经颅多普勒超声监测脑血流动力学的临床应用
Clinical Application of Transcranial Doppler Ultrasound in Monitoring Cerebral Hemodynamics
DOI: 10.12677/ACM.2023.134794, PDF, 下载: 264  浏览: 461 
作者: 张婷婷:青海大学研究生院,青海 西宁;侯 明:青海大学附属医院急救中心,青海 西宁;张振宇*:清华大学附属北京清华长庚医院肝胆胰中心肝脏ICU,北京
关键词: 经颅多普勒超声ICP神经系统疾病Transcranial Doppler Ultrasound ICP Neurological Diseases
摘要: 经颅多普勒超声(trans cranial doppler, TCD)作为一种简单、便捷的脑血流动力学监测方法,越来越多的被应用于临床工作中,其在一些疾病如急性缺血性卒中、脑血管痉挛、蛛网膜下腔出血、颅内动脉粥样硬化、颅内静脉窦血栓形成以及脑死亡等疾病的临床诊断中已经确立了实用价值,本文就TCD的工作原理及临床应用进展作一综述,为及时诊断、治疗相关疾病,改善患者预后提供思路。
Abstract: As a simple and convenient method for monitoring cerebral hemodynamics, transcranial Doppler ultrasound has been increasingly applied in clinical work, and has established practical value in the clinical diagnosis of some diseases such as acute ischemic stroke, cerebral vasospasm, subarachnoid hemorrhage, intracranial atherosclerosis, intracranial venous sinus thrombosis and brain death. In this paper, the working principle and clinical application progress of TCD are reviewed, so as to provide ideas for timely diagnosis and treatment of related diseases and improvement of patients’ prognosis.
文章引用:张婷婷, 侯明, 张振宇. 经颅多普勒超声监测脑血流动力学的临床应用[J]. 临床医学进展, 2023, 13(4): 5621-5626. https://doi.org/10.12677/ACM.2023.134794

1. 引言

颅内压升高(intracranial pressure, ICP)是脑损伤(创伤、缺血性脑卒中、颅内出血、感染、脑积水、特发性颅内高压及其他神经系统疾病等)常见的并发症 [1] ,可导致颅内空间压缩、脑室扭曲和脑灌注压降低,如果不及时治疗,颅内压升高可导致脑缺血、脑疝和死亡 [2] [3] 。因此,识别并积极治疗ICP升高对神经危重症患者十分重要,对改善患者长期预后至关重要 [4] 。有创性监测是测量ICP的参考标准,持续20 mmHg或以上的值与创伤性脑损伤、蛛网膜下腔出血、脑出血和其他情况下的较差结局相关。因此,在危重患者中,必须相当重视监测这种可能性 [5] [6] 。

一些临床实践指南表明,对于有血压升高或脑灌注受损的患者,应考虑进行有创ICP监测 [7] [8] 。然而,侵入性监测在急诊科、农村或资源匮乏地区的患者需要立即治疗ICP升高的情况下,因条件限制并不可用 [9] ,此外,侵入性监测对操作人员的要求很高,同时还有感染、出血的风险。因此,临床医生经常使用各种非侵入性方法来检测ICP升高 [10] ,无创ICP监测在临床应用越来越广泛。在越来越多的文献 [11] 中,研究人员研究了基于TCD的指标如搏动指数(TCD-pulse index, TCD-PI)的应用。

TCD检查提供了一种相对便宜、实时的无创测量脑基底动脉内血流特征和脑血管血流动力学的方法。从测量中获得的生理学数据是对目前可用的血管成像的各种模式所获得的结构数据的补充。TCD是床旁监测血管变化、干预急性脑血管实践的简单便捷的方法,鉴于其诊断的便利性,其被广泛应用于诸多心脑血管疾病的临床的研究中。鉴于这种床边工具的潜力,本文就TCD的基本原理和临床应用作一综述。

2. TCD的原理

TCD超声检查基于多普勒效应,即从多普勒探头发出的超声波通过颅骨传播,并通过颅内血管内移动的红细胞反射。发射波和反射波之间的频率差,称为“多普勒频移”,与移动红细胞的速度(血流速度)成正比。由于血管内的血流是层流的,因此获得的多普勒信号实际上代表了不同多普勒频移的混合,形成了TCD监测器上单个红细胞速度分布的光谱。然后,光谱分析可用于测量血流速度以及辐射血管内血流的其他特征。从频谱分析中获得的具体参数包括峰值收缩速度(systolic velocity, Vs),舒张末期速度(diastolic velocity, Vd),搏动指数(pulse index, PI)和时间平均最大速度(mean velocity, Vm)。

流速(反射器速度)与多普勒频移的关系公式为

波的传播速度是一个常数,在各种介质中都可以得到(软组织中的传播速度为1541米/秒)。Theta(θ)是辐射角或发射波相对于血管(血流)方向的角度。如果角度为零,或者发射的波平行于血流的方向,θ余弦为1,我们就得到了流速度的最精确测量。角度越大,夹角余弦值越大;因此,我们的速度测量误差越大。此外,血液流经血管的速度与血管半径的四次方成正比。然而,TCD测量的基本假设是,在研究过程中,超声血管的直径不会发生变化,它对各种生理变量(如血压变化)的反应保持恒定 [12] [13] [14] [15] 。

3. 临床应用

3.1. 蛛网膜下腔出血

动脉瘤性蛛网膜下腔出血(aneurysmal subarachnoid hemorrhage, aSAH)后,颅内大中型动脉变窄,导致脑灌注降低,称为脑血管痉挛(cerebral vasospasm, CV) [16] 。由CV引发的迟发性脑缺血(Delayed cerebral ischemia, DCI)与相当大的发病率和死亡率有关,因此建立有效的血管痉挛预防、诊断和治疗方法引起了研究人员的关注 [17] 。Kuma等 [18] 人的研究发现TCD诊断MCA血管痉挛的敏感性、特异性、阳性预测值、阴性预测值分别为90% (95%CI 77%~96%)、71% (95%CI 51%~84%)、57% (95%CI 38%~71%)、92% (95%CI 83%~96%)。然而,在临床怀疑Vm < 120 cm/s的血管痉挛时,仍会进行血管造影或脑CT灌注。TCD对于检测近端比远端VSP更为敏感,Lindegaard比率(LR)定义为大脑中动脉(Middle cerebral artery, MCA)与颈内动脉(Internal carotid artery, ICA)的平均流速(Vm)之比,有助于区分充血与VSP。充血会导致MCA和ICA的流量升高,并导致LR < 3,而VSP会优先提高MCA的流量,而ICA的LR为 > 6。LR在3到6之间是轻度VSP的标志,>6是重度VSP的标志 [19] 。

一般来说,TCD测得的血流速度似乎是监测MCA和基底动脉VSP的标准,相关研究发现出血后第3至7天,MCA Vm突然升高>65cm/s或一天内增加20%,LR > 6,两条或两条以上动脉中PI>1.5,提示ICP和/或VSP增加 [20] 。TCD在监测SAH后VSP的时间过程中最有用,有助于指导诊断和治疗性血管造影干预的时机。此外,考虑到可能影响血流速度测量的变量,如技术问题、血管解剖结构、年龄、ICP、平均动脉压、红细胞压积、动脉CO2含量、侧支流模式和其他治疗干预措施,因此,对于TCD测量中Vm或PI变化的读取分析应该结合患者实际临床情况。

3.2. 颅内动脉粥样硬化狭窄

颅内动脉粥样硬化狭窄(Intracranial atherosclerotic stenosis, ICAS)是缺血性卒中和短暂性脑缺血发作(Transient ischemic attack, TIA)的重要危险因素,约占此类事件的10% [21] 。TCD不仅可以评估颅内动脉狭窄或闭塞的位置,还可以评估病变的严重程度,可用于检测近端MCA、前循环动脉(Anterior circulatory artery, ACA)、后循环动脉(Posterior circulatory artery, PCA)、基底动脉以及椎动脉的狭窄和闭塞。由于后循环血管的弯曲性和解剖变异性较大,TCD在前循环的敏感性、特异性、阳性预测值和阴性预测值一般较高。一项研究 [22] 比较了TCD与MRA在急性脑缺血(Acute cerebral ischemia, ACI)患者中检测ICAS的准确性。该研究共纳入115例患者,男性77例(66.95%),女性38例(33.04%),TCD和MRA在诊断ACA和PCA狭窄方面的一致性分别为0.56和0.04,TCD和MRA对前循环狭窄的检测具有中度一致性,对后循环狭窄的检测具有较好的一致性。上述数据表明,相对于后循环,TCD在前循环的诊断准确性更高。TCD对狭窄 > 50%的诊断基于以下标准:1) 通过狭窄段的流速加速;2) 狭窄段远端速度下降(狭窄后扩张);3) 平均流速的左右差异;4) 流动中的扰动(即湍流和杂音) [23] 。

3.3. 缺血性卒中

急性缺血性卒中(Acute ischemic stroke, AIS)发生时,大脑的一部分血液流动突然中断,导致神经功能丧失。由大脑动脉栓塞或血栓性闭塞引发的AIS比出血性卒中更常见 [24] 。TCD在缺血性卒中的作用尤为明显,反复的TCD检查可用于追踪溶栓前后动脉栓塞的过程 [23] 。TCD在MCA栓塞的检出中具有高(>90%)灵敏性、特异性,Alexandrov等 [25] 在130例急性脑缺血患者中使用数字减影血管造影(Digital subtraction angiography, DSA)、MRA和CTA来确定TCD结果的特异性、敏感性和整体正确性。在15%的时间窗口缺失率下,TCD对异常动脉(闭塞和狭窄)与正常动脉的准确率为88%,相应的阳性和阴性预测值为87.5和88.6%。他们还发现MCA区域的病变特异性为88.6%。还可检出ICA虹吸部、椎动脉和基底动脉的漏诊。当AIS在进行床旁快速TCD,应考虑卒中位置,应从正常半球开始,以了解正常动脉波形模式和速度分布,以及预估时间声窗的可靠性 [26] 。由于TCD对AIS的诊断准确率较高 [27] ,应在症状出现后不久进行。在进行早期TCD检查的患者中发现,经TCD检测到的颅内动脉闭塞与90天预后差有关,而正常的TCD研究预示着早期恢复。

3.4. 颅内静脉窦血栓形成

颅内静脉窦血栓形成(Cerebral venous sinus thrombosis,CSVT)是一种罕见而复杂的疾病,影响硬脑膜静脉窦和脑静脉,具有性别相关的特定原因 [28] 。中心静脉血栓形成是CSVT最常见的危险因素。2021年3月15日,Paul Ehrlich研究所(联邦疫苗和生物医药研究所) [29] 报告了7名血小板减少的COVID-19患者(20~50岁)在接种阿斯利康的COVID-19疫苗后发生。研究 [30] 还发现,头颈部感染以及严重的全身疾病是导致青少年上述综合征的主要原因。由于其可变和非特异性的表现模式,CSVT可能很难诊断。早期发现和治疗可以降低发病率和死亡率,显著改善患者的预后。TCD超声检查是一种简单的方法,可以在患者床边进行,即使在极度不安的患者中使用也很安全 [31] ,同时,TCD提供了其他神经成像方法无法提供的静脉血流动力学数据,因此可用于诊断CSVT。此外,CSVT患者可能会出现头痛、恶心、呕吐、视力模糊和颅内压升高的症状,以及类似SAH或ACI的局灶性神经指征。

3.5. 脑循环骤停

脑灌注压降低与ICP和PI升高相关,其导致颅内动脉受压并停止流向大脑,从而导致脑循环骤停(Cerebral circulatory arrest, CCA) [20] 。TCD能可视化的显示导致CCA和脑死亡的脑血流模式,并可在床边持续监测,当颅内压升高到与舒张期灌注压相匹配时,舒张期脑血流趋近于零,随着ICP持续升高,舒张期血流再次出现,但方向相反,在TCD中为逆行血流。收缩期波形出现尖峰或震荡波,是CCA的特征 [15] 。TCD诊断脑循环骤停的敏感性(96.5%)和特异性(100%)很高,但在TCD评估时收缩压 > 70 mmHg应排除暂时性停搏的可能性 [23] 。

4. 小结

本文探讨了TCD在脑血管痉挛、颅内动脉粥样硬化性狭窄、脑窦静脉血栓形成、急性缺血性脑卒中、脑循环停止等神经系统疾病中的作用。TCD超声为神经系统疾病的诊断及预后提供了新的见解。此外,该技术通过快速评估脑血流动力学为治疗方案提供指导和监测。然而,TCD检查也有一些局限性,包括操作者依赖性和通过颅骨和软组织的超声衰减。在未来,需要广泛的研究来克服TCD的局限性。

NOTES

*通讯作者。

参考文献

[1] Mollan, S.P., Spitzer, D. and Nicholl, D.J. (2018) Raised Intracranial Pressure in Those Presenting with Headache. The BMJ, 363, k3252.
https://doi.org/10.1136/bmj.k3252
[2] Czosnyka, M., Smielewski, P., Lavinio, A., Czosnyka, Z. and Pickard, J.D. (2007) A Synopsis of Brain Pressures: Which? When? Are They All Useful? Neurological Re-search, 29, 672-679.
https://doi.org/10.1179/016164107X240053
[3] Citerio, G. and Andrews, P.J. (2004) Intracranial Pressure. Part Two: Clinical Applications and Technology. Intensive Care Medicine, 30, 1882-1885.
https://doi.org/10.1007/s00134-004-2377-3
[4] Simma, B., Burger, R., Falk, M., Sacher, P. and Fanconi, S. (1998) A Prospective, Randomized and Controlled Study of Fluid Management in Children with Severe Head Injury: Lactated Ringer’s Solution versus Hypertonic Saline. Critical Care Medicine, 26, 1265-1270.
https://doi.org/10.1097/00003246-199807000-00032
[5] Stocchetti, N. and Maas, A.I. (2014) Traumatic Intra-cranial Hypertension. The New England Journal of Medicine, 370, 2121-2130.
https://doi.org/10.1056/NEJMra1208708
[6] Cordonnier, C., Demchuk, A., Ziai, W. and Anderson, C.S. (2018) Intracerebral Haemorrhage: Current Approaches to Acute Management. The Lancet, 392, 1257-1268.
https://doi.org/10.1016/S0140-6736(18)31878-6
[7] Carney, N., Totten, A.M., O’Reilly, C., et al. (2017) Guide-lines for the Management of Severe Traumatic Brain Injury. Neurosurgery, 80, 6-15.
https://doi.org/10.1227/NEU.0000000000001432
[8] Fried, H.I., Nathan, B.R., Rowe, A.S., et al. (2016) The Insertion and Management of External Ventricular Drains: An Evidence-Based Consensus Statement: A Statement for Healthcare Professionals from the Neurocritical Care Society. Neurocritical Care, 24, 61-81.
https://doi.org/10.1007/s12028-015-0224-8
[9] Long, B. and Koyfman, A. (2018) Secondary Gains: Advances in Neurotrauma Management. Emergency Medicine Clinics of North America, 36, 107-133.
https://doi.org/10.1016/j.emc.2017.08.007
[10] Kristiansson, H., Nissborg, E., Bartek, J., Andresen, M., Reinstrup, P. and Romner, B. (2013) Measuring Elevated Intracranial Pressure through Noninvasive Methods: A Review of the Literature. Journal of Neurosurgical Anesthesiology, 25, 372-385.
https://doi.org/10.1097/ANA.0b013e31829795ce
[11] de Riva, N., Budohoski, K.P., Smielewski, P., et al. (2012) Transcranial Doppler Pulsatility Index: What It Is and What It Isn’t. Neurocritical Care, 17, 58-66.
https://doi.org/10.1007/s12028-012-9672-6
[12] Bishop, C.C., Powell, S., Rutt, D. and Browse, N.L. (1986) Transcranial Doppler Measurement of Middle Cerebral Artery Blood Flow Velocity: A Validation Study. Stroke, 17, 913-915.
https://doi.org/10.1161/01.STR.17.5.913
[13] Nuttall, G.A., Cook, D.J., Fulgham, J.R., Oliver, W.C. and Proper, J.A. (1996) The Relationship between Cerebral Blood Flow and Transcranial Doppler Blood Flow Velocity during Hypothermie Cardiopulmonary Bypass in Adults. Anesthesia & Analgesia, 82, 1146-1151.
https://doi.org/10.1097/00000539-199606000-00008
[14] Serrador, J.M., Picot, P.A., Rutt, B.K., Shoemaker, J.K. and Bondar, R.L. (2000) MRI Measures of Middle Cerebral Artery Diameter in Conscious Humans during Simulated Orthostasis. Stroke, 31, 1672-1678.
https://doi.org/10.1161/01.STR.31.7.1672
[15] Purkayastha, S. and Sorond, F. (2012) Transcranial Doppler Ul-trasound: Technique and Application. Seminars in Neurology, 32, 411-420.
https://doi.org/10.1055/s-0032-1331812
[16] Diringer, M.N., Bleck, T.P., Hemphill, J.C., Menon, D., Shutter, L., Vespa, P., et al. (2011) Critical Care Management of Patients Following Aneurysmal Subarachnoid Hemorrhage: Recommendations from the Neurocritical Care Society’s Multidisciplinary Consensus Conference. Neurocritical Care, 15, 211-240.
https://doi.org/10.1007/s12028-011-9605-9
[17] Sun, J., Liu, Y., Zhang, J., Chen, X., Lin, Z., Nie, S., et al. (2018) Electroacupuncture Improves Cerebral Vasospasm and Functional Outcome of Patients with Aneurysmal Subarachnoid Hemorrhage. Frontiers in Neuroscience, 12, Article 724.
https://doi.org/10.3389/fnins.2018.00724
[18] Kumar, G., Shahripour, R.B. and Harrigan, M.R. (2016) Vasospasm on Transcranial Doppler Is Predictive of Delayed Cerebral Ischemia in Aneurysmal Subarachnoid Hemorrhage: A Systematic Review and Meta-Analysis. Journal of Neurosurgery, 124, 1257-1264.
https://doi.org/10.3171/2015.4.JNS15428
[19] Lindegaard, K.-F., Nornes, H., Bakke, S.J., Sorteberg, W. and Nakstad, P. (1989) Cerebral Vasospasm Diagnosis by Means of Angiography and Blood Velocity Measurements. Acta Neurochirurgica, 100, 12-24.
https://doi.org/10.1007/BF01405268
[20] Tsivgoulis, G., Alexandrov, A.V. and Sloan, M.A. (2009) Advances in Transcranial Doppler Ultrasonography. Current Neurology and Neuroscience Reports, 9, 46-54.
https://doi.org/10.1007/s11910-009-0008-7
[21] Wityk, R.J., Lehman, D., Klag, M., Coresh, J., Ahn, H. and Litt, B. (1996) Race and Sex Differences in the Distribution of Cerebral Atherosclerosis. Stroke, 27, 1974-1980.
https://doi.org/10.1161/01.STR.27.11.1974
[22] Jaiswal, S.K., Fu-Ling, Y., Gu, L., Lico, R., Changyong, F. and Paula, A. (2019) Accuracy of Transcranial Doppler Ultrasound Compared with Magnetic Resonance Angiography in the Diagnosis of Intracranial Artery Stenosis. Journal of Neurosciences in Rural Practice, 10, 400-404.
https://doi.org/10.1055/s-0039-1696586
[23] Rasulo, F.A., De Peri, E. and Lavinio, A. (2008) Transcranial Dop-pler Ultrasonography in Intensive Care. European Journal of Anaesthesiology, 25, 167-173.
https://doi.org/10.1017/S0265021507003341
[24] Huang, Z.-X., Wang, Q.-Z., Dai, Y.-Y., Lu, H.-K., Liang, X.-Y., Hu, H., et al. (2018) Early Neurological Deterioration in Acute Ischemic Stroke: A Propensity Score Analysis. Journal of the Chinese Medical Association, 81, 865-870.
https://doi.org/10.1016/j.jcma.2018.03.011
[25] Alexandrov, A.V., Molina, C.A., Grotta, J.C., Garami, Z., Ford, S.R., Alvarez-Sabin, J., et al. (2004) Ultrasound-En- hanced Systemic Thrombolysis for Acute Ischemic Stroke. The New England Journal of Medicine, 351, 2170-2178.
https://doi.org/10.1056/NEJMoa041175
[26] El Sayed, M.S., Yousef, S.A.A., HameedAidaros, M.A. and Fahmy, A.A. (2021) Transcranial Doppler Assessment of Cerebrovascular Reactivity in Patients of Migraine. Annals of the Romanian Society for Cell Biology, 25, 15274- 15281.
[27] Bhattacharya, P., Sarmah, D., Dave, K.R., Goswami, A., Watanabe, M., Wang, X., et al. (2021) Stroke and Stroke Prevention in Sickle Cell Anemia in Developed and Selected Developing Countries. Journal of the Neurological Sciences, 427, Article ID: 117510.
https://doi.org/10.1016/j.jns.2021.117510
[28] Alvis-Miranda, H.H., Castellar-Leones, S.M., Alcala-Cerra, G. and Moscote-Salazar, L.R. (2013) Cerebral Sinus Venous Thrombosis. Journal of Neurosciences in Rural Practice, 4, 427-438.
https://doi.org/10.4103/0976-3147.120236
[29] Dakay, K., Cooper, J., Bloomfield, J., Overby, P., May-er, S.A., Nuoman, R., et al. (2020) Cerebral Venous Sinus Thrombosis in COVID-19 Infection: A Case Series and Re-view of the Literature. Journal of Stroke and Cerebrovascular Diseases, 6, Article ID: 105434.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105434
[30] Ichord, R. (2017) Cerebral Sinovenous Throm-bosis. Frontiers in Pediatrics, 5, Article 163.
https://doi.org/10.3389/fped.2017.00163
[31] D’Andrea, A., Conte, M., Cavallaro, M., Scarafile, R., Riegler, L., Cocchia, R., et al. (2016) Transcranial Doppler Ultrasonography: From Methodology to Major Clinical Applications. World Journal of Cardiology, 8, 383-400.
https://doi.org/10.4330/wjc.v8.i7.383