程序性细胞死亡在葡萄膜黑色素瘤中的研究进展
Research Advances in Programmed Cell Death in Uveal Melanoma
DOI: 10.12677/WJCR.2023.132009, PDF, 下载: 195  浏览: 304 
作者: 钟恩宇, 曹 阳:华中科技大学同济医学院附属协和医院,眼科,湖北 武汉
关键词: 葡萄膜黑色素瘤程序性细胞死亡Uveal Melanoma Programmed Cell Death
摘要: 葡萄膜黑色素瘤是成年人最常见的恶性肿瘤,尽管应用放疗、全身化疗或者眼球摘除等治疗方式可以有效控制肿瘤进展(90%),仍有近半的患者会发生远处转移。程序性细胞死亡(PCD)的研究能使人们更好地了解UVM所涉及的生物功能和作用机制,该领域的研究可以帮助确定有效的诊断和预后生物标志物,以及新的治疗靶点。这篇综述中,我们重点总结了PCD包含的细胞凋亡、坏死性凋亡、铁死亡、自噬和铜死亡等几种细胞死亡模式在UVM的作用机制,以期为肿瘤治疗提供新的靶点和思路。
Abstract: Uveal melanoma is the most common malignancy in adults, and despite the application of therapeutic modalities such as radiotherapy, systemic chemotherapy or ophthalmic removal to effectively control tumor progression (90%), distant metastases occur in nearly half of patients. Studies of programmed cell death (PCD) can provide a better understanding of the biological functions and mechanisms of action involved in UVM, and research in this area can help identify effective diagnostic and prognostic biomarkers, as well as new therapeutic targets. In this review, we focus on summarizing the mechanisms of action of several modes of cell death in UVM, including apoptosis, necroptosis, iron death, autophagy and copper death, which are included in PCD, with the aim of providing new targets and ideas for tumor therapy.
文章引用:钟恩宇, 曹阳. 程序性细胞死亡在葡萄膜黑色素瘤中的研究进展[J]. 世界肿瘤研究, 2023, 13(2): 57-62. https://doi.org/10.12677/WJCR.2023.132009

1. 引言

葡萄膜黑色素瘤(Uveal melanoma, UVM)是常见的眼内恶性肿瘤,每百万人中发生5~10例,并且欧美的发病率高于亚、非洲国家 [1] 。值得一提的是葡萄膜黑色素瘤发生转移的部位几乎都在肝脏,因此预后极差 [2] [3] 。程序性细胞死亡(Programmed cell death, PCD),是指可以由各种生物大分子调节的细胞死亡形式,它与意外细胞死亡(Accidental cell death, ACD)截然不同。越来越多的证据显示,PCD是肿瘤发生的关键特征,用药理小分子化合物靶向PCD已经成为一种有前景的治疗途径,在许多类型的癌症中得到了快速的发展。

2. 细胞凋亡与UVM

细胞凋亡是一种特定形式的程序性细胞死亡,涉及到通过细胞膜,暴露磷脂酰丝氨酸,以及激活半胱氨酸–天冬氨酸蛋白酶家族蛋白 [4] [5] 。细胞凋亡有两种主要的调节途径:外在途径和内在途径。

外在途径是由肿瘤坏死因子(TNF)、TNF相关凋亡诱导配体(TRAIL)或FAS配体(APO-1)与相应的受体(TNFR、TRAILR或FAS)结合触发 [6] [7] 。一旦被触发,活化的caspase 8将BID蛋白截断为截短的BID,随后激活促凋亡调节剂BAX和BAK。这种激活诱导线粒体外膜透化(MOMP)并刺激内在途径和caspase激活的开始 [8] [9] 。

内在途径也称为线粒体途径,细胞内部损伤激活细胞凋亡Bcl-2家族的Bad等蛋白,使线粒体外膜的通透性增加,释放线粒体膜间隙的细胞色素C,再与细胞质中的Apaf-1和caspase-9酶原相互作用形成凋亡复合体,有活性的caspase-9激活下游的caspase3,6,7,从而导致广泛的蛋白水解和DNA切割 [6] 。该途径对各种遗传毒性应激有反应,包括针对细胞存活和生长的传统化疗药物、辐射和生物制剂。促凋亡Bcl-2蛋白家族在该途径中起着关键作用,p53肿瘤抑制蛋白激活了其中某些促凋亡家族成员。

研究发现,p63与P53水平升高可诱导UVM细胞系中PERP的转录,促进细胞凋亡,降低肿瘤的侵袭性 [10] 。

3. 坏死性凋亡与UVM

坏死性凋亡由受体相互作用的丝氨酸/苏氨酸激酶蛋白(RIPK)通过其激酶功能驱动,形成复合物IIB,从而导致细胞坏死性凋亡 [11] [12] 。它具有坏死性凋亡细胞的形态特征和类似于凋亡细胞的信号机制。形态学上以细胞膜穿孔、细胞内渗透压增高、细胞器肿胀、线粒体功能障碍、线粒体膜电位丧失、核染色质丧失、质膜爆炸性破裂等特征 [13] 。细胞破裂后释放的癌细胞内容物会加剧外周炎症反应。许多研究证明,坏死细胞凋亡在恶性肿瘤的发生、发展、侵袭、转移和耐药中起重要作用 [14] 。细胞对坏死性凋亡的抵抗通常由癌基因介导,这表明导致从坏死性凋亡中逃逸的基因可能是一种潜在的肿瘤标志物,类似于细胞凋亡的逃逸 [15] 。

Xie等人利用6个坏死性凋亡相关基因(KDELR6、IDH3、S2A100、ITPA、PARP6和APRC8B)构建预后模型,并且发现坏死性凋亡高风险组可能从免疫检查点抑制剂治疗中获益更多 [16] 。

4. 铁死亡与UVM

铁死亡的主要诱因是氧化还原状态失衡和铁依赖的脂质自由基的异常增加,导致有毒脂质过氧化物和ROS的积累,从而发生细胞死亡 [17] [18] 。它在形态和机制上与其他类型的调节性细胞死亡不同:从形态上看,经历铁死亡的细胞不表现出典型的细胞凋亡特征(如染色质凝聚和凋亡体形成),而是以线粒体收缩和线粒体嵴数量减少为特征 [19] [20] [21] 。研究发现,癌症细胞对铁的需求量很高,铁的积累量更高,癌细胞为了满足“铁成瘾”进化出不同于正常细胞的氧化还原稳态,从而改变它们的代谢和增殖反应 [22] 。不仅如此,越来越多的研究表明诱导铁死亡将成为逆转癌症耐药性的关键机制,这在肝细胞癌、肺癌、结直肠癌、胃癌、卵巢癌等肿瘤模型中已经得到验证 [23] 。

研究表明,5个铁死亡相关的lncRNA (AC104129.1, AC136475.3, LINC00963, PPP1R14B.AS1, ZNF667.AS1)构建的UVM预后模型具有良好的预测性能,并且通过体外实验验证LINC00963,PPP1R14B.AS1,ZNF667.AS1这3种lncRNA能够促进肿瘤的生长 [24] 。

5. 自噬与UVM

自噬是一种自我降解机制,通过这种机制,细胞在微环境压力(如缺氧和营养缺乏)的条件下回收其长寿蛋白质和有缺陷的细胞器,通过消化物质的代谢消耗获得能量 [25] 。尽管自噬是一种主要的细胞生存途径,但其过度激活会导致细胞成分的大量降解,引起自噬细胞死亡 [26] 。

自噬分三种类型:巨自噬、微自噬和伴侣介导的自噬,以上都促进溶酶体中胞质成分的蛋白水解 [27] 。巨自噬通过双膜结合囊泡(称为自噬体)的中介将细胞质蛋白或细胞器输送到溶酶体,该囊泡与溶酶体融合形成自溶酶体 [28] 。相比之下,在微自噬中,溶酶体通过溶酶体膜的内陷直接吸收胞质成分 [29] [30] 。在伴侣介导的自噬(CMA)中,靶向蛋白在溶酶体膜上与溶酶体膜受体相关膜蛋白70A (LAMP-2A)识别的伴侣蛋白(例如Hsc-2)复合物中易位,导致它们的降解。

Alexandra等人在葡萄膜黑色素瘤中对自噬相关蛋白MAP1LC3A和BECN1的免疫组化染色,研究其自噬活性 [31] 。结果显示:MAP1LC3A或BECN1检测到的自噬反应性增加与色素沉着和肿瘤缺氧有关。BECN1过度表达的葡萄膜黑色素瘤患者预后最差,并且更早出现转移;因此自噬在葡萄膜黑色素瘤中普遍上调,并且可能与缺氧和色素沉着有关。

6. 铜死亡与UVM

铜(Cu)是各种生物过程中的关键代谢酶的辅助因子,包括线粒体呼吸、抗氧化和生物化合物合成等 [32] 。因此细胞内Cu浓度通常保持在相对较低的范围内,小幅度的增加即可引起细胞毒性,甚至导致细胞死亡。铜死亡是Tsvetkov等人最近发表在《科学》杂志上提出的一种新型细胞死亡模式,并且阐述了其细胞死亡机制:细胞内多余的Cu(II)可以通过离子载体运输到线粒体,FDX1将Cu(II)还原为Cu(I)。Cu(I)量的增加直接与三羧酸(TCA)循环的脂酰化组分(如DLAT)结合,导致脂酰化蛋白聚集和Fe-S簇蛋白的不稳定,导致蛋白毒性应激,最终导致细胞死亡 [33] 。值得一提的是,该死亡途径用抑制剂阻断凋亡途径或其他已知的程序性细胞死亡途径都无法阻止,表明铜死亡与已知的细胞死亡模式均不同。

铜在癌症进展中的作用一直在不断研究,有证据表明,与健康的静息细胞相比,癌细胞通常对铜的需求更高 [34] 。越来越多的研究发现,铜可能通过促进细胞增殖、血管生成和转移参与癌症的进展。例如每日施用硫酸铜(CuSO4)已被证明在化学诱导的乳腺肿瘤大鼠模型中加快了肿瘤生长。血管生成是一个涉及内皮细胞迁移和增殖以及新生血管形成的过程,是肿瘤进展的重要因素。McAuslan等人发现Cu盐可以诱导内皮细胞迁移,从而导致血管生成 [35] 。在体外研究中,使用siRNA沉默内皮细胞中的CTR1表达可阻断Cu进入,减少细胞迁移和血管形成 [36] 。有证据表明,Cu可以激活转移相关酶和信号级联,从而促进癌症的扩散,例如铜酶LOX参与肿瘤细胞的侵袭和转移。在肿瘤内皮细胞中,LOX表达的降低抑制细胞迁移和血管形成。此外,分泌的Cu结合糖蛋白SPARC已被证明可以调节细胞–基质相互作用并促进肿瘤细胞的侵袭和转移 [37] 。

Chen等人利用8个铜死亡相关基因建立UVM的预后模型,并且铜死亡风险评分AUC达到0.814,具有良好的预测性能,不仅如此,作者研究发现利用铜死亡诱导剂可抑制UVM细胞系的细胞活力,且细胞活力的抑制可被铜死亡抑制剂恢复 [38] 。

7. 总结与展望

程序性细胞死亡(PCD)中不同的细胞致死模式会影响癌症的进展和对治疗的反应,避免PCD是癌症的重要标志之一。PCD正被越来越多的研究证明在UVM的增殖和转移起着重要作用。鉴于目前转移性UVM的治疗方式和效果非常有限,深入研究PCD相关的基因通路和作用机制,对UVM相关治疗靶点的确认、小分子新药的开发以及复杂的耐药机制都具有重要意义。

参考文献

[1] Ortega, M.A., Fraile-Martinez, O., Garcia-Honduvilla, N., et al. (2020) Update on Uveal Melanoma: Translational Research from Biology to Clinical Practice (Review). International Journal of Oncology, 57, 1262-1279.
https://doi.org/10.3892/ijo.2020.5140
[2] Carvajal, R.D., Schwartz, G.K., Tezel, T., et al. (2017) Metastatic Disease from Uveal Melanoma: Treatment Options and Future Prospects. British Journal of Ophthalmology, 101, 38-44.
https://doi.org/10.1136/bjophthalmol-2016-309034
[3] Martinez-Perez, D., Viñal, D., Solares, I., Espinosa, E. and Feliu, J. (2021) Gp-100 as a Novel Therapeutic Target in Uveal Melanoma. Cancers, 13, Article No. 5968.
https://doi.org/10.3390/cancers13235968
[4] Singh, P. and Lim, B. (2022) Targeting Apoptosis in Cancer. Current Oncology Reports, 24, 273-284.
https://doi.org/10.1007/s11912-022-01199-y
[5] 王思思. Epoxycytochalasin H诱导人卵巢癌A2780细胞凋亡的机制研究[D]: [硕士学位论文]. 长春: 吉林大学, 2022.
[6] Lovric, M.M. and Hawkins, C.J. (2010) TRAIL Treatment Provokes Mutations in Surviving Cells. Oncogene, 29, 5048-5060.
https://doi.org/10.1038/onc.2010.242
[7] Stadel, D., Mohr, A., Ref, C., et al. (2010) TRAIL-Induced Apoptosis Is Preferentially Mediated via TRAIL Receptor 1 in Pancreatic Carcinoma Cells and Profoundly Enhanced by XIAP Inhibitors. Clinical Cancer Research, 16, 5734-5749.
https://doi.org/10.1158/1078-0432.CCR-10-0985
[8] Choe, S.C., Hamacher-Brady, A. and Brady, N.R. (2015) Autophagy Capacity and Sub-Mitochondrial Heterogeneity Shape Bnip3-Induced Mitophagy Regulation of Apoptosis. Cell Communication and Signaling, 13, Article No. 37.
https://doi.org/10.1186/s12964-015-0115-9
[9] Wolff, S., Erster, S., Palacios, G. and Moll, U.M. (2008) P53’s Mitochondrial Translocation and MOMP Action Is Independent of Puma and Bax and Severely Disrupts Mitochondrial Membrane Integrity. Cell Research, 2008, 18(7): 733-744.
https://doi.org/10.1038/cr.2008.62
[10] Davies, L., Spiller, D., White, M.R.H., Grierson, I. and Paraoan, L. (2011) PERP Expression Stabilizes Active p53 via Modulation of p53-MDM2 Interaction in Uveal Melanoma Cells. Cell Death & Disease, 2, e136.
https://doi.org/10.1038/cddis.2011.19
[11] Dillon, C.P., Oberst, A., Weinlich, R., et al. (2012) Survival Function of the FADD-CASPASE-8-cFLIPL Complex. Cell Reports, 1, 401-407.
https://doi.org/10.1016/j.celrep.2012.03.010
[12] Wan, L., Du, F. and Wang, X. (2008) TNF-α Induces Two Distinct Caspase-8 Activation Pathways. Cell, 133, 693-703.
https://doi.org/10.1016/j.cell.2008.03.036
[13] Peng, F., Liao, M., Qin, R., et al. (2022) Regulated Cell Death (RCD) in Cancer: Key Pathways and Targeted Therapies. Signal Transduction and Targeted Therapy, 7, Article No. 286.
https://doi.org/10.1038/s41392-022-01110-y
[14] Chen, J., Kos, R., Garssen, J. and Redegeld, F. (2019) Molecular Insights into the Mechanism of Necroptosis: The Necrosome as a Potential Therapeutic Target. Cells, 8, Article No. 1486.
https://doi.org/10.3390/cells8121486
[15] Dondelinger, Y., Jouan-Lanhouet, S., Divert, T., et al. (2015) NF-κB-Independent Role of IKKα/IKKβ in Preventing RIPK1 Kinase-Dependent Apoptotic and Necroptotic Cell Death during TNF Signaling. Molecular Cell, 60, 63-76.
https://doi.org/10.1016/j.molcel.2015.07.032
[16] Bian, Z., Fan, R. and Xie, L. (2022) A Novel Cuproptosis-Related Prognostic Gene Signature and Validation of Differential Expression in Clear Cell Renal Cell Carcinoma. Genes, 13, Article No. 851.
https://doi.org/10.3390/genes13050851
[17] Ebrahimi, N., Adelian, S., Shakerian, S., et al. (2022) Crosstalk between Ferroptosis and the Epithelial-Mesenchymal Transition: Implications for Inflammation and Cancer Therapy. Cytokine & Growth Factor Reviews, 64, 33-45.
https://doi.org/10.1016/j.cytogfr.2022.01.006
[18] Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072.
https://doi.org/10.1016/j.cell.2012.03.042
[19] Yu, H., Guo, P., Xie, X., Wang, Y. and Chen, G. (2017) Ferroptosis, a New Form of Cell Death, and Its Relationships with Tumourous Diseases. Journal of Cellular and Molecular Medicine, 21, 648-657.
https://doi.org/10.1111/jcmm.13008
[20] Cao, J.Y. and Dixon, S.J. (2016) Mechanisms of Ferroptosis. Cellular and Molecular Life Sciences, 73, 2195-2209.
https://doi.org/10.1007/s00018-016-2194-1
[21] Xie, Y., Hou, W., Song, X., et al. (2016) Ferroptosis: Process and Function. Cell Death & Differentiation, 23, 369-379.
https://doi.org/10.1038/cdd.2015.158
[22] Salnikow, K. (2021) Role of Iron in Cancer. Seminars in Cancer Biology, 76, 189-194.
https://doi.org/10.1016/j.semcancer.2021.04.001
[23] Wang, Y., Wu, X., Ren, Z., et al. (2023) Overcoming Cancer Chemotherapy Resistance by the Induction of Ferroptosis. Drug Resistance Updates, 66, Article ID: 100916.
https://doi.org/10.1016/j.drup.2022.100916
[24] Ma, X., Yu, S., Zhao, B., et al. (2022) Development and Validation of a Novel Ferroptosis-Related LncRNA Signature for Predicting Prognosis and the Immune Landscape Features in Uveal Melanoma. Frontiers in Immunology, 13, Article 922315.
https://doi.org/10.3389/fimmu.2022.922315
[25] He, C. and Klionsky, D.J. (2009) Regulation Mechanisms and Signaling Pathways of Autophagy. Annual Review of Genetics, 43, 67-93.
https://doi.org/10.1146/annurev-genet-102808-114910
[26] Miller, D.R. and Thorburn, A. (2021) Autophagy and Organelle Homeostasis in Cancer. Developmental Cell, 56, 906-918.
https://doi.org/10.1016/j.devcel.2021.02.010
[27] Li, W.-W., Li, J. and Bao, J.-K. (2012) Microautophagy: Lesser-Known Self-Eating. Cellular and Molecular Life Sciences, 69, 1125-1136.
https://doi.org/10.1007/s00018-011-0865-5
[28] Zhao, W., Langfelder, P., Fuller, T., et al. (2010) Weighted Gene Coexpression Network Analysis: State of the Art. Journal of Biopharmaceutical Statistics, 20, 281-300.
https://doi.org/10.1080/10543400903572753
[29] Kunz, J.B., Schwarz, H. and Mayer, A. (2004) Determination of Four Sequential Stages during Microautophagy in Vitro. Journal of Biological Chemistry, 279, 9987-9996.
https://doi.org/10.1074/jbc.M307905200
[30] 金剑. 猪流行性腹泻病毒引起Vero细胞内质网应激介导自噬的分子机制研究[D]: [硕士学位论文]. 合肥: 安徽农业大学, 2021.
[31] Giatromanolaki, A.N., Charitoudis, G.S., Bechrakis, N.E., et al. (2011) Autophagy Patterns and Prognosis in Uveal Melanomas. Modern Pathology, 24, 1036-1045.
https://doi.org/10.1038/modpathol.2011.63
[32] Chen, L., Min, J. and Wang, F. (2022) Copper Homeostasis and Cuproptosis in Health and Disease. Signal Transduction and Targeted Therapy, 7, Article No. 378.
https://doi.org/10.1038/s41392-022-01229-y
[33] Tsvetkov, P., Coy, S. and Petrova, B. (2022) Copper Induces Cell Death by Targeting Lipoylated TCA Cycle Proteins. Science, 375, 1254-1261.
https://doi.org/10.1126/science.abf0529
[34] Denoyer, D., Masaldan, S., La Fontaine, S. and Cater, M.A. (2015) Targeting Copper in Cancer Therapy: ‘Copper That Cancer’. Metallomics, 7, 1459-1476.
https://doi.org/10.1039/C5MT00149H
[35] Kaštelan, S., Antunica, A.G., Oresković, L.B., et al. (2020) Immunotherapy for Uveal Melanoma—Current Knowledge and Perspectives. Current Medicinal Chemistry, 27, 1350-1366.
https://doi.org/10.2174/0929867326666190704141444
[36] Raju, K.S., Alessandri, G., Ziche, M. and Gullino, P.M. (1982) Ceruloplasmin, Copper Ions, and Angiogenesis. Journal of the National Cancer Institute, 69, 1183-1188.
[37] Blockhuys, S., Zhang, X. and Wittung-Stafshede, P. (2020) Single-Cell Tracking Demonstrates Copper Chaperone Atox1 to Be Required for Breast Cancer Cell Migration. Proceedings of the National Academy of Sciences of the United States of America, 117, 2014-2019.
https://doi.org/10.1073/pnas.1910722117
[38] Chen, Y., Chen, X. and Wang, X. (2022) Identification of a Prognostic Model Using Cuproptosis-Related Genes in Uveal Melanoma. Frontiers in Cell and Developmental Biology, 10, Article 973073.
https://doi.org/10.3389/fcell.2022.973073