ATP1A3基因Arg756位点变异相关疾病
Disease Associated with Mutation at Arg756 of ATP1A3 Gene
DOI: 10.12677/ACM.2023.134821, PDF, 下载: 275  浏览: 420 
作者: 青逸冉, 洪思琦*:重庆医科大学附属儿童医院神经内科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿科学重庆市重点实验室,重庆
关键词: ATP1A3p.Arg756发热脑病共济失调临床表现ATP1A3 p.Arg756 Fever Encephalopathy Ataxia Manifestations
摘要: ATP1A3基因变异相关神经系统疾病临床表现及后遗症不一,目前OMIM记录的表型有四种:RDP、AHC、CAPOS综合征、DEE99。随着越来越多的病例报道非典型和重叠表现,ATP1A3变异相关疾病现被视为一组谱系疾病,但某些位点变异与特定表型相关。p.Arg756位点变异存在一定共同表现:1) 首次发病年龄小,多由发热诱发并有复发病程;2) 核心症状为脑病,可表现为嗜睡、易激惹、淡漠等;3) 几乎所有患者均出现共济失调,而且持续存在;4) 部分患者可有肌张力改变、构音障碍、吞咽困难、肌力下降、惊厥发作、眼球异常运动、发育倒退。变异导致Na+/K+-ATP酶功能改变的致病机制尚不清楚。
Abstract: The clinical manifestations and sequelae of neurological diseases associated with ATP1A3 gene mutation are different. Currently, there are four phenotypes recorded in OMIM: RDP, AHC, CAPOS syndrome and DEE99. With an increasing number of cases report atypical and overlapping mani-festations, ATP1A3 variant-related disorders are now considered to be a group of spectrum diseases, but some locus variants are associated with specific phenotypes. The mutation of p.Arg756 site has certain common manifestations: 1) The age of first onset is young, mostly induced by fever and have a recurrent course; 2) The core symptom is encephalopathy, which can be manifested as lethargy, irritability, apathy, etc.; 3) Ataxia appears in almost all patients and persists; 4) Some patients may have dystonia, dysarthria, dysphagia, decreased muscle strength, seizures, abnormal eye move-ment, and developmental regression. The pathogenesis of Na+/K+-ATP ase, function change caused by mutation is still unclear.
文章引用:青逸冉, 洪思琦. ATP1A3基因Arg756位点变异相关疾病[J]. 临床医学进展, 2023, 13(4): 5816-5821. https://doi.org/10.12677/ACM.2023.134821

1. 引言

ATP1A3基因位于19q13.2上,主要编码Na+/K+-ATP酶α3亚基 [1] 。最初发现该基因是快发性肌张力障碍–帕金森综合征(rapid-onset dystonia-parkinsonism, RDP)的致病基因 [2] ,后来也被证实与儿童交替性偏瘫(alternating hemiplegia of childhood, AHC) [3] [4] 、小脑共济失调、反射消失、高弓足、视神经萎缩和感觉神经性听力减退(cerebellar ataxia,areflexia,pes cavus,opticatrophy,and sensorineural hearing loss,CAPOS综合征) [5] 、发育性癫痫性脑病99型(Developmental And Epileptic Encephalopathy 99) [6] 发病相关。

虽然基因型–表型之间有一定的特异性,RDP最常见变异类型是p.Thr613Met、p.Ile758Ser,AHC最常见变异包括p.Asp801Asn、p.Glu815Lys、p.Gly947Arg,CAPOS综合征目前仅发现与p.Glu818Lys变异相关,不过越来越多病例表现出非典型和重叠特征 [7] [8] 。近年来,不断有新的病例报道表明ATP1A3基因的第756位精氨酸变异三种类型,包括:p.Arg756His、p.Arg756Cys、p.Arg756Leu,存在共同临床表现 [8] 。本文现对该位点变异相关文献进行回顾,总结该位点变异的临床表现,以提高临床医生对于该位点变异相关疾病的认识。

2. 复发性脑病伴小脑共济失调(Relapsing Encephalopathy with Cerebellar Ataxia, RECA)

RECA是在发热期间出现反复发作的小脑共济失调和意识改变为特征的复发性脑病,伴有永久性神经功能缺陷。Dard [9] 在2015年报道了一名34岁女性患者,生后至今出现4次发热性疾病诱发的急性脑病发作,分别发生在22月、4岁、6岁和34岁。急性期的主要症状是小脑共济失调和意识改变,肌张力减退、吞咽困难、言语障碍和锥体束征也有出现。所有症状在第1次发作后完全恢复,但在第2次发作后遗留了小脑功能损害,最初仅表现为肢体共济失调,随后出现构音障碍和异常眼球运动。在4次发作后患者遗留全身性肌张力障碍。神经电生理检查(包括脑电图、肌电图、体感诱发电位、视觉和听觉诱发电位)、眼科检查、代谢检查、肌肉活检均正常。头颅磁共振检查提示小脑蚓部轻度萎缩。外周血Sanger测序提示患者携带p.Arg756Cys新发变异,作者首次将此种表型命名为RECA。

Hully [10] 在2016年报道了这名女性患者的家系情况,她非孪生的姐姐9月龄时在一次发热后出现严重的精神运动发育倒退,在13月龄时,她出现了异常眼球活动,同时伴有严重的小脑共济失调、舞蹈症和肌张力障碍。患者自幼发育迟缓,在10岁时仅能扶走,小脑共济失调和构音障碍仍然严重,但并没有癫痫发作和偏瘫表现。头颅磁共振也提示小脑轻度萎缩。该患者同样检测出p.Arg756Cys变异。考虑到家系出现两名非孪生携带同一变异患者,对患者父母的血液、口腔拭子和尿液样本进行了Sanger测序,但未能检出相应变异,因此作者提出存在嵌合变异的可能。ATP1A3基因嵌合变异的情况既往也有报道 [11] 。

2019年 [12] 报道的8例RECA儿童病例,2021年三个研究 [13] [14] [15] 报道的5名RECA患者均检测出p.Arg756His或p.Arg756Cys变异。

3. 发热诱导阵发性无力及脑病(Fever-Induced Paroxysmal Weakness and Encephalopathy, FIPWE)

Yano等 [16] 在2017年报道了6例ATP1A3变异相关的儿童早期出现的发热性疾病诱发的阵发性肢体无力和脑病。在本报道中,p.Arg756His变异患者主要表现为发热诱发的脑病和阵发性全身肢体无力,伴有延髓和动眼神经功能异常,症状可缓慢改善但持续存在功能缺陷。长期随访发现患者存在轻度运动功能异常,或长期存在吞咽困难、构音障碍、认知障碍、运动功能障碍,共济失调严重者无法行走。p.Arg756Leu变异患者同样可在感染后出现肌张力减退、肢体无力和共济失调,持续数天后逐渐好转。作者将ATP1A3 p.Arg756相关变异命名为FIPWE,并认为该位点变异与其他ATP1A3变异在临床表现有显著不同。

2021年,中东地区学者报道了一名诊断为FIPWE的男孩 [17] ,他在4月龄时出现了2次癫痫大发作伴昏睡和肌张力减退,9月龄时出现了全面强直阵挛发作伴肌力下降、运动发育倒退,10月龄时出现全身性肌张力减退、腱反射消失和舞蹈症表现,此时患者不能独坐、独站、不能描话。每一次的发作性症状均由发热性疾病诱发,并可缓慢恢复。18月龄时虽然仍有发育迟缓,但发育水平有缓慢进步。全外显子测序提示p.Arg756His变异。

2022年,中国的学者报道了8例诊断为FIPWE患者,基因变异类型包括p.Arg756His、p.Arg756Cys、p.Arg756Leu [18] 。

4. 其他类型

在目前报道的病例中,只有一部分病例作者明确诊断为RECA或FIWPE,部分患者诊断为RDP [19] [20] [21] [22] [23] 、AHC-RDP [24] [25] [26] 重叠表型、非典型AHC [27] 、非典型RDP [28] [29] 。部分患者并未明确分型仅做描述性分析。

Jaffer等 [30] 在2017年报道了3例家族性早发性进展性小脑综合征患者,这个家系中的3个患者在阵发性运动障碍出现之前存在运动发育迟缓,发作后恢复期较长,小脑综合征逐渐进展且在发热后有波动,伴有反射减退,MRI检查提示小脑萎缩。Nakamura [31] 等在2018年报道了1例9月龄在发热后出现持续肢体无力和脑病的患者。Schirinzi等 [32] 同年报道了2例由发热引起的快发性小脑共济失调病例,这对母子均在20月龄前起病,在发热后出现例急性小脑共济失调表现伴持续可缓解的肌张力障碍,母亲6岁时在发热后伴有脑病表现。

5. 讨论

Na+/K+-ATP酶在细胞膜上广泛表达,主要调节电化学梯度,并参与神经元去极化过程中的动作电位传播。ATP1A3基因位于19q13.2,编码Na+/K+-ATP酶α3亚基。在重复动作电位后,α3亚基在细胞内Na+浓度快速恢复时大幅增加,因此,与α3亚基缺乏相关的疾病可能会因超阈值神经元活动而恶化 [33] 。Bøttger等 [34] 发现在成年小鼠大脑中,α3亚基主要在GABA能神经元的位置如基底神经节、海马、小脑中高表达 [34] 。在视网膜中,感光细胞等所有神经元都表达a3亚基。在耳蜗内,α3亚基存在于螺旋神经节胞体和Corti氏器的细胞膜中,影响内毛细胞突触的神经支配通路 [35] 。解剖分布与ATP1A3基因变异相关临床表现的定位诊断相符。

Kanemasa [27] 研究发现HEK293T细胞中p.Arg756Cys变异和野生型蛋白表达水平相似,这意味着变异调节了Na+/K+-ATP酶活性。有报道表明p.Arg756不同变异导致蛋白表达不同程度减少,p.Arg756Leu α3蛋白失去表达。而p.Arg756His与野生型在α3、不成熟β蛋白水平出现显著差异,温度由37℃升高到39℃ α3蛋白减少更明显,表明蛋白质结构稳定性具有温度依耐性 [36] 。对动物模型研究发现II型P型ATP酶基因变异导致细胞膜两侧出现的电解质渗漏现象随着温度升高而加重 [37] 。这可能可以解释发热是急性发作的主要诱因。

报道表明 [9] [10] [12] - [22] [24] - [32] ,p.Arg756变异患者首发年龄多在幼儿期,最小4月龄,最大10岁,复发1~3次不等基本在学龄前期,成年后仍有发作仅报道1例,提示该位点变异疾病和年龄有一定关系。与ATP1A3其他表型类似,p.Arg756变异多由特定事件诱发(多为发热)。核心症状为脑病、肌力及肌张力下降,病初共济失调表现不明显,这可能与患者发病年龄小一些症状不易观察有关,长期随访发现几乎所有患者均出现。患者通常没有特定的实验室和神经影像学检查结果,长期头颅MRI随访可能会发现小脑萎缩。患者发病前可能存在轻度或中度运动发育落后,但认知水平基本正常,多次发作后可存留部分神经系统后遗症,主要是共济失调、构音障碍和肌张力改变,精神发育迟缓、癫痫、偏瘫很少报道。p.Arg756变异与AHC、RDP、CAPOS综合征在诱因、起病年龄、主要临床表现有显著区别。

与p.Arg756His相比,p.Arg756Cys患者脑病、认知损害比例高但初次发病前发育迟缓比例低 [13] ,相关数据并未进行统计学分析。由于报道的病例基于回顾性分析,不同的作者关注的症状可能不同,临床表现描述存在主观性或可能遗漏之处。报告病例的随访时间也很重要,因为某些临床表现尤其是精神发育情况与年龄有关,如遗尿 [27] 、偏头痛 [16] 、注意缺陷多动障碍 [38] 、脊柱侧弯 [30] 。这种差异分析需要更大样本和多中心的研究。在讨论ATP1A3变异的基因型–表型相关性时,必须考虑这些因素。因此,有学者提出,将疾病相关症状如阵发性症状、过度运动症状、神经精神症状、认知障碍等进行分类而不是形成特定组合,有利于识别出ATP1A3基因变异患者 [8] 。

我们通过对病例的回顾发现,目前已报道的病例基本符合RECA或FIPWE的诊断,目前有学者将其视作ATP1A3基因变异的独立表型 [18] ,部分学者认为这两个表型在核心症状上无明显差别 [8] [13] ,命名均部分概括其临床特征,包括发热诱发、阵发性发作(复发性脑病)以及遗留症状(小脑共济失调)。随着相关病例报道不断增多,随访时间延长,p.Arg756变异的临床表现可以得到更好的概括,未来可能有更适合的命名。

变异相关疾病目前暂无特异性治疗方法。氟桂利嗪、左旋多巴、抗胆碱能药、乙酰唑胺效果均欠佳。合并癫痫、抑郁、焦虑等症状时予相应对症治疗。在近些年对伴或不伴癫痫的患者进行生酮饮食治疗发现可能会有效果 [18] [23] 。康复治疗可帮助患者功能改善。

ATP1A3基因相关疾病临床表型多样,其中756位精氨酸的基因点变异可导致一类临床表现相似的疾病发生,临床表型与基因型之间存在一定关联,具体机制上不明确,目前大部分病例预后尚可,成人患者症状多不影响生日常活,但ATP1A3基因相关其他疾病预后多数欠佳,还需要长期随访以判断预后。治疗仍以对症治疗为主。

NOTES

*通讯作者。

参考文献

[1] Holm, T.H. and Lykke-Hartmann, K. (2016) Insights into the Pathology of the α3 Na+/K+-ATPase Ion Pump in Neuro-logical Disorders; Lessons from Animal Models. Frontiers in Physiology, 7, Article 209.
https://doi.org/10.3389/fphys.2016.00209
[2] De Carvalho Aguiar, P., Sweadner, K.J., Penniston, J.T., et al. (2004) Mutations in the Na+/K+-ATPase α3 Gene ATP1A3 Are Associated with Rapid-Onset Dystonia Parkinsonism. Neuron, 43, 169-175.
https://doi.org/10.1016/j.neuron.2004.06.028
[3] Heinzen, E.L., Swoboda, K.J., Hitomi, Y., et al. (2012) De Novo Mutations in ATP1A3 Cause Alternating Hemiplegia of Childhood. Nature Genetics, 44, 1030-1034.
https://doi.org/10.1038/ng.2358
[4] Rosewich, H., Thiele, H., Ohlenbusch, A., et al. (2012) Heterozygous DE-Novo Mutations in ATP1A3 in Patients with Alternating Hemiplegia of Childhood: A Whole-Exome Sequencing Gene-Identification Study. The Lancet Neurology, 11, 764-773.
https://doi.org/10.1016/S1474-4422(12)70182-5
[5] Demos, M.K., van Karnebeek, C.D., Ross, C.J., et al. (2014) A Novel Recurrent Mutation in ATP1A3 Causes CAPOS Syndrome. Orphanet Journal of Rare Diseases, 9, Article No. 15.
https://doi.org/10.1186/1750-1172-9-15
[6] Vetro, A., Nielsen, H.N., Holm, R., et al. (2021) ATP1A2- and ATP1A3-Associated Early Profound Epileptic Encephalopathy and Polymicrogyria. Brain, 144, 1435-1450.
https://doi.org/10.1093/brain/awab052
[7] Salles, P.A., Mata, I.F., Brünger, T., Lal, D. and Fernandez, H.H. (2021) ATP1A3-Related Disorders: An Ever-Expanding Clinical Spectrum. Frontiers in Neurology, 12, Article 637890.
https://doi.org/10.3389/fneur.2021.637890
[8] Vezyroglou, A., Akilapa, R., Barwick, K., et al. (2022) The Phe-notypic Continuum of ATP1A3-Related Disorders. Neurology, 99, e1511-e1526.
https://doi.org/10.1212/WNL.0000000000200927
[9] Dard, R., Mignot, C., Durr, A., et al. (2015) Relapsing En-cephalopathy with Cerebellar Ataxia Related to an ATP1A3 Mutation. Developmental Medicine & Child Neurology, 57, 1183-1186.
https://doi.org/10.1111/dmcn.12927
[10] Hully, M., Ropars, J., Hubert, L., et al. (2017) Mosaicism in ATP1A3-Related Disorders: Not Just a Theoretical Risk. Neurogenetics, 18, 23-28.
https://doi.org/10.1007/s10048-016-0498-9
[11] Yang, X., Yang, X., Chen, J., et al. (2019) ATP1A3 Mosaicism in Families with Alternating Hemiplegia of Childhood. Clinical Genetics, 96, 43-52.
https://doi.org/10.1111/cge.13539
[12] Sabouraud, P., Riquet, A., Spitz, M.-A., et al. (2019) Relapsing Encepha-lopathy with Cerebellar Ataxia Are Caused by Variants Involving p.Arg756 in ATP1A3. European Journal of Pediatric Neurology, 23, 448-455.
https://doi.org/10.1016/j.ejpn.2019.02.004
[13] Biela, M., Rydzanicz, M., Szymanska, K., et al. 2021() Variants of ATP1A3 in Residue 756 Cause a Separate Phenotype of Relapsing Encephalopathy with Cerebellar Ataxia (RECA)—Report of Two Cases and Literature Review. Molecular Genetics & Genomic Medicine, 9, e1772.
https://doi.org/10.1002/mgg3.1772
[14] De Vrieze, J., Van De Laar, I., De Rijk-Van Andel, J.F., et al. (2021) Ex-panding Phenotype of ATP1A3-Related Disorders: A Case Series. Child Neurology Open, 8, Article ID: 2329048x211048068.
https://doi.org/10.1177/2329048X211048068
[15] Pisapia, R., Capoluongo, N., Palmiero, G., Tascini, C. and Re-scigno, C. (2021) Relapsing Neurological Complications in a Child with ATP1A3 Gene Mutation and Influenza Infection: A Case Report. Frontiers in Neurology, 12, Article 774054.
https://doi.org/10.3389/fneur.2021.774054
[16] Yano, S.T., Silver, K., Young, R., et al. (2017) Fever-Induced Paroxysmal Weakness and Encephalopathy, a New Phenotype of ATP1A3 Mutation. Pediatric Neurology, 73, 101-105.
https://doi.org/10.1016/j.pediatrneurol.2017.04.022
[17] Tahir, S., Chencheri, N., Abdalla, A.A. and Babiker, M.O.E. (2021) A Rare Cause of Recurrent Febrile Encephalopathy in a Child: The Expanding Spectrum of ATP1A3 Mutations. Cureus, 13, e20438.
https://doi.org/10.7759/cureus.20438
[18] Zhang, W., Li, J., Zhuo, X., et al. (2022) Chinese Patients with p.Arg756 Mutations of ATP1A3: Clinical Manifestations, Treatment, and Follow-up. Pediatric Investigation, 6, 5-10.
https://doi.org/10.1002/ped4.12310
[19] Tan, A.H., Ozelius, L.J., Brashear, A., et al. (2015) Rapid-Onset Dysto-nia-Parkinsonism in a Chinese Girl with a De Novo ATP1A3 c.2267G>A (p.R756H) Genetic Mutation. Movement Dis-orders Clinical Practice, 2, 74-75.
https://doi.org/10.1002/mdc3.12122
[20] 张慈柳, 尹飞, 何芳, 等. ATP1A3基因突变致儿童期起病快发病性肌张力障碍-帕金森综合征一家系并文献复习[J]. 中华儿科杂志, 2017, 55(4): 288-293.
[21] 丁乐, 郭虎, 张刚, 向秋莲. 儿童快发病性肌张力障碍-帕金森综合征临床和基因分析[J]. 临床儿科杂志, 2019, 37(11): 801-804.
[22] 康庆云, 廖彩时, 廖红梅, 等. ATP1A3基因突变致儿童快发病性肌张力障碍-帕金森综合征一例并文献复习[J]. 中国现代神经疾病杂志, 2021, 21(4): 304-309.
[23] Kim, W.J., Shim, Y.K., Choi, S.A., et al. (2020) Clinical and Ge-netic Spectrum of ATP1A3-Related Disorders in a Korean Pediatric Population. Journal of Clinical Neurology, 16, 75-82.
https://doi.org/10.3988/jcn.2020.16.1.75
[24] Fornarino, S., Stagnaro, M., Rinelli, M., et al. (2014) Paroxysmal Features Responding to Flunarizine in a Child with Rapid-Onset Dystonia-Parkinsonism. Neurology, 82, 2037-2038.
https://doi.org/10.1212/WNL.0000000000000473
[25] Nicita, F., Travaglini, L., Sabatini, S., et al. (2016) Child-hood-Onset ATP1A3-Related Conditions: Report of Two New Cases of Phenotypic Spectrum. Parkinsonism & Related Disorders, 30, 81-82.
https://doi.org/10.1016/j.parkreldis.2016.05.029
[26] Stagnaro, M., Pisciotta, L., Gherzi, M., et al. (2018) ATP1A3 Spectrum Disorders: A Video-Documented History of 7 Genetically Confirmed Early Onset Cases. European Journal of Pediatric Neurology, 22, 264-271.
https://doi.org/10.1016/j.ejpn.2018.01.010
[27] Kanemasa, H., Fukai, R., Sakai, Y., et al. () De Novo p.Arg756Cys Mutation of ATP1A3 Causes an Atypical Form of Alternating Hemiplegia of Childhood with Prolonged Paralysis and Choreoathetosis. BMC Neurology, 16, Article No. 174.
https://doi.org/10.1186/s12883-016-0680-6
[28] Sousa, A.L., Alonso, I. and Magalhães, M. (2017) A Portuguese Rapid-Onset Dystonia-Parkinsonism Case with Atypical Fea-tures. Neurological Sciences, 38, 1713-1714.
https://doi.org/10.1007/s10072-017-2996-4
[29] Brashear, A., Mink, J.W., Hill, D.F., et al. (2012) ATP1A3 Mutations in Infants: A New Rapid-Onset Dystonia-Par- kinsonism Phenotype Characterized by Motor Delay and Ataxia. Developmental Medicine & Child Neurology, 54, 1065-1067.
https://doi.org/10.1111/j.1469-8749.2012.04421.x
[30] Jaffer, F., Fawcett, K., Sims, D., et al. (2017) Familial Childhood-Onset Progressive Cerebellar Syndrome Associated with the ATP1A3 Mutation. Neurology Genetics, 3, e145.
https://doi.org/10.1212/NXG.0000000000000145
[31] Nakamura, Y., Hattori, A., Nakashima, M., et al. (2018) A De Novo p.Arg756Cys Mutation in ATP1A3 Causes a Distinct Phenotype with Prolonged Weakness and Encephalopa-thy Triggered by Fever. Brain and Development, 40, 222-225.
https://doi.org/10.1016/j.braindev.2017.09.010
[32] Schirinzi, T., Graziola, F., Nicita, F., et al. (2018) Childhood Rapid-Onset Ataxia: Expanding the Phenotypic Spectrum of ATP1A3 Mutations. Cerebellum, 17, 489-493.
https://doi.org/10.1007/s12311-018-0920-y
[33] Heinzen, E.L., Arzimanoglou, A., Brashear, A., et al. (2014) Dis-tinct Neurological Disorders with ATP1A3 Mutations. The Lancet Neurology, 13, 503-514.
https://doi.org/10.1016/S1474-4422(14)70011-0
[34] Bøttger, P., Tracz, Z., Heuck, A., et al. (2011) Distribution of Na/K-ATPase Alpha 3 Isoform, a Sodium-Potassium P-Type Pump Associated with Rapid-Onset of Dystonia Parkin-sonism (RDP) in the Adult Mouse Brain. Journal of Comparative Neurology, 519, 376-404.
https://doi.org/10.1002/cne.22524
[35] McLean, W.J., Smith, K.A., Glowatzki, E. and Pyott, S.J. (2009) Distribu-tion of the Na,K-ATPase α Subunit in the Rat Spiral Ganglion and Organ of Corti. Journal of the Association for Re-search in Otolaryngology, 10, 37-49.
https://doi.org/10.1007/s10162-008-0152-9
[36] Arystarkhova, E., Toustrup-Jensen, M.S., Holm, R., et al. (2023) Temperature Instability of a Mutation at a Multidomain Junction in Na,K-ATPase Isoform ATP1A3 (p.Arg756His) Pro-duces a Fever-Induced Neurological Syndrome. Journal of Biological Chemistry, 299, Article ID: 102758.
https://doi.org/10.1016/j.jbc.2022.102758
[37] Kaneko, M., Desai, B. and Cook, B. (2014) Ionic Leakage Under-lies a Gain-of-Function Effect of Dominant Disease Mutations Affecting Diverse P-Type ATPases. Nature Genetics, 46, 144-151.
https://doi.org/10.1038/ng.2850
[38] de Gusmao, C.M., Dy, M. and Sharma, N. (2016) Beyond Dysto-nia-Parkinsonism: Chorea and Ataxia with ATP1A3 Mutations. Movement Disorders Clinical Practice, 3, 402-404.
https://doi.org/10.1002/mdc3.12317