肺癌免疫治疗:现状与生物标志物的分析
Immunotherapy in Lung Cancer: Current Landscape and Analysis of Biomarkers
DOI: 10.12677/WJCR.2023.132006, PDF, 下载: 208  浏览: 369 
作者: 贾艳芳:内蒙古民族大学第二临床医学院,内蒙古 牙克石;曲洪澜*:内蒙古林业总医院,内蒙古 牙克石
关键词: 免疫检查点抑制剂免疫治疗肺癌生物标志物Immune Checkpoint Inhibitors Immunotherapy Lung Cancer Biomarker
摘要: 肺癌是导致全球癌症患者死亡的主要原因。尽管化学疗法和分子靶向疗法取得了进展性的治疗效果,但他们也存在着自身局限性。免疫治疗最近已经成为最有效的新型疗法,并且现在全球医务工作者对免疫治疗的热情显著上升。在这篇综述中,我们将讨论目前免疫治疗在肺癌中的作用,肺癌对免疫治疗的应答和耐药性的生物标志物。
Abstract: Lung cancer is a leading cause of death among cancer patients worldwide. Despite the progressive therapeutic effects of chemotherapy and molecular-targeted therapies, they also have their own limitations. Immunotherapy has recently become the most effective new therapy, and now the enthusiasm for immunotherapy of medical workers around the world has risen significantly. In this review, we will discuss the current role of immunotherapy in lung cancer, the biomarkers of the response to immunotherapy and resistance to immunotherapy.
文章引用:贾艳芳, 曲洪澜. 肺癌免疫治疗:现状与生物标志物的分析[J]. 世界肿瘤研究, 2023, 13(2): 37-43. https://doi.org/10.12677/WJCR.2023.132006

1. 引言

肺癌是导致癌症相关死亡的头号原因。在没有驱动基因突变的患者中,免疫检查点抑制剂(immune checkpoint inhibitors, ICI)形式的免疫治疗是目前治疗 [1] 的一个组成部分。程序性细胞死亡配体-1 (PD-L1)是对免疫检查点抑制剂反应的预测生物标志物之一。PD-L1的表达是一个不完善的生物标志物,但也是最稳健的临床标志物。然而,非小细胞肺癌(non small cell lung cancer, NSCLC)的死亡率仍然很高。大多数晚期患者最终会接受一线治疗,而对于没有靶向突变的患者,二线治疗的选择有限。此外,ICI在小细胞肺癌(small cell lung cancer, SCLC)治疗中的临床应用明显落后于NSCLC。目前仍迫切需要进一步利用免疫系统的力量,扩大治疗选择,并延迟对ICI的耐药性。

2. 目前免疫治疗在肺癌中的作用

在21世纪的第一个十年,诊断为晚期NSCLC和SCLC的患者的中位,总生存期(overall survival, OS)为1年。可操作驱动基因组改变的发现和靶向治疗的发展导致了NSCLC患者亚群OS的显著改善。绝大多数没有可操作的基因组驱动因素的NSCLC患者和几乎所有的SCLC患者的生存率仍然有限,基于铂的化疗是这些患者一线治疗的主要方法。

免疫检查点的发现和随后的诺贝尔奖得主免疫检查点抑制剂(immune checkpoint inhibitors, ICI)的发展,给肺癌的治疗领域带来了一场彻底的革命,特别是非小细胞肺癌(non small cell lung cancer, NSCLC) [2] [3] 。肿瘤利用它来逃避宿主免疫系统的几个已知的免疫检查点中,临床应用中最著名的是程序性细胞死亡蛋白-1/程序性细胞死亡配体-1 (PD-1/PD-L1)和细胞毒性T淋巴细胞抗原-4 (CTLA-4)通路。抑制这些途径使细胞毒性t细胞能够启动和抗肿瘤活性,这些必要步骤分别被携带肿瘤相关抗原的抗原提呈细胞和肿瘤细胞 [3] 的B7-1/2和PD-L1的表达所抑制。

免疫检查点抑制剂(immune checkpoint inhibitors, ICI)在肺癌治疗中应用的第一个突破是PD-1抑制剂尼鲁单抗作为晚期NSCLC患者的二线治疗,随机III期试验显示,在接受铂类化疗 [4] [5] 后,晚期鳞状和非鳞状NSCLC患者的客观缓解率(ORR)和OS都更好。此后不久,另一种PD-1抑制剂派姆单抗和PD-L1抑制剂阿替利珠单抗被美国FDA批准用于相同的适应症,基于这些药物疗效更优于多西紫杉醇在二线 [6] [7] 治疗的疗效。ICI在二线治疗中的成功为其用于晚期NSCLC的一线治疗铺平了道路。在过去的五年里很多的III期临床试验报告显示,与单独化疗相比,ICI或免疫检查点抑制剂(immune checkpoint inhibitors, ICI) + 铂基化疗能够显著改善OS,已经迅速扩大了对没有EGFR致敏突变或ALK易位的晚期NSCLC患者的一线治疗选择。这些选择包括派姆单抗、阿替利珠单抗、西米替利单抗、尼鲁单抗加CTLA-4抑制剂伊匹单抗、派姆单抗加铂化疗、阿替利珠单抗加铂化疗、加或不加贝伐珠单抗(非鳞状组织学)和尼鲁单抗加伊匹单抗加两个周期的铂化疗 [8] [9] 。临床实践中治疗的选择很大程度上取决于PD-L1的表达、疾病负担和肿瘤突变谱。除了改善反应率和OS外,在NSCLC中使用基于ICI的治疗方法最吸引人的方面之一是生存获益的持久性。例如,最近报道的具有里程碑意义的主题-024试验的5年结果,将派姆单抗与化疗作为PD-L1 ≥ 50%的晚期NSCLC患者一线治疗,结果显示,派姆单抗 [10] 的5年生存率为32%。比较尼鲁单抗与多西紫杉醇二线治疗晚期NSCLC的随机试验也报道,一部分患者通过ICI [11] 生存期获得了延长。

免疫检查点抑制剂(immune checkpoint inhibitors, ICI)在NSCLC中的疗效进展从不可切除的III期,最近又扩展到可切除的II-IIIA期肺癌。在随机III期试验比较PD-L1抑制剂单抗与安慰剂不可切除的III期NSCLC患者非进展性疾病同步放化疗后,经过持续5年随访,杜瓦鲁单抗显示优越的无进展生存期(progression free survival, PFS)和OS,进一步确认ICI的抗肿瘤活性。另一项III期试验显示,在完全手术切除和辅助铂类化疗后,比较了阿替利珠单抗与最佳支持治疗,阿替利珠单抗优越的无病生存期(disease free survival, DFS),这导致了,食品药品监督管理局(food and drug administration, FDA)最近批准该药物用于PD-L1表达阳性的可切除的II-IIIA期患者的辅助治疗 [12] 。

ICI在小细胞肺癌(SCLC)治疗中的临床应用明显落后于NSCLC。在过去的30年里,广泛期SCLC治疗的唯一突破是在铂类化疗中加入PD-L1抑制剂德瓦鲁单抗或阿替利珠单抗进行一线治疗。虽然联合治疗现在已成为治疗的标准,但在化疗中加入ICI对中位OS的改善还是有限的 [13] [14] 。临床试验正在评估免疫检查点抑制剂(immune checkpoint inhibitors, ICI)治疗在有限期SCLC患者中的同时或顺序放化疗应用(Clinical Trials.gov标识符:NCT03811002,NCT03703297),尽管最近报道的一项随机II期试验显示,在这种情况下, [15] 放化疗后使用尼鲁单抗和伊匹单抗的PFS没有改善。

3. 肺癌对免疫治疗的应答和耐药性的生物标志物

尽管免疫治疗,特别是PD-1/PD-L1检查点抑制剂在肺癌中的作用越来越大,但大量患者并没有从这些治疗中获益。此外,免疫相关毒性发生在一部分患者中,导致生活质量下降,增加了医疗费用,并导致严重的损害或死亡 [16] [17] 。考虑到这一点,必须开发临床有用的预测性生物标志物,以适当选择那些最有可能受益的患者,并避免那些疗效机会较小和/或毒性风险增加的患者。

3.1. PD-L1表达

除驱动基因突变外,PD-L1是国家综合癌症网络(national comprehensive cancer network, NCCN)指南推荐的唯一帮助转移性NSCLC [1] 的生物标志物。多项研究已证明了该生物标志物在IV期NSCLC [6] [8] [18] 中的预测能力。几乎所有这些试验都表明,PD-L1表达水平不仅可以帮助患者选择,而且免疫治疗获益的受益程度可以通过PD-L1表达 [7] [19] [20] [21] 的大小来预测。相比之下,有几项试验对PD-L1作为预测PD-1/PD-L1检查点抑制剂 [4] [5] [22] 反应的可行生物标志物的益处提出了质疑。

PD-L1表达在非转移性环境中的预测作用正在逐渐显现。在太平洋试验中,PD-L1阴性患者在接受杜瓦鲁单抗 [23] 治疗后,比PD-L1阳性患者表现出更弱的PFS和OS。与此相反,一项规模较小的放化疗后巩固派姆单抗II期试验的相关分析显示,PD-L1的表达似乎并不是疗效的预测因子,因为当比较PD-L1 MPS < 为1%的患者和PD-L1 MPS ≥ 为1%的患者时,PFS或OS没有差异。需要注意的是,其中一些亚组的样本量很小,这可能会限制解释。在辅助治疗中,仅PD-L1 ≥ 1%组在术后使用阿替利珠单抗改善PFS,PD-L1 ≥ 50%组表现出最大的获益 [12] 。

3.2. 肿瘤突变负担(TMB)

TMB被定义为在肿瘤标本中被评估基因的外显子区每兆碱基酶(Mb)的突变总数。随着突变数量的增加,新的转录蛋白和新抗原的潜在数量也会增加。这种新抗原的增加被认为是为了增强肿瘤的免疫原性和提高患者对免疫检查点抑制反应的可能性。基于组织和血液的TMB已经在一些肺癌和肿瘤不可知论的研究中进行了研究,并已被证明可以预测各种免疫检查点抑制剂(immune checkpoint inhibitors, ICI) [7] [21] [22] [24] 的获益。最近,根据主题试验-158试验 [25] 的结果,FDA已经批准派姆单抗用于任何显示高TMB (≥10 mut/Mb)的肿瘤类型的患者。评估PD-L1和TMB联合使用作为复合生物标志物的研究表明,对 [22] [26] 联合使用的预测能力有所提高。

目前还没有临床有用的生物标志物来帮助指导免疫检查点抑制剂(immune checkpoint inhibitors, ICI)在广泛期SCLC中的使用。尽管表现为免疫介导的副肿瘤综合征,并经常表现为高TMB,但SCLC通常并不表现出与NSCLC中所见的检查点抑制相同的临床获益。建立免疫检查点抑制剂(immune checkpoint inhibitors, ICI)联合化疗在广泛期SCLC一线治疗中的作用具有里程碑意义的临床试验没有显示免疫检查点抑制剂(immune checkpoint inhibitors, ICI)对任何PD-L1亚组 [27] [28] 的应答率或临床效用有任何明显的差异。

3.3. 特定的基因组改变

有一些数据表明,特定的基因组改变可能预测对免疫检查点抑制剂(immune checkpoint inhibitors, ICI)的更好或更糟糕的反应。这些研究主要集中在确定免疫治疗耐药性的基因组标记物上。STK11/LKB1是柯尔斯滕大鼠肉瘤病毒(KRAS)突变型肺腺癌的一个独特的亚群。一些研究表明,KRAS突变的存在是免疫检查点抑制剂(immune checkpoint inhibitors, ICI) [29] 优越应答率的预测。然而,特异性共突变如STK11/LKB1显示出较差的免疫原性反应。在两个单独的肺腺癌队列中,KRAS和STK11/LKB1共突变的患者与单独的KRAS突变相比,ORR更低,其中一个队列指出在免疫治疗 [30] 期间PFS和OS显著降低。第二项对STK11单独治疗和STK11/KRAS共突变患者进行的回顾性试验显示,与STK11野生型 [31] 相比,STK11突变患者的OS和PFS较差。然而,该研究也注意到STK11突变患者接受化疗后预后较差,另一项分析表明,在这一人群中的不良结果是预测,而不是预测不良的免疫反应。

同时也提供了关于具有常见的“靶向”基因组改变,如EGFR突变和ALK融合的患者的免疫检查点抑制剂(immune checkpoint inhibitors, ICI)反应的数据。回顾性研究表明,与EGFR野生型肿瘤 [32] [33] 相比,EGFR突变型NSCLC中免疫检查点抑制剂(immune checkpoint inhibitors, ICI)的应答率非常低。免疫检查点抑制剂(immune checkpoint inhibitors, ICI)单药治疗EGFR突变型NSCLC患者的前瞻性试验也产生了同样令人失望的结果 [27] [34] 。虽然数据较少,但ALK基因重排的患者似乎对免疫检查点抑制剂(immune checkpoint inhibitors, ICI)单药治疗 [27] [35] 反应较差。

3.4. 循环肿瘤DNA (ctDNA)

在众多的基于血液的生物标志物分析中,循环肿瘤DNA (circulating tumor DNA, ctDNA)是最常用的 [36] 模式。ctDNA分析在肺癌免疫检查点抑制剂(immune checkpoint inhibitors, ICI)治疗中的作用目前仅限于对上述特定基因组改变的检测。一些商业平台正在提供基于血液的TMB检测方法,然而,它们的临床效用尚未在大型前瞻性试验中得到验证。早期研究数据显示,ctDNA作为反应和生存的生物标志物,分子和放射学反应 [37] 之间有良好的相关性。随着未来更大规模的精心设计的研究,可以想象分子反应的深度将指导未来免疫检查点抑制剂(immune checkpoint inhibitors, ICI)治疗的最佳持续时间,目前这个问题在很大程度上仍未得到答案。

4. 结论

综上所述,肺癌免疫治疗的前景正在迅速扩大,免疫检查点抑制剂(immune checkpoint inhibitors, ICI)已成为转移性、局部晚期和可切除的NSCLC患者的标准治疗,OS有显著改善。免疫检查点抑制剂(immune checkpoint inhibitors, ICI)在SCLC中的临床应用仅限于广泛期疾病的一线治疗,而OS的改善较小。免疫治疗的耐药性,无论是固有的还是获得性的,是肿瘤科面临的主要挑战。目前发现的生物标志物有限,需要发现更多的新型生物标志物推动免疫治疗的发展,为肺癌患者带来更多的福音。

NOTES

*通讯作者。

参考文献

[1] Network NCC. Non-Small Cell Lung Cancer (Version 7.2021). https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf
[2] The Nobel Prize in Physiology or Medicine 2018 [Press Release] Stockholm: The Nobel Assembly at Karolinska Institutet 2018 (2018). https://www.nobelprize.org/prizes/medicine/2018/press-release
[3] Pardoll, D.M. (2012) The Blockade of Immune Checkpointsin Cancer Immunotherapy. Nature Reviews Cancer, 12, 252-264.
https://doi.org/10.1038/nrc3239
[4] Borghaei, H., Paz-Ares, L., Horn, L., Spigel, D.R., Steins, M., Ready, N.E., et al. (2015) Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. The New England Journal of Medicine, 373, 1627-1639.
https://doi.org/10.1056/NEJMoa1507643
[5] Brahmer, J., Reckamp, K.L., Baas, P., Crino, L., Eberhardt, W.E., Poddubskaya, E., et al. (2015) Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small Cell Lung Cancer. The New England Journal of Medicine, 373, 123-135.
https://doi.org/10.1056/NEJMoa1504627
[6] Herbst, R.S., Baas, P., Kim, D.W., Felip, E., Perez-Gracia, J.L., Han, J.Y., et al. (2016) Pembrolizumab versus Docetaxel for Previously Treated, PD-L1-Positive, Advanced Non-Small-Cell Lung Cancer (KEYNOTE-010): A Randomised Controlled Trial. The Lancet, 387, 1540-1550.
https://doi.org/10.1016/S0140-6736(15)01281-7
[7] Rittmeyer, A., Barlesi, F., Waterkamp, D., Park, K., Ciardiello, F., von Pawel, J., et al. (2017) Atezolizumab versus Docetaxel in Patients with Previously Treated Non-Small-Cell Lung Cancer (OAK): A Phase 3, Open-Label, Multcentre Randomised Controlled Trial. The Lancet, 389, 255-265.
https://doi.org/10.1016/S0140-6736(16)32517-X
[8] Reck, M., Rodriguez-Abreu, D., Robinson, A.G., Hui, R., Csoszi, T., Fulop, A., et al. (2016) Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. The New England Journal of Medicine, 375, 1823-1833.
https://doi.org/10.1056/NEJMoa1606774
[9] Paz-Ares, L., Ciuleanu, T.E., Cobo, M., Schenker, M., Zurawski, B., Menezes, J., et al. (2021) First-Line Nivolumab Plus Ipilimumab Combined with Two Cycles of Chemotherapy in Patients with Non-Small-Cell Lung Cancer (Checkmate 9LA): An International, Randomised, Open-Label, Phase 3 Trial. The Lancet Oncology, 22, 198-211.
https://doi.org/10.1016/S1470-2045(20)30641-0
[10] Reck, M., Rodriguez-Abreu, D., Robinson, A.G., Hui, R., Csoszi, T., Fulop, A., et al. (2021) Five-Year Outcomes with Pembrolizumab versus Chemotherapy for Metastatic Non-Small-Cell Lung Cancer with PD-L1 Tumor Proportion Score >/= 50. Journal of Clinical Oncology, 39, 2339-2349.
https://doi.org/10.1200/JCO.21.00174
[11] Borghaei, H., Gettinger, S., Vokes, E.E., Chow, L.Q.M., Burgio, M.A., de Castro Carpeno, J., et al. (2021) Five-Year Outcomes from the Randomized, Phase III Trials Checkmate 017 and 057: Nivolumab versus Docetaxel in Previously Treated Non-Small-Cell Lung Cancer. Journal of Clinical Oncology, 39, 723-733.
https://doi.org/10.1200/JCO.20.01605
[12] Felip, E., Altorki, N., Zhou, C., Csoszi, T., Vynnychenko, I., Goloborodko, O., et al. (2021) Adjuvant Atezolizumab after Adjuvant Chemotherapy in Resected Stage IBIIIA Non-Small-Cell Lung Cancer (Impower010): A Randomised, Multicentre, Open-Label, Phase 3 Trial. The Lancet, 398, 1344-1357.
https://doi.org/10.1016/S0140-6736(21)02098-5
[13] Horn, L., Mansfield, A.S., Szczesna, A., Havel, L., Krzakowski, M., Hochmair, M.J., et al. (2018) First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small Cell Lung Cancer. The New England Journal of Medicine, 379, 2220-2229.
https://doi.org/10.1056/NEJMoa1809064
[14] Paz-Ares, L., Dvorkin, M., Chen, Y., Reinmuth, N., Hotta, K., Trukhin, D., et al. (2019) Durvalumab plus Platinum- Etoposide versus Platinum-Etoposide in First Line Treatment of Extensive-Stage Small-Cell Lung Cancer (CASPIAN): A Randomised, Controlled, Open-Label, Phase 3 Trial. The Lancet, 394, 1929-1939.
[15] Peters, S., Pujol, J.L., Dafni, U., Domine, M., Popat, S., Reck, M., et al. (2021) Consolidation Nivolumab and Ipilimumab versus Observation in Limited-Disease Small Cell Lung Cancer after Chemo-Radiotherapy—Results from the Randomised Phase II ETOP/IFCT 4-12 Stimuli Trial. Annals of Oncology, 33, 67-79.
[16] Camidge, D.R., Doebele, R.C. and Kerr, K.M. (2019) Comparing and Contrasting Predictive Biomarkers for Immunotherapy and Targeted Therapy of NSCLC. Nature Reviews Clinical Oncology, 16, 341-355.
https://doi.org/10.1038/s41571-019-0173-9
[17] Suresh, K., Naidoo, J., Lin, C.T. and Danoff, S. (2018) Immune Checkpoint Immunotherapy for Non-Small Cell Lung Cancer: Benefits and Pulmonary Toxicities. Chest, 154, 1416-1423.
https://doi.org/10.1016/j.chest.2018.08.1048
[18] Garon, E.B., Rizvi, N.A., Hui, R., Leighl, N., Balmanoukian, A.S., Eder, J.P., et al. (2015) Pembrolizumab for the Treatment of Non-Small-Cell Lung Cancer. The New England Journal of Medicine, 372, 2018-2028.
https://doi.org/10.1056/NEJMoa1501824
[19] Gandhi, L., Rodriguez-Abreu, D., Gadgeel, S., Esteban, E., Felip, E., De Angelis, F., et al. (2018) Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. The New England Journal of Medicine, 378, 2078-2092.
https://doi.org/10.1056/NEJMoa1801005
[20] Nosaki, K., Saka, H., Hosomi, Y., Baas, P., de Castro, G., Reck, M., et al. (2019) Safety and Efficacy of Pembrolizumab Monotherapy in Elderly Patients with PD-L1-Positive Advanced Non-Small-Cell Lung Cancer: Pooled Analysis from the KEYNOTE-010, KEYNOTE-024, and KEYNOTE-042 Studies. Lung Cancer, 135, 188-195.
https://doi.org/10.1016/j.lungcan.2019.07.004
[21] Fehrenbacher, L., Spira, A., Ballinger, M., Kowanetz, M., Vansteenkiste, J., Mazieres, J., et al. (2016) Atezolizumab versus Docetaxel for Patients with Previously Treated Non-Small-Cell Lung Cancer (POPLAR): A Multicentre, Open- Label, Phase 2 Randomised Controlled Trial. The Lancet, 387, 1837-1846.
https://doi.org/10.1016/S0140-6736(16)00587-0
[22] Carbone, D.P., Reck, M., Paz-Ares, L., Creelan, B., Horn, L., Steins, M., et al. (2017) First Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer. The New England Journal of Medicine, 376, 2415-2426.
https://doi.org/10.1056/NEJMoa1613493
[23] Paz-Ares, L., Spira, A., Raben, D., Planchard, D., Cho, B.C., Ozguroglu, M., et al. (2020) Outcomes with Durvalumab by Tumour PD-L1 Expression in Unresectable, Stage III Non-Small-Cell Lung Cancer in the PACIFIC Trial. Annals of Oncology, 31, 798-806.
https://doi.org/10.1016/j.annonc.2020.03.287
[24] Hellmann, M.D., Paz-Ares, L., Bernabe Caro, R., Zurawski, B., Kim, S.W., Carcereny Costa, E., et al. (2019) Nivolumab plus Ipilimumab in Advanced Non Small-Cell Lung Cancer. The New England Journal of Medicine, 381, 2020- 2031.
https://doi.org/10.1056/NEJMoa1910231
[25] Marabelle, A., Fakih, M., Lopez, J., Shah, M., Shapira-Frommer, R., Nakagawa, K., et al. (2020) Association of Tumour Mutational Burden with Outcomes in Patients with Advanced Solid Tumours Treated with Pembrolizumab: Prospective Biomarker Analysis of the Multicohort, Open-Label, Phase 2 KEYNOTE-158 Study. The Lancet Oncology, 21, 1353-1365.
https://doi.org/10.1016/S1470-2045(20)30445-9
[26] Rizvi, H., Sanchez-Vega, F., La, K., Chatila, W., Jonsson, P., Halpenny, D., et al. (2018) Molecular Determinants of Response to Anti-Programmed Cell Death (PD)-1 and Anti-Programmed Death-Ligand 1 (PD-L1) Blockade in Patients with Non-Small-Cell Lung Cancer Profiled with Targeted Next-Generation Sequencing. Journal of Clinical Oncology, 36, 633-641.
https://doi.org/10.1200/JCO.2017.75.3384
[27] Liu, S.V., Reck, M., Mansfield, A.S., Mok, T., Scherpereel, A., Reinmuth, N., et al. (2021) Updated Overall Survival and PD-L1 Subgroup Analysis of Patients with Extensive-Stage Small-Cell Lung Cancer Treated with Atezolizumab, Carboplatin, and Etoposide (Impower133). Journal of Clinical Oncology, 39, 619-630.
https://doi.org/10.1200/JCO.20.01055
[28] Rudin, C.M., Awad, M.M., Navarro, A., Gottfried, M., Peters, S., Csoszi, T., et al. (2020) Pembrolizumab or Placebo Plus Etoposide and Platinum as First-Line Therapy for Extensive-Stage Small-Cell Lung Cancer: Randomized, Double- Blind, Phase III KEYNOTE-604 Study. Journal of Clinical Oncology, 38, 2369-2379.
https://doi.org/10.1200/JCO.20.00793
[29] Torralvo, J., Friedlaender, A., Achard, V. and Addeo, A. (2019) The Activity of Immune Checkpoint Inhibition in KRAS Mutated Non-Small Cell Lung Cancer: A Single Centre Experience. Cancer Genomics Proteomics, 16, 577-582.
https://doi.org/10.21873/cgp.20160
[30] Skoulidis, F., Goldberg, M.E., Greenawalt, D.M., Hellmann, M.D., Awad, M.M., Gainor, J.F., et al. (2018) STK11/L- KB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. Cancer Discovery, 8, 822-835.
[31] Shire, N.J., Klein, A.B., Golozar, A., Collins, J.M., Fraeman, K.H., Nordstrom, B.L., et al. (2020) STK11 (LKB1) Mutations in Metastatic NSCLC: Prognostic Value in the Real World. PLOS ONE, 15, e0238358.
https://doi.org/10.1371/journal.pone.0238358
[32] Gainor, J.F., Shaw, A.T., Sequist, L.V., Fu, X., Azzoli, C.G., Piotrowska, Z., et al. (2016) EGFR Mutations and ALK Rearrangements Are Associated with Low Response Rates to PD-1 Pathway Blockade in Non-Small Cell Lung Cancer: A Retrospective Analysis. Clinical Cancer Research, 22, 4585-4593.
https://doi.org/10.1158/1078-0432.CCR-15-3101
[33] Mazieres, J., Drilon, A., Lusque, A., Mhanna, L., Cortot, A.B., Mezquita, L., et al. (2019) Immune Checkpoint Inhibitors for Patients with Advanced Lung Cancer and Oncogenic Driver Alterations: Results from the Immunotarget Registry. Annals of Oncology, 30, 1321-1328.
https://doi.org/10.1093/annonc/mdz167
[34] Garassino, M.C., Cho, B.C., Kim, J.H., Mazieres, J., Vansteenkiste, J., Lena, H., et al. (2018) Durvalumab as Third-Line or Later Treatment for Advanced Non-Small Cell Lung Cancer (Atlantic): An Open-Label, Single-Arm, Phase 2 Study. The Lancet Oncology, 19, 521-536.
[35] Lee, C.K., Man, J., Lord, S., Cooper, W., Links, M., Gebski, V., et al. (2018) Clinical and Molecular Characteristics Associated with Survival among Patients Treated with Checkpoint Inhibitors for Advanced Non-Small Cell Lung Carcinoma: A Systematic Review and Meta-Analysis. JAMA Oncology, 4, 210-216.
https://doi.org/10.1001/jamaoncol.2017.4427
[36] Mamdani, H., Ahmed, S., Armstrong, S., Mok, T. and Jalal, S.I. (2017) Blood-Based Tumor Biomarkers in Lung Cancer for Detection and Treatment. Translational Lung Cancer Research, 6, 648-660.
https://doi.org/10.21037/tlcr.2017.09.03
[37] Thompson, J.C., Carpenter, E.L., Silva, B.A., Rosenstein, J., Chien, A.L., Quinn, K., et al. (2021) Serial Monitoring of Circulating Tumor DNA by Next-Generation Gene Sequencing as a Biomarker of Response and Survival in Patients with Advanced NSCLC Receiving Pembrolizumab-Based Therapy. JCO Precision Oncology, 5, 510-524.
https://doi.org/10.1200/PO.20.00321