肠道菌群在急性肾损伤中的作用机制研究进展
Research Progress on the Mechanism of Intestinal Flora in Acute Renal Injury
DOI: 10.12677/ACM.2023.133684, PDF, HTML, XML, 下载: 271  浏览: 683 
作者: 钟铭明, 李晓文*:重庆医科大学附属儿童医院新生儿诊治中心,儿科学重庆市重点实验,国家儿童健康与疾病临床医学 研究中心,儿童发育疾病研究教育部重点实验室,重庆
关键词: 急性肾损伤肠道菌群Acute Kidney Injury Gut Microbiota
摘要: 急性肾损伤(Acute Kidney Injury, AKI)作为临床常见病,病死率高,预后差。近年来,聚焦于肠道菌群与AKI的研究逐渐增多,提示了肠–肾轴可能是干预AKI的靶点。通过对肠道菌群及其失调对AKI的互相影响,如肠道屏障破坏、免疫反应被激活、肠道菌群代谢产物改变等方面进行综述,旨在为AKI的预防和治疗提供新靶点、新途径。
Abstract: Acute kidney injury (AKI) is a common clinical with mortality and poor prognosis. In recent years, studies focusing on the interaction between intestinal microbiota and AKI have gradually emerged, suggesting that the gut-kidney axis may be the target of intervention in AKI. This article reviews the interaction of intestinal microbiota and dysbiosis on AKI, such as the destruction of intestinal bar-rier, activation of immunity and the changes of intestinal metabolites, in order to provide new strategies for the prevention and treatment of AKI.
文章引用:钟铭明, 李晓文. 肠道菌群在急性肾损伤中的作用机制研究进展[J]. 临床医学进展, 2023, 13(3): 4785-4793. https://doi.org/10.12677/ACM.2023.133684

1. 引言

急性肾损伤(Acute Kidney Injury, AKI)是一组异质性疾病,其特征是肾小球滤过率突然下降,表现为血清肌酐浓度升高或少尿 [1]。据报道,AKI发生在约10%~15%的住院患者中,而重症监护室中的AKI发生率超过50% [2]。肾功能的缓慢恶化或持续性肾功能障碍与肾细胞和肾单位的不可逆损失相关,这可能导致慢性肾脏病(Chronic Kidney Disease, CKD) [3]。近年来,肠道菌群与各种疾病之间的互相作用是一大研究热点,败血症 [4] 、动脉粥样硬化 [5] 、糖尿病 [6] 、肝炎 [7] 、肥胖症 [8] 等疾病都与肠道菌群及其代谢产物有着密不可分的关系。肾脏疾病和肠道菌群之间也存在重要关联,有研究发现约36%~70%终末期肾病患者表现出肠道功能障碍 [9] [10] [11],证实慢性肾脏病患者的肠道菌群组成及结构改变,肠道屏障发生功能障碍,致使有害代谢物入血,导致炎症反应加剧 [12] [13] [14] [15]。近年越来越多的研究证据表明肠道菌群及其代谢产物在AKI的发展过程中同样起到重要作用 [16] [17] [18]。因此,肠道菌群对AKI之间的影响和作用有望成为治疗AKI的新方向。

2. 肠道菌群及其变化

正常人体肠道中有超过1000种微生物,而每个个体的微生物群落具有其独特性且是相对稳定的 [19]。人类肠道中的大多数细菌属于四个门:厚壁菌、拟杆菌、变形杆菌和放线菌 [16]。肠道菌群被认为是人体生理学中具有重要功能的虚拟器官 [20],肠道菌群参与营养素的消化、吸收和合成 [21],其过程中分解代谢产生的各种物质参与机体免疫调节 [22] 、能量代谢 [23] 、神经内分泌活动 [24] 等。而在病理状态下,肠道菌群的组成和稳定性将会发生改变,从而影响机体健康。

有研究发现在肾缺血再灌注(Ischemia Reperfusion, IR)模型小鼠中,肠道菌群的各个种属的丰度发生变化 [25],其特征主要是肠杆菌数量增加,乳杆菌和反刍球菌数减少 [17]。在顺铂诱导的AKI大鼠中则同样发现乳杆菌减少,而梭菌、丹毒丝菌有增加 [18]。这些研究的发现足以说明了肾脏疾病与肠道菌群之间存在密切关系。

3. 肠道菌群与AKI的相互影响

3.1. 肠道屏障被破坏与AKI的相互影响

肠道黏膜上皮是分隔开肠道共生细菌与身体其他部分的屏障 [26],主要由肠道上皮细胞和细胞间的紧密连接(Tight Joint, TJ)如ZO蛋白、claudin蛋白和连接粘附因子组成 [18]。肠黏膜上皮屏障的完整性是肠道菌群发挥正常生理功能和宿主防御发育的重要保障 [26]。在CKD大鼠中发现其结肠黏膜中claudin-1、claudin-2蛋白的表达显著下降,结肠固有层中单核细胞大量浸润,肠道屏障功能受损,导致全身炎症 [27]。而在IR小鼠中,同样发现claudin蛋白表达明显下降,肠黏膜上皮细胞凋亡数量增加以及Th1、Th17应答增强,炎症因子TNF-α、IFN-γ等分泌增加,这一系列改变导致肠道屏障完整性受损,进而引起内毒素水平上升,肠道通透性增加,更多肠源性毒素进入循环进一步加重肾脏损伤 [17]。在败血症AKI期间,肠道黏膜屏障的破坏、肠道微生物菌群的改变会促进AKI的发展,当AKI进一步加重时,炎症介质和代谢产物的清除率降低则会进一步导致肠道损伤和黏膜屏障的破坏 [4]。

3.2. 肠道菌群在AKI细胞免疫炎症反应中的作用

固有免疫和适应性免疫反应均可介导肾损伤以及AKI的恢复,树突状细胞、单核细胞/巨噬细胞、中性粒细胞、T淋巴细胞和B淋巴细胞都在AKI的疾病发展过程中起到一定的作用 [28]。除此之外,在肠道中,Tregs细胞的功能受到微生物组成的严重影响 [29],同时也可以通过调节和诱导固有免疫应答和适应性免疫应答来影响肠道相关淋巴组织的发育和肠道免疫稳态 [30]。

3.2.1. 固有免疫

单核细胞和巨噬细胞是固有免疫和炎症的关键效应器和调节器 [31],他们在体内维持稳态、监测、免疫应答以及组织损伤和修复中发挥关键作用 [32]。活化的巨噬细胞有两种表型,促炎型M1巨噬细胞和抗炎型M2巨噬细胞 [33]。Li等人 [34] 在脓毒症AKI大鼠中发现,AKI后72小时M2巨噬细胞明显增多,利用上调IL-10的表达和抑制TNF-α的分泌来减轻肾脏损害,在M2巨噬细胞被消耗后,这种肾脏保护作用消失且肾小管细胞增殖被显著抑制。而阿托伐他汀对肾缺血再灌注损伤的改善作用也是通过促进M1巨噬细胞转变为M2巨噬细胞得以实现 [35]。F4/80被认为是成熟驻留巨噬细胞的细胞表面标志物 [36],在Emal等人 [37] 的研究中发现,在利用抗生素进行肠道菌群耗竭后,小鼠肾脏驻留巨噬细胞和骨髓单核细胞中的F4/80和趋化因子受体CX3CR1和CCR2表达降低,肾脏损害、缺血得到改善,由此可见,肠道菌群的耗竭通过降低肾脏固有巨噬细胞的成熟来保护肾脏。CCR2/CCL2轴在炎症性单核细胞募集和召集浸润巨噬细胞中起主要作用 [38]。研究发现IR小鼠,肠道菌群耗竭后其单核细胞向CX3CL1和CCL2配体的迁移能力下降,说明肠道菌群耗竭可以通过降低骨髓单核细胞的成熟来保护肾功能 [37]。

树突状细胞是免疫系统中的抗原提呈细胞,能够协调固有免疫和适应性免疫功能共同实现机体免疫功能 [39]。在利用产短链脂肪酸(Short-chain fatty acids, SCFAs)的细菌处理IR诱导的AKI小鼠后发现,补充SCFAs可以调节炎症过程,降低树突状细胞的成熟,并抑制CD4+和CD8+T细胞增殖的能力,减轻肾小管上皮细胞凋亡并促进其增殖 [40]。

肾脏疾病与炎症密不可分,而炎症的发展离不开巨噬细胞、树突状细胞、淋巴细胞等免疫细胞与肾实质细胞的相互作用 [41]。Jang等人 [42] 在IR小鼠模型中发现,无菌小鼠的正常肾脏中存在更多的NKT细胞和更低的IL-4水平,而在IR后,肾脏中出现更多的CD8+T细胞且肾脏损伤更严重,显而易见,肠道微生物可以影响肾脏淋巴细胞的表型和细胞因子的表达,且对IR后的肾损害有一定影响。

3.2.2. 适应性免疫

有研究显示无菌小鼠中的Tregs细胞比例降低了数倍,肠道菌群可以诱导Tregs细胞参与维持对肠道抗原的耐受性 [43]。Yang等人的研究中发现口服抗生素消除肠道微生物可以防止缺血/再灌注损伤,其保护肾脏的作用与Th17、Th1反应降低以及Tregs细胞和M2巨噬细胞的扩张有关 [17]。有研究利用高盐饮食喂养AKI大鼠后发现,其肾脏中Th17细胞明显增加,间质纤维化被加快,加速了向CKD的转变 [44]。在抗中性粒细胞胞浆抗体(ANCA)相关性肾小球肾炎患者中存在大量的Th17细胞,同时在小鼠中发现Th17细胞以S1P受体依赖的方式从肠道排出,又经过CCL20/CCR6轴迁移到肾脏,而耗竭肠道Th17细胞可以改善肾脏病情 [45]。有研究表明免疫细胞中的IL-17在干扰素1 (Interferon-I, IFN-I)诱导的新月体肾炎过程中对于巨噬细胞肾脏浸润所必需的趋化因子的表达至关重要 [46]。Sang等人 [47] 在小鼠AKI模型中发现,在AKI后,小肠Paneth细胞增加了IL-17A的合成和释放,同时带来了严重的肠细胞凋亡和炎症,而在门静脉和全身循环中IL-17A也明显增加。IL-23在慢性炎症和Th17细胞活化中起着关键作用,从而导致IL-17的分泌 [48]。在IL-23受体缺陷型小鼠中发现,T细胞产生的IL-2数量增加,IL-17数量减少 [49]。由此可见,Th17细胞的增殖和维持有赖于IL-23,而抗IL-23的单克隆抗体如Guselkumab、Ustekinumab可以阻断这个过程 [50] [51]。而IL-17同样可以被单克隆抗IL-17A抗体如Brodalumab,Secukinumab和Ixekizumab破坏 [52]。

IL-10、IL-4等细胞因子在肾脏损伤中有一定保护作用。IL-10可以保护IR后的无菌小鼠肾脏炎症的发生,在利用药物阻断IL-10后无菌小鼠出现了显著的死亡率和致死率 [53]。在对正常小鼠进行双侧肾脏的IR之后发现,IL-4、IL-10的水平较无菌小鼠更高,肾脏损伤程度更轻 [42]。Marques等人 [54] 研究发现,IL-4敲除小鼠在IR后肾小管损伤和细胞再生受损明显。

多个研究证明,通过调节肠道菌群可减少炎症因子的产生,从而起到保护肾脏的作用。Haro等人 [55] 在LPS诱导的内毒素AKI小鼠模型中发现,予以预防性干酪乳杆菌治疗通过降低促炎细胞因子、TNF-α、IL-6的表达影响炎症发展。而在顺铂诱导的AKI猪中,添加乳杆菌混合物可以减少TNF-α、IL-6的产生,同时防止肾小管细胞凋亡 [56]。唾液乳杆菌BP121抑制肠源毒素的产生,调节5’AMP活化蛋白激酶(5’AMP-activated protein kinase, AMPK)和Toll样受体4 (Toll-like receptor) TLR4依赖性TJ组装,下调肾脏炎症介质和减少氧化应激来保护顺铂诱导的下肾损害的发生 [18]。

3.3. 肠道菌群相关代谢产物对AKI的影响

3.3.1. 肠源性内毒素合成增加和潴留

IS可以损伤线粒体代谢活性并诱导细胞肥大,激活内质网应激,并且促进促纤维化和促炎因子的分泌,抑制肾小管上皮细胞增殖,促进细胞凋亡和肥大 [57]。肠道菌群代谢产物有硫酸吲哚酚(Indoxyl Sulfate,IS)、硫酸对甲酚(P-cresyl sulfate, PCS)、氧化三甲胺(Trimethylamine Oxide, TMAO)等,其中IS和PCS由色氨酸、芳香氨基酸和酪氨酸的细菌发酵产生,在肝脏或肠黏膜中硫酸化 [58],不能通过血液透析有效去除 [59]。IS、PCS等尿毒症毒素可以加速肾小球硬化、肾小管间质损伤甚至是肾功能丧失 [60]。IS、PCS浓度与心血管疾病、透析患者死亡率以及CKD的发生相关 [59] [61] [62]。在顺铂诱导的AKI大鼠中同样发现其血清IS、PCS水平升高 [18],随着AKI程度的加重,IS、PCS浓度逐渐升高 [63]。研究发现,在接受5/6肾切除术的大鼠中,可能是由于微生物种群改变和IS本身破坏肠道屏障引起血清IS和PCS水平增加 [64]。Wang等人 [65] 发现,AKI患者中血清IS升高与其预后死亡风险增加相关。IS可以通过C/EBP同源蛋白(CHOP)的增加来诱导近端管状细胞内质网应激,口服肠道毒素吸附剂可以降低CKD大鼠的血清IS浓度,同时减低免疫组织化学中CHOP 的管状表达 [66]。内皮细胞表达的有机阴离子转运蛋白(Organic anion transporter, OAT)参与IS和PCS的转运 [47]。在顺铂诱导的AKI大鼠中IS、PCS水平明显升高,利用口服活性炭吸附剂AST-120可以降低其水平,并改善大鼠肾基底外侧有机离子转运蛋白OAT1、OAT3的表达和功能 [67]。在对接受5/6肾切除术的大鼠连续予以4周的PCS给药后发现其肾小管损伤明显,可能是由于细胞内积聚PCS,导致NADPH氧化酶(Nicotinamide adenine dinucleotide phosphate, NADPH)活性和活性氧(Reactive oxygen species, ROS)产生增加,进而引发参与肾纤维化的炎性细胞因子的诱导 [68]。

TMAO通过转化生长因子β (transforming growth factor β, TGF-β)/Smad3信号通过引起肾小管间质纤维化和功能障碍 [69]。TMAO由肠道菌群从饮食营养物质和肉碱中合成的 [70],可以通过透析去除 [71]。随着肾功能下降,血清TMAO浓度显著增加 [72],其与进展性肾纤维化和功能损害的风险较高以及长期生存率较低有关 [69]。在一项对高脂饮食(High-fat diets, HFD)诱导的肥胖小鼠模型中发现,TMAO在循环中升高,促进肾脏氧化应激和炎症而导致肾间质纤维化和功能障碍 [73]。在顺铂诱导的小鼠AKI中发现,予以二十二碳六烯酸酰化姜黄素酯可以明显降低肾小管的损伤,其可能的机制是通过降低脂多糖和TMAO水平,阻止LPS和TMAO诱导的PI3K/Akt/NF-κB信号通路实现的 [74]。

3.3.2. 短链脂肪酸生成减少

SCFAs是一组由肠道微生物群发酵的代谢产物,其包括乙酸、丙酸、丁酸等。SCFAs的减少与很多疾病的发生有关,包括有炎症性肠病、肥胖症、糖尿病、多发性硬化症、结肠癌等 [75],在IR诱导的AKI小鼠粪便中同样发现SCFAs水平显著降低 [17]。SCFA在AKI和CKD中的保护作用主要通过抑制组蛋白乙酰酶(Histone Deacetylases, HDAC)活性、阻止TGF-β1信号通路、减少细胞外调节蛋白激酶(Extracellular regulated protein kinases, ERK)的磷酸化来实现 [75] [40] [76]。SCFA的信号传导主要是通过激活G蛋白偶联受体GPR41和GPR109A实现的 [76]。研究发现,利用SCFA治疗IR小鼠,其血清肌酐和尿素水平明显降低 [40]。Al-Harbi等人 [77] 在脓毒症AKI中发现,给予小鼠SCFA后其肾脏损伤得以恢复,主要是因为SCFA减弱了HDAC活性,对NOX2/ROS信号传导产生抑制作用,改善了氧化与抗氧化之间的平衡。在造影剂肾病的大鼠的研究中同样发现,丁酸可以通过抑制NF-κB活化减少炎症因子,同时降低血清肌酐水平 [78]。而近年多个关注于益生菌或益生元改善AKI的研究中均发现,其作用主要是通过改善肠道微生物,增加SCFA的产生得以实现的 [79] [80] [81]。

3.3.3. 氨基酸代谢紊乱

小鼠肠道内含有丰富的来源于肠道菌群的D-氨基酸,D-氨基酸氧化酶(D-Amino acid oxidase, DAO)对D-氨基酸进行氧化脱氨基作用产生H2O2,从而保护小肠黏膜表面免受病原体侵害 [82]。Sasabe等人 [83] 发现在肾脏IR之后小鼠血清中D-丝氨酸水平升高,而L-丝氨酸水平降低。在肾缺血再灌注AKI小鼠粪便中可检测到多种氨基酸,但只有D-丝氨酸在肾脏中被检测到,同时在无菌小鼠粪便中没有找到D-氨基酸,这表明肾损伤小鼠肠道菌群对AKI损伤做出反应产生D-丝氨酸,并运送至肾脏 [25],而给予口服D-丝氨酸可减轻IR损伤小鼠的肾小管损伤 [25]。除此之外,在AKI患者中同样观察到D-丝氨酸/L-丝氨酸比值与肾功能相关,提示D-丝氨酸可能是AKI潜在的生物标志物 [25]。Yasunori等人 [84] 研究发现在IR小鼠模型中,D-丙氨酸通过NMDA (N-methyl-d-aspartate)受体信号传导抑制ROS产生并提高线粒体膜电位,减少缺氧刺激引起的肾小管上皮细胞坏死。

4. 展望

目前对于AKI仍没有明确的药物治疗,作为临床常见病、高发病,AKI有着不可忽视的高病死率,同时AKI后发展为CKD的可能性大大增加,带来的透析等长期护理的费用仍然十分沉重。随着近年来关于肠道菌群这一研究热点的出现,AKI的防治似乎出现了新的转机,肠道菌群与肾脏之间是双向作用的,在疾病的发展过程中相互影响。多个研究表明通过干预肠道菌群或可改善肾脏疾病预后,但目前对于AKI与肠道菌群的研究多建立于顺铂诱导或缺血再灌注损伤模型下,并且多为动物研究,虽然已经有部分研究涉及临床应用,但多为慢性肾脏病或者单一的研究,不具有普适性。除此之外,AKI的病因多种多样,肠道菌群及其代谢产物在不同病因AKI中的作用机制仍需要进一步研究,有望为AKI的预防和治疗提供新的转机。

NOTES

*通讯作者。

参考文献

[1] Levey, A.S. and James, M.T. (2017) Acute Kidney Injury. Annals of Internal Medicine, 167, ITC66-ITC80.
https://doi.org/10.7326/AITC201711070
[2] Ronco, C., Bellomo, R. and Kellum, J.A. (2019) Acute Kidney Inju-ry. The Lancet, 394, 1949-1964.
https://doi.org/10.1016/S0140-6736(19)32563-2
[3] Kellum, J.A., Romagnani, P., Ashuntantang, G., et al. (2021) Acute Kidney Injury. Nature Reviews Disease Primers, 7, 52.
https://doi.org/10.1038/s41572-021-00284-z
[4] Zhang, J., Ankawi, G., Sun, J., et al. (2018) Gut-Kidney Cross-talk in Septic Acute Kidney Injury. Critical Care, 22, 117.
https://doi.org/10.1186/s13054-018-2040-y
[5] Heo, K.S., Cushman, H.J., Akaike, M., et al. (2014) ERK5 Acti-vation in Macrophages Promotes Efferocytosis and Inhibits Atherosclerosis. Circulation, 130, 180-191.
https://doi.org/10.1161/CIRCULATIONAHA.113.005991
[6] Ma, Q., Li, Y., Li, P., et al. (2019) Research Pro-gress in the Relationship between Type 2 Diabetes Mellitus and Intestinal Flora. Biomedicine & Pharmacotherapy, 117, Article ID: 109138.
https://doi.org/10.1016/j.biopha.2019.109138
[7] Wang, K., Zhang, Z., Mo, Z.S., et al. (2021) Gut Microbiota as Prognosis Markers for Patients with HBV-Related Acute-on-Chronic Liver Failure. Gut Microbes, 13, 1-15.
https://doi.org/10.1080/19490976.2021.1921925
[8] Shabana, Shahid, S.U. and Irfan, U. (2018) The Gut Microbiota and Its Potential Role in Obesity. Future Microbiology, 13, 589-603.
https://doi.org/10.2217/fmb-2017-0179
[9] Salles Junior, L.D., Santos, P.R., dos Santos, A.A., et al. (2013) Dyspepsia and Gastric Emptying in End-Stage Renal Disease Patients on Hemodialysis. BMC Nephrology, 14, 275.
https://doi.org/10.1186/1471-2369-14-275
[10] Van Vlem, B., Schoonjans, R., Vanholder, R., et al. (2000) De-layed Gastric Emptying in Dyspeptic Chronic Hemodialysis Patients. American Journal of Kidney Diseases, 36, 962-968.
https://doi.org/10.1053/ajkd.2000.19094
[11] Cano, A.E., Neil, A.K., Kang, J.Y., et al. (2007) Gastrointestinal Symptoms in Patients with End-Stage Renal Disease Undergoing Treatment by Hemodialysis or Peritoneal Dialysis. The American Journal of Gastroenterology, 102, 1990-1997.
https://doi.org/10.1111/j.1572-0241.2007.01321.x
[12] Wang, X., Yang, S., Li, S., et al. (2020) Aberrant Gut Mi-crobiota Alters Host Metabolome and Impacts Renal Failure in Humans and Rodents. Gut, 69, 2131-2142.
https://doi.org/10.1136/gutjnl-2019-319766
[13] Rysz, J., Franczyk, B., Lawinski, J., et al. (2021) The Impact of CKD on Uremic Toxins and Gut Microbiota. Toxins (Basel), 13, 252.
https://doi.org/10.3390/toxins13040252
[14] Zhang, Q., Zhang, Y., Zeng, L., et al. (2021) The Role of Gut Micro-biota and Microbiota-Related Serum Metabolites in the Progression of Diabetic Kidney Disease. Frontiers in Pharma-cology, 12, Article ID: 757508.
https://doi.org/10.3389/fphar.2021.757508
[15] Pahl, M.V. and Vaziri, N.D. (2015) The Chronic Kidney Dis-ease—Colonic Axis. Seminars in Dialysis, 28, 459-463.
https://doi.org/10.1111/sdi.12381
[16] Kobayashi, T., Iwata, Y., Nakade, Y., et al. (2021) Significance of the Gut Microbiota in Acute Kidney Injury. Toxins (Basel), 13, 369.
https://doi.org/10.3390/toxins13060369
[17] Yang, J., Kim, C.J., Go, Y.S., et al. (2020) Intestinal Microbiota Control Acute Kidney Injury Severity by Immune Modulation. Kidney International, 98, 932-946.
https://doi.org/10.1016/j.kint.2020.04.048
[18] Lee, T.H., Park, D., Kim, Y.J., et al. (2020) Lactobacillus salivarius BP121 Prevents Cisplatin-Induced Acute Kidney Injury by Inhibition of Uremic Toxins Such as Indoxyl Sulfate and p-Cresol Sulfate via Alleviating Dysbiosis. International Journal of Molecular Med-icine, 45, 1130-1140.
https://doi.org/10.3892/ijmm.2020.4495
[19] Honda, K. and Littman, D.R. (2016) The Mi-crobiota in Adaptive Immune Homeostasis and Disease. Nature, 535, 75-84.
https://doi.org/10.1038/nature18848
[20] Yuan, J.J., Chang, X.N., Li, M., et al. (2020) Clinical Utility of Charac-terizing Intestinal Flora in Septic Kidney Injury. Chinese Medical Journal (England), 133, 842-846.
https://doi.org/10.1097/CM9.0000000000000724
[21] 王茂清, 李颖, 孙长颢. 肠道菌群与膳食及营养相关疾病的关系[J]. 中华预防医学杂志, 2018, 52(2): 195-200.
[22] 杨涛, 杨大平, 钱友存. 肠道菌群对机体免疫反应的调节和影响[J]. 中华炎性肠病杂志, 2019, 3(3): 198-202.
[23] Ejtahed, H.S., Angoorani, P., Soroush, A.R., et al. (2020) Gut Microbiota-Derived Metabolites in Obesity: A Systematic Review. Bioscience of Microbiota, Food and Health, 39, 65-76.
https://doi.org/10.12938/bmfh.2019-026
[24] Bruce-Keller, A.J., Salbaum, J.M. and Berthoud, H.R. (2018) Harnessing Gut Microbes for Mental Health: Getting from Here to There. Biological Psychiatry, 83, 214-223.
https://doi.org/10.1016/j.biopsych.2017.08.014
[25] Nakade, Y., Iwata, Y., Furuichi, K., et al. (2018) Gut Microbiota-Derived D-Serine Protects against Acute Kidney Injury. JCI Insight, 3, e97957.
https://doi.org/10.1172/jci.insight.97957
[26] Abreu, M.T. (2010) Toll-Like Receptor Signalling in the Intestinal Epithelium: How Bacterial Recognition Shapes Intestinal Function. Nature Reviews Immunology, 10, 131-144.
https://doi.org/10.1038/nri2707
[27] Vaziri, N.D., Yuan, J., Rahimi, A., et al. (2012) Disintegration of Colonic Ep-ithelial Tight Junction in Uremia: A Likely Cause of CKD-Associated Inflammation. Nephrology Dialysis Transplanta-tion, 27, 2686-2693.
https://doi.org/10.1093/ndt/gfr624
[28] Singbartl, K., Formeck, C.L. and Kellum, J.A. (2019) Kidney-Immune System Crosstalk in AKI. Seminars in Nephrology, 39, 96-106.
https://doi.org/10.1016/j.semnephrol.2018.10.007
[29] Cebula, A., Seweryn, M., Rempala, G.A., et al. (2013) Thymus-Derived Regulatory T Cells Contribute to Tolerance to Commensal Microbiota. Nature, 497, 258-262.
https://doi.org/10.1038/nature12079
[30] Gong, J., Noel, S., Pluznick, J.L., et al. (2019) Gut Microbiota-Kidney Cross-Talk in Acute Kidney Injury. Seminars in Nephrology, 39, 107-116.
https://doi.org/10.1016/j.semnephrol.2018.10.009
[31] Geissmann, F., Manz, M.G., Jung, S., et al. (2010) Devel-opment of Monocytes, Macrophages, and Dendritic Cells. Science, 327, 656-661.
https://doi.org/10.1126/science.1178331
[32] Ginhoux, F. and Jung, S. (2014) Monocytes and Macrophages: De-velopmental Pathways and Tissue Homeostasis. Nature Reviews Immunology, 14, 392-404.
https://doi.org/10.1038/nri3671
[33] Yunna, C., Mengru, H., Lei, W., et al. (2020) Macrophage M1/M2 Polariza-tion. European Journal of Pharmacology, 877, Article ID: 173090.
https://doi.org/10.1016/j.ejphar.2020.173090
[34] Li, X., Mu, G., Song, C., et al. (2018) Role of M2 Macrophages in Sepsis-Induced Acute Kidney Injury. Shock, 50, 233-239.
https://doi.org/10.1097/SHK.0000000000001006
[35] Wang, Q., Su, Y.Y., Li, Y.Q., et al. (2017) Atorvastatin Alleviates Renal Ischemia-Reperfusion Injury in Rats by Promoting M1-M2 Transition. Molecular Medicine Reports, 15, 798-804.
https://doi.org/10.3892/mmr.2016.6074
[36] Schulz, C., Gomez Perdiguero, E., Chorro, L., et al. (2012) A Lineage of Myeloid Cells Independent of Myb and Hematopoietic Stem Cells. Science, 336, 86-90.
https://doi.org/10.1126/science.1219179
[37] Emal, D., Rampanelli, E., Stroo, I., et al. (2017) Depletion of Gut Microbiota Protects against Renal Ischemia-Reperfusion Injury. Journal of the American Society of Nephrology, 28, 1450-1461.
https://doi.org/10.1681/ASN.2016030255
[38] Sears, S.M., Vega, A.A., Kurlawala, Z., et al. (2022) F4/80(hi) Resident Macrophages Contribute to Cisplatin-Induced Renal Fibrosis. Kidney360, 3, 818-833.
https://doi.org/10.34067/KID.0006442021
[39] Thwe, P.M. and Amiel, E. (2018) The Role of Nitric Oxide in Metabolic Regulation of Dendritic Cell Immune Function. Cancer Letters, 412, 236-242.
https://doi.org/10.1016/j.canlet.2017.10.032
[40] Andrade-Oliveira, V., Amano, M.T., Correa-Costa, M., et al. (2015) Gut Bacteria Products Prevent AKI Induced by Ischemia-Reperfusion. Journal of the American Society of Neph-rology, 26, 1877-1888.
https://doi.org/10.1681/ASN.2014030288
[41] Andrade-Oliveira, V., Foresto-Neto, O., Watanabe, I.K.M., et al. (2019) Inflammation in Renal Diseases: New and Old Players. Frontiers in Pharmacology, 10, 1192.
https://doi.org/10.3389/fphar.2019.01192
[42] Jang, H.R., Gandolfo, M.T., Ko, G.J., et al. (2009) Early Exposure to Germs Modifies Kidney Damage and Inflammation after Experimental Ischemia-Reperfusion Injury. American Journal of Physiology-Renal Physiology, 297, F1457-F1465. Z
https://doi.org/10.1152/ajprenal.90769.2008
[43] Liu, B., Tonkonogy, S.L. and Sartor, R.B. (2011) Anti-gen-Presenting Cell Production of IL-10 Inhibits T-Helper 1 and 17 Cell Responses and Suppresses Colitis in Mice. Gastroenterology, 141, 653-662.
https://doi.org/10.1053/j.gastro.2011.04.053
[44] Mehrotra, P., Patel, J.B., Ivancic, C.M., et al. (2015) Th-17 Cell Activation in Response to High Salt Following Acute Kidney Injury Is Associated with Progressive Fibrosis and Attenu-ated by AT-1R Antagonism. Kidney International, 88, 776-784.
https://doi.org/10.1038/ki.2015.200
[45] Krebs, C.F., Paust, H.J., Krohn, S., et al. (2016) Autoimmune Renal Disease Is Exacerbated by S1P-Receptor-1-Dependent In-testinal Th17 Cell Migration to the Kidney. Immunity, 45, 1078-1092.
https://doi.org/10.1016/j.immuni.2016.10.020
[46] Ramani, K. and Biswas, P.S. (2016) Interleukin 17 Signaling Drives Type I Interferon Induced Proliferative Crescentic Glomerulonephritis in Lupus-Prone Mice. Clinical Immunology, 162, 31-36.
https://doi.org/10.1016/j.clim.2015.10.009
[47] Park, S.W., Kim, M., Kim, J.Y., et al. (2012) Paneth Cell-Mediated Multiorgan Dysfunction after Acute Kidney Injury. The Journal of Immunology, 189, 5421-5433.
https://doi.org/10.4049/jimmunol.1200581
[48] Larosa, M., Zen, M., Gatto, M., et al. (2019) IL-12 and IL-23/Th17 Axis in Systemic Lupus Erythematosus. Experimental Biology and Medicine (Maywood), 244, 42-51.
https://doi.org/10.1177/1535370218824547
[49] Dai, H., He, F., Tsokos, G.C., et al. (2017) IL-23 Limits the Pro-duction of IL-2 and Promotes Autoimmunity in Lupus. The Journal of Immunology, 199, 903-910.
https://doi.org/10.4049/jimmunol.1700418
[50] Sofen, H., Smith, S., Matheson, R.T., et al. (2014) Guselkumab (an IL-23-Specific mAb) Demonstrates Clinical and Molecular Response in Patients with Moderate-to-Severe Psoriasis. Journal of Allergy and Clinical Immunology, 133, 1032-1040.
https://doi.org/10.1016/j.jaci.2014.01.025
[51] Jauregui-Amezaga, A., Somers, M., De Schepper, H., et al. (2017) Next Generation of Biologics for the Treatment of Crohn’s Disease: An Evidence-Based Review on Ustekinumab. Clin-ical and Experimental Gastroenterology, 10, 293-301.
https://doi.org/10.2147/CEG.S110546
[52] Nirula, A., Nilsen, J., Klekotka, P., et al. (2016) Effect of IL-17 Re-ceptor A Blockade with Brodalumab in Inflammatory Diseases. Rheumatology (Oxford), 55, ii43-ii55.
https://doi.org/10.1093/rheumatology/kew346
[53] Souza, D.G., Vieira, A.T., Soares, A.C., et al. (2004) The Es-sential Role of the Intestinal Microbiota in Facilitating Acute Inflammatory Responses. The Journal of Immunology, 173, 4137-4146.
https://doi.org/10.4049/jimmunol.173.6.4137
[54] Marques, V.P., Goncalves, G.M., Feitoza, C.Q., et al. (2006) Influence of TH1/TH2 Switched Immune Response on Renal Ischemia-Reperfusion Injury. Nephron Experimental Nephrology, 104, e48-e56.
https://doi.org/10.1159/000093676
[55] Haro, C., Monaco, M.E. and Medina, M. (2018) Lactobacillus casei Bene-ficially Modulates Immuno-Coagulative Response in an Endotoxemia Model. Blood Coagulation & Fibrinolysis, 29, 104-110.
https://doi.org/10.1097/MBC.0000000000000684
[56] Lee, Y.-J., Li, K.-Y., Wang, P.-J., et al. (2020) Alleviating Chronic Kidney Disease Progression through Modulating the Critical Genus of Gut Microbiota in a Cisplatin-Induced Lanyu Pig Model. Journal of Food and Drug Analysis, 28, 103-114.
https://doi.org/10.1016/j.jfda.2019.10.001
[57] Ellis, R.J., Small, D.M., Ng, K.L., et al. (2018) Indoxyl Sulfate In-duces Apoptosis and Hypertrophy in Human Kidney Proximal Tubular Cells. Toxicologic Pathology, 46, 449-459.
https://doi.org/10.1177/0192623318768171
[58] Rossi, M., Johnson, D.W., Xu, H., et al. (2015) Dietary Pro-tein-Fiber Ratio Associates with Circulating Levels of Indoxyl Sulfate and p-Cresyl Sulfate in Chronic Kidney Disease Patients. Nutrition, Metabolism & Cardiovascular Diseases, 25, 860-865.
https://doi.org/10.1016/j.numecd.2015.03.015
[59] Meijers, B.K. and Evenepoel, P. (2011) The Gut-Kidney Axis: Indoxyl Sulfate, p-Cresyl Sulfate and CKD Progression. Nephrology Dialysis Transplantation, 26, 759-761.
https://doi.org/10.1093/ndt/gfq818
[60] Satoh, M., Hayashi, H., Watanabe, M., et al. (2003) Uremic Toxins Over-load Accelerates Renal Damage in a Rat Model of Chronic Renal Failure. Nephron Experimental Nephrology, 95, e111-118.
https://doi.org/10.1159/000074327
[61] Meijers, B.K., Bammens, B., De Moor, B., et al. (2008) Free p-cresol Is Associated with Cardiovascular Disease in Hemodialysis Patients. Kidney International, 73, 1174-1180.
https://doi.org/10.1038/ki.2008.31
[62] Bammens, B., Evenepoel, P., Keuleers, H., et al. (2006) Free Serum Con-centrations of the Protein-Bound Retention Solute p-Cresol Predict Mortality in Hemodialysis Patients. Kidney Interna-tional, 69, 1081-1087.
https://doi.org/10.1038/sj.ki.5000115
[63] Veldeman, L., Vanmassenhove, J., Van Biesen, W., et al. (2019) Evolu-tion of Protein-Bound Uremic Toxins Indoxyl Sulphate and p-Cresyl Sulphate in Acute Kidney Injury. International Urology and Nephrology, 51, 293-302.
https://doi.org/10.1007/s11255-018-2056-x
[64] Yoshifuji, A., Wakino, S., Irie, J., et al. (2016) Gut Lactobacillus Protects against the Progression of Renal Damage by Modulating the Gut Environment in Rats. Nephrology Dialysis Transplantation, 31, 401-412.
https://doi.org/10.1093/ndt/gfv353
[65] Wang, W., Hao, G., Pan, Y., et al. (2019) Serum Indoxyl Sulfate Is Asso-ciated with Mortality in Hospital-Acquired Acute Kidney Injury: A Prospective Cohort Study. BMC Nephrology, 20, 57.
https://doi.org/10.1186/s12882-019-1238-9
[66] Kawakami, T., Inagi, R., Wada, T., et al. (2010) Indoxyl Sulfate Inhibits Proliferation of Human Proximal Tubular Cells via Endoplasmic Reticulum Stress. American Journal of Physi-ology-Renal Physiology, 299, F568-F576.
https://doi.org/10.1152/ajprenal.00659.2009
[67] Morisaki, T., Matsuzaki, T., Yokoo, K., et al. (2008) Regulation of Renal Organic Ion Transporters in Cisplatin-Induced Acute Kidney Injury and Uremia in Rats. Pharmaceutical Re-search, 25, 2526-2533.
https://doi.org/10.1007/s11095-008-9668-2
[68] Watanabe, H., Miyamoto, Y., Honda, D., et al. (2013) p-Cresyl Sulfate Causes Renal Tubular Cell Damage by Inducing Oxidative Stress by Activation of NADPH Oxidase. Kidney In-ternational, 83, 582-592.
https://doi.org/10.1038/ki.2012.448
[69] Tang, W.H., Wang, Z., Kennedy, D.J., et al. (2015) Gut Microbio-ta-Dependent Trimethylamine N-Oxide (TMAO) Pathway Contributes to both Development of Renal Insufficiency and Mortality Risk in Chronic Kidney Disease. Circulation Research, 116, 448-455.
https://doi.org/10.1161/CIRCRESAHA.116.305360
[70] Witkowski, M., Weeks, T.L. and Hazen, S.L. (2020) Gut Microbiota and Cardiovascular Disease. Circulation Research, 127, 553-570.
https://doi.org/10.1161/CIRCRESAHA.120.316242
[71] Chen, Y.Y., Chen, D.Q., Chen, L., et al. (2019) Micro-biome-Metabolome Reveals the Contribution of Gut-Kidney Axis on Kidney Disease. Journal of Translational Medicine, 17, 5.
https://doi.org/10.1186/s12967-018-1756-4
[72] Stubbs, J.R., House, J.A., Ocque, A.J., et al. (2016) Serum Trimethylamine-N-Oxide Is Elevated in CKD and Correlates with Coronary Atherosclerosis Burden. Journal of the American Society of Nephrology, 27, 305-313.
https://doi.org/10.1681/ASN.2014111063
[73] Sun, G., Yin, Z., Liu, N., et al. (2017) Gut Microbial Metabolite TMAO Contributes to Renal Dysfunction in a Mouse Model of Diet-Induced Obesity. Biochemical and Biophysical Re-search Communications, 493, 964-970.
https://doi.org/10.1016/j.bbrc.2017.09.108
[74] Shi, H.H., Chen, L.P., Wang, C.C., et al. (2022) Docosahexaenoic Acid-Acylated Curcumin Diester Alleviates Cisplatin-Induced Acute Kidney Injury by Regulating the Effect of Gut Mi-crobiota on the Lipopolysaccharide- and Trimethylamine-N-Oxide-Mediated PI3K/Akt/NF-κB Signaling Pathway in Mice. Food & Function, 13, 6103-6117.
https://doi.org/10.1039/D1FO04178A
[75] Li, L.Z., Tao, S.B., Ma, L., et al. (2019) Roles of Short-Chain Fatty Acids in Kidney Diseases. Chinese Medical Journal (England), 132, 1228-1232.
https://doi.org/10.1097/CM9.0000000000000228
[76] Liu, Y., Li, Y.J., Loh, Y.W., et al. (2021) Fiber Derived Microbial Metabolites Prevent Acute Kidney Injury through G-Protein Coupled Receptors and HDAC Inhibition. Fron-tiers in Cell and Developmental Biology, 9, Article ID: 648639.
https://doi.org/10.3389/fcell.2021.648639
[77] Al-Harbi, N.O., Nadeem, A., Ahmad, S.F., et al. (2018) Short Chain Fatty Acid, Acetate Ameliorates Sepsis-Induced Acute Kidney Injury by Inhibition of NADPH Oxidase Signaling in T Cells. International Immunopharmacology, 58, 24-31.
https://doi.org/10.1016/j.intimp.2018.02.023
[78] Machado, R.A., Constantino Lde, S., Tomasi, C.D., et al. (2012) Sodium Butyrate Decreases the Activation of NF-kappaB Reducing Inflammation and Oxidative Damage in the Kidney of Rats Subjected to Contrast-Induced Nephropathy. Nephrology Dialysis Transplantation, 27, 3136-3140.
https://doi.org/10.1093/ndt/gfr807
[79] Zhu, H., Cao, C., Wu, Z., et al. (2021) The Probiotic L. casei Zhang Slows the Progression of Acute and Chronic Kidney Disease. Cell Metabolism, 33, 1926-1942.e1928.
https://doi.org/10.1016/j.cmet.2021.06.014
[80] Favero, C., Ortiz, A. and Sanchez-Niño, M.D. (2022) Probiotics for Kidney Disease. Clinical Kidney Journal, 15, 1981-1986.
https://doi.org/10.1093/ckj/sfac056
[81] Zou, Y.T., Zhou, J., Zhu, J.H., et al. (2022) Gut Microbiota Mediates the Protective Effects of Traditional Chinese Medicine For-mula Qiong-Yu-Gao against Cisplatin-Induced Acute Kidney Injury. Microbiology Spectrum, 10, e0075922.
https://doi.org/10.1128/spectrum.00759-22
[82] Sasabe, J., Miyoshi, Y., Rakoff-Nahoum, S., et al. (2016) Inter-play between Microbial d-Amino Acids and Host d-Amino Acid Oxidase Modifies Murine Mucosal Defence and Gut Microbiota. Nature Microbiology, 1, 16125.
https://doi.org/10.1038/nmicrobiol.2016.125
[83] Sasabe, J., Suzuki, M., Miyoshi, Y., et al. (2014) Ischemic Acute Kidney Injury Perturbs Homeostasis of Serine Enantiomers in the Body Fluid in Mice: Early Detection of Renal Dys-function Using the Ratio of Serine Enantiomers. PLOS ONE, 9, e86504.
https://doi.org/10.1371/journal.pone.0086504
[84] Iwata, Y., Nakade, Y., Kitajima, S., et al. (2022) Protective Ef-fect of d-Alanine against Acute Kidney Injury. American Journal of Physiology-Renal Physiology, 322, F667-F679.
https://doi.org/10.1152/ajprenal.00198.2021