本维莫德乳膏治疗特应性皮炎的研究进展
Research Progress of Benvitimod in the Treatment of Atopic Dermatitis
DOI: 10.12677/ACM.2023.134796, PDF, 下载: 279  浏览: 381 
作者: 马春辉:青海大学研究生院,青海 西宁;青海省人民医院皮肤性病科,青海 西宁;王宝庭*:青海省人民医院皮肤性病科,青海 西宁
关键词: 特应性皮炎本维莫德芳香烃受体核因子E2相关因子2Atopic Dermatitis Benvitimod Aryl Hydrocarbon Receptor Nuclear Factor E2-Related Factor 2
摘要: 特应性皮炎(AD)是一种慢性、复发性、炎症性、瘙痒性皮肤病。其发病机制复杂,目前认为与遗传、环境、皮肤屏障异常及免疫系统紊乱有关。皮肤屏障功能障碍与丝聚蛋白(FLG)、兜甲蛋白(LOR)、内披蛋白(IVL)等的下调有关。Th2型皮肤炎症是AD的基本特征,IL4和IL-13是AD发病的重要细胞因子。本维莫德乳膏作为芳香烃受体/核因子E2相关因子(AHR/NRF2)的双重激活剂对AD的多种致病机制具有调节作用,本文就目前本维莫德乳膏治疗AD的研究进展进行综述。
Abstract: Atopic dermatitis (AD) is a chronic, relapsing, inflammatory, pruritus skin disease. Its pathogenesis is complex, and it is currently believed to be related to heredity, environment, abnormal skin barrier and immune system disorder. Skin barrier dysfunction is associated with down regulation of Filaggrin (FLG), Loricrin (LOR), and Involucrin (IVL). Th2 skin inflammation is a basic feature of AD, and IL4 and IL-13 are important cytokines in AD pathogenesis. As a double activator of aryl hydrocarbon receptor/nuclear factor E2-related factor 2 (AHR/NRF2), Benvitimod cream has a regulatory effect on various pathogenic mechanisms of AD. This paper reviews the current research progress of Benvitimod in the treatment of atopic dermatitis.
文章引用:马春辉, 王宝庭. 本维莫德乳膏治疗特应性皮炎的研究进展[J]. 临床医学进展, 2023, 13(4): 5634-5640. https://doi.org/10.12677/ACM.2023.134796

1. 引言

AD是一种强烈的瘙痒性、慢性、复发性、炎症性皮肤病。AD的病因是多因素的,遗传和环境因素、皮肤屏障功能障碍和免疫反应受损是主要因素 [1] [2] [3] 。频繁复发以及剧烈瘙痒会使患者生活质量明显下降,从而导致患者治疗满意度降低 [4] [5] [6] [7] [8] 。AD在人群中的终身发病率达到20% [9] 。皮肤屏障功能障碍与丝聚蛋白(FLG)、兜甲蛋白(LRO)、内披蛋白(IVL)等末端分化分子的产生减少有关 [10] [11] 。AD的皮肤炎症以Th2型炎症为主,IL4和IL-13是介导AD发病的重要细胞因子 [12] 。IgE升高以及TH-17/ Th22炎症轴也与AD相关 [13] [14] [15] [16] 。皮肤屏障完整性异常也会导致金黄色葡萄球菌等微生物的定植增加,从而进一步加剧Th2型皮肤炎症 [17] [18] 。目前AD的治疗包括外用药物治疗及系统治疗 [19] ,外用药物主要为糖皮质激素及钙调磷酸酶抑制剂,虽然这些药物对AD有效,但不良反应限制了它们的长期使用 [20] 。本维莫德乳膏作为一种新型制剂在近期临床试验中对治疗AD效果明显且不良反应较少 [21] ,本文将从以下几方面进行综述。

2. 本维莫德乳膏治疗AD的机制

本维莫德又名“本烯莫德”(英文名:Benvitimod、Tapinarof,以前被称为GSK2894512或WBI-1001)是一种天然衍生的小分子,由昆虫致病线虫的细菌共生体产生 [22] [23] 。目前相关临床试验提示本维莫德乳膏在AD治疗中疗效显著 [15] [19] 。Susan H. Smith [24] 等人的试验证明本维莫德是芳基烃受体(AHR)激动剂,并证实其疗效依赖于AhR。除了AhR激动剂活性外,本维莫德的化学结构具有固有的抗氧化特性,可激活核因子E2相关因子2 (NRF2),目前已证实本维莫德是AHR/NRF2的双重激活剂 [10] ,NRF2是一种调控细胞氧化应激反应的重要转录因子,其通路的激活可以诱导NAD(P):醌氧化还原酶1 (NQO1)的表达从而减轻CYP1A1诱导的氧化应激 [25] [26] 。芳基烃受体(AHR)是一种配体依赖性转录因子 [27] ,其与配体结合后,与AHR-核转位器(ARNT)二聚,并上调靶基因的转录 [28] [29] [30] [31] [32] 。AHR的主要下游靶点是表皮分化复合体(EDC),对人类表皮的末端分化非常重要 [33] 。EDC包括FLG、FLG2、LOR和IVL等 [34] [35] 。AHR激活可上调FLG、IVL和LOR等EDC蛋白 [36] - [42] ,这些屏障蛋白表达的上调可以抵消AD发病机制中关键的表皮屏障缺陷而达到治疗AD的目的。当受到内源性配体的刺激时,AHR通路可减轻AD患者的炎症,并维持健康的皮肤屏障 [43] [44] 。Th2炎症通路与AHR轴对皮肤屏障功能的作用相反 [45] 。IL-4和IL-13是AD中主要的Th2细胞因子,对LOR、IVL和FLG的表达有下调作用 [46] [47] [48] 。其下调机制主要是通过激活JAK1/2和STAT3/6从而阻断AHR介导的EDC激活 [49] [50] [51] 。Van den Bogaard [10] 等的研究结果显示:煤焦油可激活芳香烃受体;在未经煤焦油处理的皮肤模型中,FLG不存在,而在煤焦油处理的皮肤模型中FLG大量表达;煤焦油干扰Th2细胞因子介导的STAT6信号通路,从而抑制TH2型炎症反应。Tsuji [52] 等的研究结果显示:1) OVOL1调控FLG的表达;2) AHR激活上调OVOL1;3) AHR激活通过OVOL1上调FLG。Takei [53] 等的研究结果显示:大豆焦油作为煤焦油的替代品,可激活AHR,并诱导AhR在角质形成细胞中的核易位。大豆焦油可诱导CYP1A1(AHR激活的特异性标志物)呈剂量依赖性升高,还可以以AHR赖的方式上调FLG的表达;同时该研究还证实了Th2细胞因子对FLG表达的抑制作用,大豆焦油可恢复这种抑制作用。以上研究结果表明:AHR激动剂可以减少Th2型炎症,恢复FLG的体外表达。AHR激动剂可抑制骨髓树突状细胞中的IL-4/STAT6,进而下调IL-31、CCL17和CCL22 [54] 。AHR激动剂抑制T细胞扩张、Th17分化和IL-17的产生 [10] [55] ,AHR的激活也下调了朗格汉斯细胞中IgE高亲和力受体的表达 [56] 。NRF2的激活对小鼠成纤维细胞中Th2细胞因子(IL-13,IL-33和IL-1β)具有抑制作用,但其机制尚不完全清楚 [57] 。相关研究证明AHR激活可影响皮肤微生物的调节,在3D皮肤模型中,研究表明表皮葡萄球菌定植可以通过AHR依赖的方式产生IL-1α和人β-防御素-3促进先天免疫信号传导,而AHR抑制会导致表皮葡萄球菌生长增加 [58] 。

综上所述,本维莫德乳膏作为AHR/NRF2的双重激活剂对AD的多种致病机制具有调节作用:1) 改善皮肤屏障功能障碍;2) 调节皮肤炎症;3) 抑制氧化应激;4) 下调IgE;5) 调节皮肤微生物群。

3. 本维莫德乳膏治疗AD的临床疗效

随机、双盲、安慰剂对照的IIA期临床试验 [23] 共纳入了37名受试者随机分为3组(1%本维莫德 每日2次;0.5%本维莫德 每日2次;安慰剂 每日2次),连续观察4周。在第4周,0.5%和1.0%的本维莫德在改善AD方面疗效均优于安慰剂组,EASI、SCORAD、IGA和BSA评分均显著降低。

随机、双盲、安慰剂对照的II期临床试验 [59] 评估了本维莫德治疗AD的有效性和安全性。研究共纳入了247例AD患者,以相同比例随机分为6组(1%本维莫德 每日2次;1%本维莫德 每日1次;0.5%本维莫德 每日2次;0.5%本维莫德 每日1次;安慰剂 每日2次;安慰剂 每日1次)。连续用药12周,1%本维莫德每日2次治疗成功率(53%)显著高于安慰剂每日2次治疗成功率(24%);每日2次涂抹的应答率(53%)高于每日1次涂抹的应答率(46%);1%浓度治疗组的有效率比0.5%浓度治疗组的有效率高;EASI75的比例在1%本维莫德治疗组最高(60% [1%每日2次]和51% [1%每日1次]),本维莫德治疗组EASI75患者比例高于安慰剂组(每日2次和每日1次0.5%本维莫德治疗组分别为51%和39%,每日2次和每日1次安慰剂组分别为26%和25%)。

随机、双盲、安慰剂对照的IIb期临床试验 [60] 在上述II期试验基础上进一步评估了本维莫德治疗AD的有效性、安全性以及治疗后四周的疗效评估。在第12周,IGA及EASI75结果与上述II期临床试验相符;除0.5%每日2次组外,本维莫德组的EASI90显著高于安慰剂组;瘙痒数字评分(NRS)改善≥3分的患者比例本维莫德组显著高于安慰剂组;除每日2次0.5%本维莫德组外,其余本维莫德组体表面积(BSA)的平均变化百分比较基线显著降低;此次试验结果包含了患者对AD症状严重程度改善的评价,与用安慰剂治疗的患者相比,使用本维莫德乳膏治疗的患者将AD症状的严重程度评价为非常或中度改善的比例明显更高。同时试验证实了患者治疗效果可维持至少四周。

4. 本维莫德乳膏治疗AD的安全性及不良反应

在非盲、双队列的I期临床试验中 [61] ,没有任何受试者死亡或严重不良事件的报告。在两个队列中,头痛是最常见的不良事件,2名使用2%本维莫德乳膏的受试者(40%)和3名使用1%本维莫德的受试者(50%)出现毛囊炎,这是使用本维莫德时典型的不良事件。

随机、双盲、安慰剂对照的2A期临床试验 [60] 结果提示本维莫德乳膏(WBI-1001)在为期四周的AD治疗中最常见的不良反应为轻度丘疹,未发生其余不良反应,受试者对0.5%和1%本维莫德乳膏耐受性均良好。

随机、双盲、安慰剂对照的II期临床试验 [60] 结果提示本维莫德治疗AD最常见的不良事件为鼻咽炎,其余常见不良事件为毛囊炎、AD (AD恶化或发作)、上呼吸道感染、头痛、痤疮和脓疱疮。无系统不良反应发生,所有治疗组中,无论给药剂量如何,免疫球蛋白水平(IgA、IgG和IgM)均未见明显临床变化。

综上所述,目前国外相关临床研究结果表明本维莫德乳膏治疗AD患者耐受性良好,头痛、毛囊炎及鼻咽炎为其常见的不良反应,无系统不良反应发生,但目前临床试验周期均未超过12周,且目前临床试验仅处于2b期,远期使用安全性有待考量。

5. 总结及展望

目前AD的局部治疗方法,即局部外用皮质类固醇和局部外用钙调磷酸酶抑制剂均存在使用限制以及潜在的局部和全身不良反应。尽管目前有crisaborole和dupilumab等药物的出现,但仍需要寻找其他有效的治疗方法。本维莫德乳膏可以从AD的多个致病环节发挥其治疗作用。根据目前临床试验结果,本维莫德乳膏治疗AD的疗效显著,患者耐受性好,不良反应较少,临床使用安全性较高,且其独特的作用机制明确地将该药物与目前可用的AD治疗方法区别开来。本维莫德乳膏代表了AD局部药物开发的一个重要进展,值得在三期临床试验中进一步研究以进一步明确其在治疗AD中的安全性及有效性。

NOTES

*通讯作者。

参考文献

[1] Allam, J.P., Bieber, T. and Novak, N. (2005) Recent Highlights in the Pathophysiology of Atopic Eczema. International Archives of Allergy and Immunology, 136, 191-197.
https://doi.org/10.1159/000083893
[2] Guttman-Yassky, E., Krueger, J.G. and Lebwohl, M.G. (2017) Systemic Immune Mechanisms in Atopic Dermatitis and Psoriasis with Implications for Treatment. Experimental Dermatology, 27, 409-417.
https://doi.org/10.1111/exd.13336
[3] Mansouri, Y. and Guttman-Yassky, E. (2015) Immune Pathways in Atopic Dermatitis, and Definition of Biomarkers through Broad and Targeted Therapeutics. Journal of Clinical Medicine, 4, 858-873.
https://doi.org/10.3390/jcm4050858
[4] Arima, K., Gupta, S., Gadkari, A., et al. (2018) Burden of Atopic Der-matitis in Japanese Adults: Analysis of Data from the 2013 National Health and Wellness Survey. The Journal of Dermatology, 45, 390-396.
https://doi.org/10.1111/1346-8138.14218
[5] Igarashi, A., Fujita, H., Arima, K., Inoue, et al. (2019) Health-Care Resource Use and Current Treatment of Adult Atopic Dermatitis Patients in Japan: A Retrospective Claims Database Analysis. The Journal of Dermatology, 46, 652-661.
https://doi.org/10.1111/1346-8138.14947
[6] Jung, H.J., Bae, J.Y., Kim, J.E., et al. (2018) Survey of Disease Awareness, Treatment Behavior and Treatment Satisfaction in Pa-tients with Atopic Dermatitis in Korea: A Multicenter Study. The Journal of Dermatology, 45, 1172-1180.
https://doi.org/10.1111/1346-8138.14540
[7] Komura, Y., Kogure, T., Kawahara, K., et al. (2018) Economic Assessment of Actual Prescription of Drugs for Treatment of Atopic Dermatitis: Differences between Dermatology and Pediatrics in Large-Scale Receipt Data. The Journal of Dermatology, 45, 165-174.
https://doi.org/10.1111/1346-8138.14133
[8] Takeuchi, S., Oba, J., Esaki, H., et al. (2018) Non-Corticosteroid Adherence and Itch Severity Influence Perception of Itch in Atopic Dermatitis. The Journal of Dermatology, 45, 158-164.
https://doi.org/10.1111/1346-8138.14124
[9] Williams, H., Stewart, A., von Mutius, E., et al. (2008) Is Eczema Really on the Increase Worldwide? Journal of Allergy and Clinical Immunology, 121, 947-954.
https://doi.org/10.1016/j.jaci.2007.11.004
[10] Van den Bogaard, E.H., Bergboer, J.G., Vonk-Bergers, M., et al. (2013) Coal Tar Induces AHR-Dependent Skin Barrier Repair in Atopic Dermatitis. Journal of Clinical Investigation, 123, 917-927.
https://doi.org/10.1172/JCI65642
[11] Geng, S., Mezentsev, A., Kalachikov, S., et al. (2006) Tar-geted Ablation of Arnt in Mouse Epidermis Results in Profound Defects in Desquamation and Epidermal Barrier Func-tion. Journal of Cell Science, 119, 4901-4912.
https://doi.org/10.1242/jcs.03282
[12] 王建琴. 中国特应性皮炎诊疗指南(2020版)解读[J]. 皮肤性病诊疗学杂志, 2020, 27(5): 359-361.
[13] Czarnowicki, T., Gonzalez, J., Bonifacio, K.M., et al. (2016) Diverse Activation and Differentiation of Multiple B-Cell Subsets in Patients with Atopic Dermatitis but Not in Patients with Psoriasis. Journal of Allergy and Clinical Immunology, 137, 118-129.e115.
https://doi.org/10.1016/j.jaci.2015.08.027
[14] Hamada, M., Furusyo, N., Urabe, K., et al. (2005) Prevalence of Atopic Dermatitis and Serum IgE Values in Nursery School Children in Ishigaki Island, Okinawa, Japan. The Journal of Dermatology, 32, 248-255.
https://doi.org/10.1111/j.1346-8138.2005.tb00757.x
[15] Gittler, J.K., Shemer, A., Suárez-Fariñas, M., et al. (2012) Progressive Activation of T(H)2/T(H)22 Cytokines and Selective Epidermal Proteins Characterizes Acute and Chronic Atopic Dermatitis. Journal of Allergy and Clinical Immunology, 130, 1344-1354.
https://doi.org/10.1016/j.jaci.2012.07.012
[16] Koga, C., Kabashima, K., Shiraishi, N., et al. (2008) Possible Pathogenic Role of Th17 Cells for Atopic Dermatitis. Journal of Investigative Dermatology, 128, 2625-2630.
https://doi.org/10.1038/jid.2008.111
[17] Furue, M., Iida, K., Imaji, M., et al. (2018) Microbiome Analysis of Forehead Skin in Patients with Atopic Dermatitis and Healthy Subjects: Implication of Staphylococcus and Corynebacterium. The Journal of Dermatology, 45, 877.
https://doi.org/10.1111/1346-8138.14486
[18] Iwamoto, K., Moriwaki, M., Miyake, R., et al. (2019) Staphylo-coccus aureus in Atopic Dermatitis: Strain-Specific Cell Wall Proteins and Skin Immunity. Allergology International, 68, 309-315.
https://doi.org/10.1016/j.alit.2019.02.006
[19] Bissonnette, R., Poulin, Y., Zhou, Y., et al. (2012) Efficacy and Safety of Topical WBI-1001 in Patients with Mild to Severe Atopic Dermatitis: Results from a 12-Week, Multicentre, Randomized, Placebo-Controlled Double-Blind Trial. Br. The Journal of Dermatology, 166, 853-860.
https://doi.org/10.1111/j.1365-2133.2011.10775.x
[20] Keam, S.J. (2022) Tapinar of Cream 1%: First Approval. Drugs, 82, 1221-1228.
https://doi.org/10.1007/s40265-022-01748-6
[21] Li, J., Chen, G., Wu, H., et al. (1995) Identification of Two Pigments and a Hydroxystilbene Antibiotic from Photorhabdus luminescens. Applied and Environmental Microbiology, 61, 4329-4333.
https://doi.org/10.1128/aem.61.12.4329-4333.1995
[22] Richardson, W.H., Schmidt, T.M. and Nealson, K.H. (1988) Identification of an Anthraqui-None Pigment and a Hydroxystilbene Antibiotic from Xenorhabdus luminescens. Applied and Environmental Microbiology, 54, 1602-1605.
https://doi.org/10.1128/aem.54.6.1602-1605.1988
[23] Bissonnette, R., Chen, G., Bolduc, C., et al. (2010) Efficacy and Safety of Topical WBI-1001 in the Treatment of Atopic Dermatitis: Results from a Phase 2A, Randomized, Placebo-Controlled Clinical Trial. Archives of Dermatology, 146, 446-449.
https://doi.org/10.1001/archdermatol.2010.34
[24] Smith, S.H., Jayawickreme, C., Rickard, D.J., et al. (2017) Tapinarof Is a Natural AhR Agonist that Resolves Skin Inflammation in Mice and Humans. Journal of Investigative Dermatology, 137, 2110-2119.
https://doi.org/10.1016/j.jid.2017.05.004
[25] Tsuji, G., Takahara, M., Uchi, H., et al. (2012) Identification of Ketoconazole as an AhR-Nrf2 Activator in Cultured Human Keratinocytes: The Basis of Its Anti-Inflammatory Effect. Journal of Investigative Dermatology, 132, 59-68.
https://doi.org/10.1038/jid.2011.194
[26] Hwang, J., Newton, E.M., Hsiao, J., et al. (2022) Aryl Hydrocarbon Receptor/Nuclear Factor E2-Related Factor 2 (AHR/NRF2) Signalling: A Novel Therapeutic Target for Atopic Dermatitis. Experimental Dermatology, 31, 485-497.
https://doi.org/10.1111/exd.14541
[27] Mimura, J. and Fujii-Kuriyama, Y. (2003) Functional Role of AhR in the Expression of Toxic Effects by TCDD. Biochimica et Biophysica Acta, 1619, 263-268.
https://doi.org/10.1016/S0304-4165(02)00485-3
[28] Hayes, J.D. and McMahon, M. (2001) Molecular Basis for the Contribution of the Antioxidant Responsive Element to Cancer Chemoprevention. Cancer Letters, 174, 103-113.
https://doi.org/10.1016/S0304-3835(01)00695-4
[29] Miao, W., Hu, L., Scrivens, P.J., et al. (2005) Transcriptional Regulation of NF-E2 p45-Related Factor (NRF2) Expression by the Aryl Hydrocarbon Receptor-Xenobiotic Response Element Signaling Pathway: Direct Cross-Talk between Phase I and II Drug-Metabolizing Enzymes. Journal of Biological Chemistry, 280, 20340-20348.
https://doi.org/10.1074/jbc.M412081200
[30] Esser, C. and Rannug, A. (2015) The Aryl Hydrocarbon Receptor in Barrier Organ Physiology, Immunology, and Toxicology. Pharmacological Reviews, 67, 259-279.
https://doi.org/10.1124/pr.114.009001
[31] Esser, C. (2016) The Aryl Hydrocarbon Receptor in Immunity: Tools and Potential. Methods in Molecular Biology, 1371, 239-257.
https://doi.org/10.1007/978-1-4939-3139-2_16
[32] Stockinger, B., Di Meglio, P., Gialitakis, M., et al. (2014) The Aryl Hydrocarbon Receptor: Multitasking in the Immune System. Annual Review of Immunology, 32, 403-432.
https://doi.org/10.1146/annurev-immunol-032713-120245
[33] Mischke, D., Korge, B.P., Marenholz, I., et al. (1996) Genes Encoding Structural Proteins of Epidermal Cornification and S100 Calcium-Binding Proteins form a Gene Complex (“Epidermal Differentiation Complex”) on Human Chromosome 1q21. Journal of Investigative Dermatology, 106, 989-992.
https://doi.org/10.1111/1523-1747.ep12338501
[34] Sutter, C.H., Bodreddigari, S., Campion, C., et al. (2011) 2,3,7,8-Tetrachlorodibenzo-p-dioxin Increases the Expression of Genes in the Human Epidermal Differentiation Complex and Accelerates Epidermal Barrier Formation. Toxicological Sciences, 124, 128-137.
https://doi.org/10.1093/toxsci/kfr205
[35] Stemmler, S., Nothnagel, M., Parwez, Q., et al. (2009) Variation in Genes of the Epidermal Differentiation Complex in German Atopic Dermatitis Patients. International Journal of Immunogenetics, 36, 217-222.
https://doi.org/10.1111/j.1744-313X.2009.00858.x
[36] Furue, M. (2020) Regulation of Filaggrin, Loricrin, and Involucrin by IL-4, IL-13, IL-17A, IL-22, AHR, and NRF2: Pathogenic Implications in Atopic Dermatitis. International Journal of Molecular Sciences, 21, 5382.
https://doi.org/10.3390/ijms21155382
[37] Nomura, T., Sandilands, A., Akiyama, M., et al. (2007) Unique Muta-tions in the Filaggrin Gene in Japanese Patients with Ichthyosis Vulgaris and Atopic Dermatitis. Journal of Allergy and Clinical Immunology, 119, 434-440.
https://doi.org/10.1016/j.jaci.2006.12.646
[38] Palmer, C.N.A., Irvine, A.D., Terron-Kwiatkowski, A., et al. (2006) Common Loss-of-Function Variants of the Epidermal Barrier Protein Filaggrin Are a Major Predisposing Factor for Atopic Dermatitis. Nature Genetics, 38, 441-446.
https://doi.org/10.1038/ng1767
[39] Steinert, P.M. and Marekov, L.N. (1995) The Proteins Elafin, Filaggrin, Keratin Intermediate Filaments, Loricrin, and Small Proline-Rich Proteins 1 and 2 Are Isodipeptide Cross-Linked Components of the Human Epidermal Cornified Cell Envelope. Journal of Biological Chemistry, 270, 17702-17711.
https://doi.org/10.1074/jbc.270.30.17702
[40] Hudson, T.J. (2006) Skin Barrier Function and Allergic Risk. Na-ture Genetics, 38, 399-400.
https://doi.org/10.1038/ng0406-399
[41] Candi, E., Melino, G., Mei, G., et al. (1995) Biochemical, Structural, and Transglutaminase Substrate Properties of Human Loricrin, the Major Epidermal Cornified Cell Envelope Protein. Journal of Biological Chemistry, 270, 26382- 26390.
https://doi.org/10.1074/jbc.270.44.26382
[42] Robinson, N.A., Lapic, S., Welter, J.F., et al. (1997) S100A11, S100A10, Annexin I, Desmosomal Proteins, Small Proline-Rich Proteins, Plasminogen Activator Inhibitor-2, and Involucrin Are Components of the Cornified Envelope of Cultured Human Epidermal Keratinocytes. Journal of Biological Chemistry, 272, 12035-12046.
https://doi.org/10.1074/jbc.272.18.12035
[43] Yu, J., Luo, Y., Zhu, Z., et al. (2019) A Tryptophan Metabolite of the Skin Microbiota Attenuates Inflammation in Patients with Atopic Dermatitis through the Aryl Hydrocarbon Receptor. Journal of Allergy and Clinical Immunology, 143, 2108-2119.e2112.
https://doi.org/10.1016/j.jaci.2018.11.036
[44] Buommino, E., Baroni, A., Papulino, C., et al. (2018) Malassezia Pachydermatis Upregulates AhR Related CYP1A1 Gene and Epidermal Barrier Markers in Human Keratinocytes. Medical Mycology, 56, 987-993.
https://doi.org/10.1093/mmy/myy004
[45] Furue, M. (2020) Regulation of Skin Barrier Function via Competition between AHR Axis versus IL-13/IL-4-JAK- STAT6/STAT3 Axis: Pathogenic and Therapeutic Implications in Atopic Dermatitis. Journal of Clinical Medicine, 9, 3741.
https://doi.org/10.3390/jcm9113741
[46] Kim, B.E., Leung, D.Y., Boguniewicz, M., et al. (2008) Loricrin and Involucrin Expression Is Down-Regulated by Th2 Cytokines through STAT-6. Clinical Immunology (Orlando, Fla), 126, 332-337.
https://doi.org/10.1016/j.clim.2007.11.006
[47] Bao, L., Mohan, G.C., Alexander, J.B., et al. (2017) A Molecular Mechanism for IL-4 Suppression of Loricrin Transcription in Epidermal Keratinocytes: Implication for Atopic Dermatitis Pathogenesis. Innate Immunity, 23, 641-647.
https://doi.org/10.1177/1753425917732823
[48] Howell, M.D., Kim, B.E., Gao, P., et al. (2007) Cytokine Mod-ulation of Atopic Dermatitis Filaggrin Skin Expression. Journal of Allergy and Clinical Immunology, 120, 150-155.
https://doi.org/10.1016/j.jaci.2007.04.031
[49] Amano, W., Nakajima, S., Kunugi, H., et al. (2015) The Janus Kinase Inhibitor JTE-052 Improves Skin Barrier Function through Suppressing Signal Transducer and Activator of Transcription 3 Signaling. Journal of Allergy and Clinical Immunology, 136, 667-677.e667.
https://doi.org/10.1016/j.jaci.2015.03.051
[50] Bao, L., Shi, V.Y. and Chan, L.S. (2012) IL-4 Regulates Chemo-kine CCL26 in Keratinocytes through the Jak 1,2/Stat6 Signal Transduction Pathway: Implication for Atopic Dermatitis. Molecular Immunology, 50, 91-97.
https://doi.org/10.1016/j.molimm.2011.12.008
[51] Bao, L., Shi, V.Y. and Chan, L.S. (2013) IL-4 Up-Regulates Epidermal Chemotactic, Angiogenic, and Pro-Inflam- matory Genes and Down-Regulates Antimicrobial Genes in Vivo and in Vitro: Relevant in the Pathogenesis of Atopic Dermatitis. Cytokine, 61, 419-425.
https://doi.org/10.1016/j.cyto.2012.10.031
[52] Tsuji, G., Hashimoto-Hachiya, A., Kiyomatsu-Oda, M., et al. (2017) Aryl Hydrocarbon Receptor Activation Restores Filaggrin Expression via OVOL1 in Atopic Dermatitis. Cell Death & Disease, 8, e2931.
https://doi.org/10.1038/cddis.2017.322
[53] Takei, K., Mitoma, C., Hashimoto-Hachiya, A., et al. (2015) Antioxi-dant Soybean Tar Glyteer Rescues T-Helper-Media- ted Downregulation of Filaggrin Expression via Aryl Hydrocarbon Receptor. The Journal of Dermatology, 42, 171-180.
https://doi.org/10.1111/1346-8138.12717
[54] Miake, S., Tsuji, G., Takemura, M., et al. (2019) IL-4 Augments IL-31/IL-31 Receptor Alpha Interaction Leading to Enhanced Ccl17 and Ccl22 Production in Dendritic Cells: Implica-tions for Atopic Dermatitis. International Journal of Molecular Sciences, 20, 60.
https://doi.org/10.3390/ijms20164053
[55] Veldhoe, M., Hirota, K., Westendorf, A.M., et al. (2008) The Aryl Hydrocarbon Receptor Links TH17-Cell-Mediated Autoimmunity to Environmental Toxins. Nature, 453, 106-109.
https://doi.org/10.1038/nature06881
[56] Koch, S., Stroisch, T.J., Vorac, J., et al. (2017) AhR Mediates an Anti-inflammatory Feedback Mechanism in Human Langerhans Cells Involving FcεRI and IDO. Allergy, 72, 1686-1693.
https://doi.org/10.1111/all.13170
[57] Yoo, O.K., Choi, W.J. and Keum, Y.S. (2020) Cardamonin Inhibits Oxazolone-Induced Atopic Dermatitis by the Induction of NRF2 and the Inhibition of Th2 Cytokine Production. Anti-oxidants (Basel Switzerland), 9, 834.
https://doi.org/10.3390/antiox9090834
[58] Hendricks, A.J., Eichenfield, L.F. and Shi, V.Y. (2020) The Impact of Airborne Pollution on Atopic Dermatitis: A Literature Review. British Journal of Dermatology, 183, 16-23.
https://doi.org/10.1111/bjd.18781
[59] Peppers, J., Paller, A.S., Maeda-Chubachi, T., et al. (2019) A Phase 2, Randomized Dose-Finding Study of Tapinarof (GSK2894512 Cream) for the Treatment of Atopic Dermatitis. Journal of the American Academy of Dermatology, 80, 89-98.e3.
https://doi.org/10.1016/j.jaad.2018.06.047
[60] Paller, A.S., Stein Gold, L., Soung, J., et al. (2021) Efficacy and Patient-Reported Outcomes from a Phase 2b, Randomized Clinical Trial of Tapinarof Cream for the Treatment of Adolescents and Adults with Atopic Dermatitis. Journal of the American Academy of Dermatology, 84, 632-638.
https://doi.org/10.1016/j.jaad.2020.05.135
[61] Bissonnette, R., Vasist, L.S., Bullman, J.N., et al. (2018) Systemic Pharmacokinetics, Safety, and Preliminary Efficacy of Topical AhR Agonist Tapinarof: Results of a Phase 1 Study. Clinical Pharmacology in Drug Development, 7, 524-531.
https://doi.org/10.1002/cpdd.439