle of Willis: Endovascular Aneurysm Treatment in Peripheral Cerebral Arteries Employing a Novel Low-Profile Flow Diverting Stent. Journal of NeuroInterventional Surgery, 11, 1227-1234.
https://doi.org/10.1136/neurintsurg-2019-014840
[25] Brinjikji, W., Lanzino, G., Cloft, H.J., et al. (2016) Risk Factors for Ischemic Complications Following Pipeline Embolization Device Treatment of Intracranial Aneurysms: Results from the IntrePED Study. AJNR: American Journal of Neuroradiology, 37, 1673-1678.
https://doi.org/10.3174/ajnr.A4807
[26] Martínez-Galdámez, M., Biondi, A., Kalousek, V., et al. (2019) Periprocedural Safety and Technical Outcomes of the New Silk Vista Baby Flow Diverter for the Treatment of Intra-cranial Aneurysms: Results from a Multicenter Experience. Journal of NeuroInterventional Surgery, 11, 723-727.
https://doi.org/10.1136/neurintsurg-2019-014770
[27] Bhogal, P., Bleise, C., Chudyk, J., Lylyk, I., Viso, R., Perez, N., Henkes, H. and Lylyk, P. (2019) The p48MW Flow Diverter—Initial Human Experience. Clinical Neuroradiology, 31, 135-145.
https://doi.org/10.1007/s00062-019-00827-8
[28] Cagnazzo, F., di Carlo, D.T., Cappucci, M., Lefevre, P.-H., Costalat, V. and Perrini, P. (2018) Acutely Ruptured Intracranial Aneurysms Treated with Flow-Diverter Stents: A Systematic Review and Meta-Analysis. AJNR: American Journal of Neuroradiology, 39, 1669-1675.
https://doi.org/10.3174/ajnr.A5730
[29] Manning, N.W., Cheung, A., Phillips, T.J., et al. (2019) Pipeline Shield with Single Antiplatelet Therapy in Aneurysmal Subarachnoid Haemorrhage: Multicentre Experience. Journal of NeuroInterventional Surgery, 11, 694-698.
https://doi.org/10.1136/neurintsurg-2018-014363
[30] Aguilar-Perez, M., Hellstern, V., AlMatter, M., Wendl, C., Bäzner, H., Ganslandt, O. and Henkes, H. (2020) The p48 Flow Modulation Device with Hydrophilic Polymer Coating (HPC) for the Treatment of Acutely Ruptured Aneurysms: Early Clinical Experience Using Single Antiplatelet Therapy. CardioVascular and Interventional Radiology, 43, 740-748.
https://doi.org/10.1007/s00270-020-02418-4
[31] Kallmes, D.F., Hanel, R., Lopes, D., et al. (2015) International Retrospective Study of the Pipeline Embolization Device: A Multicenter Aneurysm Treatment Study. AJNR: American Journal of Neuroradiology, 36, 108-115.
https://doi.org/10.3174/ajnr.A4111
[32] Bender, M.T., Colby, G.P., Jiang, B., et al. (2019) Flow Diversion of Posterior Circulation Cerebral Aneurysms: A Single-Institution Series of 59 Cases. Neurosurgery, 84, 206-216.
https://doi.org/10.1093/neuros/nyy076
[33] Taschner, C.A., Vedantham, S., de Vries, J., et al. (2017) Surpass Flow Diverter for Treatment of Posterior Circulation Aneurysms. AJNR: American Journal of Neuroradiology, 38, 582-589.
https://doi.org/10.3174/ajnr.A5029
[34] Natarajan, S.K., Lin, N., Sonig, A., et al. (2016) The Safety of Pipeline Flow Diversion in Fusiform Vertebrobasilar Aneurysms: A Consecutive Case Series with Longer-Term Fol-low-Up from a Single US Center. Journal of Neurosurgery, 125, 111-119.
https://doi.org/10.3171/2015.6.JNS1565