颅脑手术围术期并发低钠血症的处理及文献综述
Management of Hyponatremia during Perioperative Period of Craniocerebral Operation and Literature Review
摘要: 低钠血症是颅脑手术常见的并发症,其发病率较高,尤其在蛛网膜下腔出血、创伤性脑损伤(TBI)、垂体肿瘤患者中常见,并且低钠血症具有显著增加并发症的发病率和死亡率的风险。在颅内疾病患者中脑出血体积、脑损伤程度、脑水肿等被认为是导致低钠血症的主要因素,其临床表现主要与血清钠浓度下降的严重程度和剧烈程度有关。目前公认的导致低钠血症两种机制:即抗利尿激素分泌不当综合征(SIADH)和脑性盐耗综合征(CSWS),这两种机制的本质区别是容积状态:SIADH涉及高容量低钠血症,而CSWS则表现为低容量低钠症。对于低钠血症的处理应针对血浆钠浓度降低的原因进行治疗,将对低钠血症的纠正更有效。
Abstract: Hyponatremia is a common complication of craniocerebral surgery with a high incidence, especially in patients with subarachnoid hemorrhage, traumatic brain injury (TBI), and pituitary tumors. Moreover, hyponatremia significantly increases the risk of morbidity and mortality of complications. In patients with intracranial diseases, the volume of cerebral hemorrhage, the degree of brain inju-ry, cerebral edema are considered to be the main factors leading to hyponatremia, and its clinical manifestations are mainly related to the severity and intensity of the decrease in serum sodium concentration. There are currently two recognized mechanisms leading to hyponatremia: syndrome of inappropriate antidiuretic hormone secretion (SIADH) and cerebral salt wasting syndrome (CSWS). The essential difference between the two mechanisms is the volume state: SIADH involves high volume hyponatremia, while CSWS presents with low volume hyponatremia. The treatment of hyponatremia should be targeted at the cause of the decrease in plasma sodium concentration, which will be more effective in correcting hyponatremia.
文章引用:张静, 舒仕瑜. 颅脑手术围术期并发低钠血症的处理及文献综述[J]. 临床医学进展, 2023, 13(3): 4623-4630. https://doi.org/10.12677/ACM.2023.133664

1. 颅内疾病并发低钠血症情况

1.1. 低钠血症概述

低钠血症是指血清钠水平 < 135 mmol/l,在神经外科疾病中较为常见 [1] ,一方面与药物使用有关,另一方面由于颅内疾患本身所致。临床按照血清钠的浓度分为轻、中、重三度。轻度低钠血症血清钠为130~135 mmol/l,中度低钠血症血清钠为120~129 mmol/l,重度低钠血症血清钠为 < 120 mmol/l。轻度低钠血症患者可能会出现疲乏或性格变化,而严重低钠血症患者会出现意识改变或癫痫发作,甚至诱发恶性心律失常导致患者病情恶化,因此低钠血症是颅脑手术患者围手术期病情恶化和死亡的重要原因 [2] 。

1.2. 不同颅内疾病低钠血症发病情况

1.2.1. 蛛网膜下腔出血

蛛网膜下腔出血患者中低钠血症发病率较高,达到30%~40%,研究 [3] 表明,动脉瘤位置可能会影响蛛网膜下腔出血患者低钠血症发生率,该研究发现前循环动脉瘤比后循环动脉瘤有更高可能发生低钠血症,并且可能与抗利尿激素分泌不当综合征(syndrome of inappropriate antidiuretic hormone secretion, SIADH)有关,发生率为75%。他们猜测可能由于前循环动脉更接近神经垂体和下丘脑,动脉瘤破裂可能对下丘脑-垂体-肾上腺轴产生更大的影响。

此外,蛛网膜下腔出血患者低钠血症可能与体内激素水平变化有一定关联。Maimaitili A等 [4] 在一项对监测垂体激素的aSAH患者进行的前瞻性研究中发现,蛛网膜下腔导致广泛的应激反应,引起多种垂体激素(包括抗利尿激素)的过度分泌,作者指出动脉瘤性蛛网膜下腔出血患者的血清垂体激素水平与失血量和疾病严重程度呈正相关。可以看出,蛛网膜下腔出血患者低钠血症发病与病变位置、体内激素水平变化有一定关系。

对于蛛网膜下腔出血并发低钠血症患者的预后而言,有研究发现其预后可能与血钠波动水平相关。James Bales等证实了,钠波动与动脉瘤性蛛网膜下腔出血患者的神经系统预后更差 [5] 。

1.2.2. 创伤性脑损伤(TBI)

低钠血症在创伤性脑损伤后也比较常见,15%~20%的发生在中度或重度损伤患者中 [6] [7] 。TBI后最常见的异常是继发于蛛网膜下腔出血的低钠血症,低钠血症与急性并发症的潜在发展相关,如癫痫发作、意识降低、住院时间延长和康复效果不佳 [8] 。

在创伤性脑损伤患者中,不同类型的手术操作的复杂程度有所不同,低钠血症的发生率也有明显差异。研究 [9] 发现,TBI额部损伤、弥漫性轴索损伤、合并颅底骨折、合并脑水肿患者易发生低钠血症。低钠血症在额部损伤患者中发生率为44.44%;颞部损伤发生低钠血症为16.67%;枕部损伤发生低钠血症为18.18%;弥漫性轴索损伤发生低钠血症57.14%。

此外,格拉斯哥昏迷(Glasgow Coma Scale, GCS)评分较低的患者容易发生低钠血症,该评分是医学上评估病人昏迷程度的常用方法,评估方法主要有睁眼反应、语言反应和肢体运动三个方面。研究发现,合并有格拉斯哥昏迷(GCS)评分为 ≤ 8、脑水肿和/或颅底骨折的创伤性脑损伤患者更容易发生低钠血症,发生率为33%。该研究考虑主要导致的低钠血症原因是严重TBI患者经常出现蛛网膜下腔出血,这会导致脑脊液循环受阻,引起脑水肿和/或颅内压升高。同时升高的颅内压会扰乱局部血液循环,从而导致机械刺激或下丘脑渗透压受体缺血,引起ADH分泌过多,最终导致稀释性低钠血症 [10] 。

1.2.3. 垂体肿瘤手术

据报道,垂体肿瘤手术后低钠血症发病率在3%至25%之间 [11] [12] 。垂体肿瘤术后发生低钠血症可能并不是及时的,最初可能会表现为高钠血症,而后再出现低钠血症。一项对2006年至2012年间接受经蝶窦手术的344名患者进行了回顾性研究发现,18.0%的患者术后平均3.9天出现低钠血症,且低钠血症最常见的是轻度(51.6%)和临床无症状(93.8%) [13] 。同时,值得注意的是,垂体肿瘤手术后迟发性低钠血症是经蝶窦手术后最常见的临床问题,15%的患者出现迟发性低钠血症,最常见于术后第7天 [14] 。

有研究 [15] 表明,在手术从操作中,下丘脑–垂体轴的操作和随后的调节失调可能是导致低钠血症的原因。另一项研究支持这一理论,鞍膈膜(DS)下沉可能会拉伸垂体柄,进而损害神经垂体功能,DS下沉深度显著、垂体柄偏转角差异大、术后“可测量垂体柄”较长的患者发生低钠血症的风险更大 [16] 。

垂体功能减退可能是低钠血症发生的另一重要原因,一项病例报告发现,一名69岁的僧伽罗人既往健康,在一周内出现嗜睡、食欲不振、呕吐和行为改变,脑成像确认了垂体大腺瘤的存在。同时,血清皮质醇和游离四碘甲状腺原氨酸水平很低。通过静脉注射氢化可的松和口服左旋甲状腺素替代,患者的临床症状明显改善,支持垂体功能减退的诊断 [17] 。

1.3. 颅脑疾病患者并发低钠血症的死亡率

低钠血症具有显著增加并发症的发病率和死亡率的风险,特别是在神经外科患者中。它可以导致危及生命的脑水肿(最初的低钠血症本身导致或是由于过度矫正),癫痫发作,血管痉挛,甚至死亡。

一项单中心回顾性研究发现,低钠血症是住院死亡率的独立预测因素 [18] 。在低钠血症相关研究中发现低钠血症浓度与死亡率增加相关,有研究表明,低钠血症患者(<125 mmol/L)的总死亡率为28%,而血钠正常患者死亡率为9%,血清钠浓度 < 115 mmol/L的患者的总死亡率高达50% [19] 。

在不同类型的颅脑疾病患者中,其死亡率有所不同。在创伤性脑损伤患者中,一项对头部损伤发生率高(28%)的老年人跌倒后的回顾性研究发现,低钠血症与死亡率增加2.5倍有关 [20] 。而在颅内动脉瘤性蛛网膜下腔出血(SAH)导致的低钠血症发病率约为30%~40%,其死亡率将增加14.3% [21] [22] 。另有研究 [6] 表明,急性低皮质醇血症和尿崩症可预测TBI患者的死亡率。

1.4. 神经外科手术中低钠血症危险因素

有研究发现,蛛网膜下腔出血、创伤性脑损伤、颅内肿瘤、垂体疾病和接受神经外科手术的患者更容易发生低钠血症及其相关的神经系统损害 [7] [23] [24] 。但是各类疾病中其导致低钠血症的危险因素有所不同。在脑出血患者中,有研究观察到低钠血症与脑出血(ICH)体积增大和脑出血的脑室内延伸(IVH)存在关联 [25] 。在创伤性脑损伤患者中,脑损伤程度、脑室出血、脑水肿和颅底骨折被认为是创伤性脑损伤并发低钠血症的主要因素 [26] 。同时,有研究发现,GCS评分为 ≤ 8分、脑水肿和/或基底颅骨骨折的TBI患者容易发生低钠血症,该研究建议需要额外注意使血清钠水平正常化,以防止病情恶化 [10] 。而在成人颅内恶性肿瘤切除术的研究中发现,梗阻性脑积水、糖尿病、高血压和抑郁症患者更容易发生围手术期低钠血症 [27] 。

除此之外,有研究 [28] 发现,年龄增加与初始钠水平降低和迟发性低钠血症发生率显著相关,而吸烟与低钠血症持续时间延长相关。有人提出,低钠血症、迟发性脑缺血与临床结果之间存在一定的相关性,需要进行新的前瞻性和随机研究,以确定低钠血症的严格监测和治疗是否会影响功能结果 [29] 。

1.5. 临床表现

颅脑手术后患者一般很快出现低钠血症,并且在任何血清钠水平都有可能出现症状,可能与颅脑损伤、损伤带来的并发症、合并症等有关。临床表现主要与血清钠浓度下降的严重程度和剧烈程度相关联。

有研究发现,轻度低钠血症患者可能会出现疲乏或性格变化,而严重低钠血症患者会出现意识状态改变或癫痫的发作 [2] 。一项旨在评估无癫痫病史的低钠血症患者癫痫发作风险的回顾性横断面研究中发现,与120~124 mmol/L的血清钠水平相比,血清钠水平低于110 mmol/L时癫痫发作风险最高 [30] 。

严重低钠血症还可能表现为心理及认知状态的改变,一例颈动脉内膜切除术病例报道中提示,在术后第四天患者心理状态发生了改变,呈嗜睡状态,对人、地点或时间缺乏方向性,实验室检测发现患者存在严重低钠血症(109 mmol/L) [31] 。

2. 低钠血症发生机制

2.1. 抗利尿激素分泌不当综合征(SIADH)和脑性盐耗综合征(CSWS)

低钠血症是神经外科手术后常见的并发症,一方面由于药物因素导致,例如使用利尿剂、激素、脱水剂甘露醇等,另一方面由于中枢性原因,目前有两种机制:即抗利尿激素分泌不当综合征(SIADH)和脑性盐耗综合征(CSWS),这两种机制的本质区别是容积状态:SIADH涉及高容量低钠血症,而CSWS则表现为低容量低钠症。

抗利尿激素分泌不当综合征(syndrome of inappropriate antidiuretic hormone secretion, SIADH)是指丘脑下部-垂体系统受损ACTH和ADH分泌异常,引起尿钠排出增多,同时肾脏对水的重吸收增加,从而导致低血钠、低血渗产生的一系列神经受损的临床表现 [32] 。SIADH的主要特点是肾脏对水的吸收不当,导致患者出现稀释性低钠血症。诊断标准是:① 血清钠降低(常低于130 mmol/l);② 血浆渗透压 < 270 mmol/l;③ 尿液渗透压 > 血浆渗透压;④ 尿钠水平 > 30 mmol/l;⑤ 无心脏、肝脏、肾脏、肾上腺、甲状腺功能障碍,无低血压、脱水或其他血容量减少的迹象 [33] 。

脑性盐耗综合征(cerebral salt wasting syndrome, CSWS)是指继发于急慢性中枢神经系统损伤,肾脏保钠功能降低,尿钠逐渐增加,血容量减少而引起的低钠血症,多见于严重脑损伤后,CSWS最早是在五十年代初由Peters [34] 提出,后来更多的学者认可了CSWS发生与中枢神经系统损伤导致心钠素(ANP)或脑钠素(BNP)对肾脏神经调节功能紊乱有关。它是一种以神经损伤背景下较罕见的低钠血症,以脱水为主要特征的综合征,CSWS的诊断标准为:① 血清钠水平 < 135 mmol/l,尿钠 > 30 mmol/l或>80 mmol/24h;② 中枢神经系统疾病;③ 心功能正常者,中心静脉压降低并 < 6 cmH2O [33] 。

2.2. 如何鉴别抗利尿激素分泌不当综合征(SIADH)和脑盐耗综合征(CSWS)

有研究者 [35] 建议,与CSWS患者相比,SIADH患者的钠排泄量和尿量减少。因此,尿钠排泄量和尿量对诊断脑损伤患者低钠血症的原因非常重要。目前公认的鉴别是血容量的变化和限水试验或补钠试验。尿钠排泄增加同时伴有低血容量患者可诊断为CSWS,进行补钠、补水是有效的。而对于血容量增加导致的稀释性低钠血症,补钠无效限水有效的患者,可诊断为SIADH。总而言之,CSWS和SIADH区别的关键在于血容量的减少。

低钠血症发生原因中抗利尿激素分泌不当综合征和脑性盐耗综合征并不是完全分开,一项研究报告一例60岁男性SAH并发低钠血症的病例。在最初住院期间,他被诊断为CSWS。一周后,他因低钠血症再次入院,并被诊断为SIADH [36] 。

3. 低钠血症的处理

神经外科患者容易出现低钠血症,因此在急性情况下正确的治疗尤为重要。针对血浆钠浓度降低的原因进行治疗,将对低钠血症的纠正更有效。

低钠血症的治疗主要是钠盐的补充,韩宇涵 [37] 等人提出,一旦出现低钠血症,应尽早明确病因,采取个性化的补钠方案:因钠摄入不足或利尿剂的过量使用导致的低钠血症,对症状较轻者,一般口服补钠;对于一般情况较差者,可在保证血容量正常的前提下静脉补充3%~5%的高渗盐水,同时减少利尿剂的使用。静脉补充钠速度一般为100~150 ml/h [9] 。根据经典补钠公式计算钠补充量:丢失钠量(mmol/l) = (143 − 血清钠测得值) × 体重 × 0.6 (女性0.5),17 mmol Na相当于1 g NaCL计算出所需要的补钠量。

对于有低血钠、低血容量的CSWS患者,给予补钠、补液是有效的。液体限制是SIADH患者的经典治疗方法。患有SIADH的治疗方是:① 控制水的摄入量,症状较轻患者限制入水量500~1000 ml/d [38] ,重症患者严格限制入水量至400~700 ml/d;② 可肌注促肾上腺皮质激素(ACTH) 25 mg,一天3次;③ 根据尿钠排出的多少决定是否补钠,尿钠 > 20 mmol/24h可补充生理盐水250~500 ml/d,病情严重的患者(血钠 < 120 mmol/L)应积极补充高渗盐水,同时给予利尿剂;④ 苯妥因钠也能通过抑制血浆精氨酸抗利尿激素(AVP)达到一定疗效。

对于顽固性低钠血症患者可联合使用激素进行治疗。一例病例 [39] 报告中显示,在对一例低度毛细胞型星形细胞瘤进行次全切除术后顽固性CSWS,使用氟氢化可的松成功治疗难治性低钠血症,并避免了口服大量的钠补充。

在药物使用方面,除了补充钠及激素可以纠正患者低钠血症外,有研究 [40] 表明,托伐普坦可用于治疗经蝶窦手术后急性等容性低钠血症,作者证实了托伐普坦在确保钠水平正常化和缩短住院时间方面可能比液体限制(有或没有高渗盐水)更有效。托伐普坦给药后,钠过度校正可能是一个问题,但包括渗透性脱髓鞘在内的副作用是罕见的。作者建议,可以考虑以最低有效剂量尽早给予托伐普坦,使用时密切监测。

虽然对低钠血症患者补充钠非常重要,但是正确的补充对患者获益更大。严重低钠血症和症状性低钠血症的患者,如果治疗不当,可能会导致脑水肿而发生危及生命的并发症,若治疗过度,则可能因神经脱髓鞘而导致永久性神经功能障碍 [41] ,称为渗透性脱髓鞘综合征(osmotic demyelination syndrome, ODS),这是急性非炎性中枢脱髓鞘疾病,原因是低钠血症患者脑细胞处于低渗状态,当补钠速度过快时,血浆渗透压迅速升高,导致水向神经细胞外的运动,这会导致脊髓内水肿、渗透性内皮损伤和髓鞘毒性因子的局部释放,从而导致少突胶质细胞衰竭和死亡 [42] 。ODS在CT上早期可无异常,症状出现后1周DWI可表现为高信号。因此,传统上建议补钠的速度不超过0.5 mmol/L/h,简而言之,在12小时内不超过12 mmol/L。

4. 总结

低钠血症在颅内疾病患者中很常见,在临床工作中,我们应引起重视,尽量做到早预防、早诊断、早治疗,最大程度减少颅内疾病患者由于低钠血症带来的相关并发症。有研究表明,在急性动脉瘤性SAH患者中,患者即使出现中度低钠血症,当早期纠正血清钠水平至正常时,不会对预后产生负面影响 [43] ,可以看出早期治疗对患者预后会有很大益处。

NOTES

*通讯作者。

参考文献

[1] 尹善浪, 陈善成. 抗利尿激素分泌不当综合征与脑性盐耗综合征[J]. 现代临床医学生物工程学杂志, 2004, 10(5): 436-438.
[2] Hannon, M.J. and Thompson, C.J. (2014) Neurosurgical Hyponatremia. Journal of Clinical Medicine, 3, 1084-1104.
https://doi.org/10.3390/jcm3041084
[3] Hoffman, H., Ziechmann, R., Gould, G. and Chin, L.S. (2018) The Im-pact of Aneurysm Location on Incidence and Etiology of Hyponatremia Following Subarachnoid Hemorrhage. World Neurosurgery, 110, e621-e626.
https://doi.org/10.1016/j.wneu.2017.11.058
[4] Maimaitili, A., Maimaitili, M., Rexidan, A., Lu, J., Ajimu, K., Cheng, X., et al. (2013) Pituitary Hormone Level Changes and Hyponatremia in Aneurysmal Subarachnoid Hemorrhage. Experimental and Therapeutic Medicine, 5, 1657-1662.
https://doi.org/10.3892/etm.2013.1068
[5] Bales, J., Cho, S., Tran, T.K., Korab, G.A., Khandelwal, N., Spiekerman, C.F. and Joffe, A.M. (2016) The Effect of Hyponatremia and Sodium Variability on Outcomes in Adults with Aneurysmal Subarachnoid Hemorrhage. World Neurosurgery, 96, 340-349.
https://doi.org/10.1016/j.wneu.2016.09.005
[6] Hannon, M.J., Crowley, R.K., Behan, L.A., O’Sullivan, E.P., O’Brien, M.M., Sherlock, M., Rawluk, D., O’Dwyer, R., Tormey, W. and Thompson, C.J. (2013) Acute Gluco-corticoid Deficiency and Diabetes Insipidus Are Common after Acute Traumatic Brain Injury and Predict Mortality. The Journal of Clinical Endocrinology & Metabolism, 98, 3229-3237.
https://doi.org/10.1210/jc.2013-1555
[7] Sherlock, M., O’Sullivan, E., Agha, A., Behan, L.A., Owens, D., Finu-cane, F., Rawluk, D., Tormey, W. and Thompson, C.J. (2009) Incidence and Pathophysiology of Severe Hyponatraemia in Neurosurgical Patients. Postgraduate Medical Journal, 85, 171-175.
https://doi.org/10.1136/pgmj.2008.072819
[8] Tudor, R.M. and Thompson, C.J. (2019) Posterior Pituitary Dys-function Following Traumatic Brain Injury: Review. Pituitary, 22, 296-304.
https://doi.org/10.1007/s11102-018-0917-z
[9] 胡岚, 李谦益, 梁栋, 祁洋, 陈旭光, 李洪超, 姚文飞, 陆一鸣. 创伤性脑损伤并发低钠血症的危险因素分析[J]. 临床急诊杂志, 2020, 21(7): 572-575+580.
https://doi.org/10.13201/j.issn.1009-5918.2020.07.012
[10] Meng, X. and Shi, B. (2016) Traumatic Brain Injury Patients with a Glasgow Coma Scale Score of ≤8, Cerebral Edema, and/or a Basal Skull Fracture are More Susceptible to Developing Hyponatremia. Journal of Neurosurgical Anesthesiology, 28, 21-26.
https://doi.org/10.1097/ANA.0000000000000192
[11] Janneck, M., Burkhardt, T., Rotermund, R., Sauer, N., Flitsch, J. and Aberle, J. (2014) Hyponatremia after Trans-Sphenoidal Surgery. Minerva Endocrinology, 39, 27-31.
[12] Jahangiri, A., Wagner, J., Tran, M.T., Miller, L. M., Tom, M. W., Kunwar, S., et al. (2013) Factors Pre-dicting Postoperative Hyponatremia and Efficacy of Hyponatremia Management Strategies after More than 1000 Pituitary Operations. Journal of Neurosurgery, 119, 1478-1483.
https://doi.org/10.3171/2013.7.JNS13273
[13] Barber, S.M., Liebelt, B.D. and Baskin, D.S. (2014) Incidence, Etiology and Outcomes of Hyponatremia after Transsphenoidal Surgery: Experience with 344 Consecutive Patients at a Single Tertiary Center. Journal of Clinical Medicine, 3, 1199-1219.
https://doi.org/10.3390/jcm3041199
[14] Patel, K.S., Chen, J.S., Yuan, F., Attiah, M., Wilson, B., Wang, M.B., Bergsneider, M. and Kim, W. (2019) Prediction of Post-Operative Delayed Hyponatremia after Endoscopic Transsphenoidal Surgery. Clinical Neurology and Neurosurgery, 182, 87-91.
https://doi.org/10.1016/j.clineuro.2019.05.007
[15] Hasegawa, H., Shin, M., Makita, N., Shinya, Y., Kondo, K. and Saito, N. (2020) Delayed Postoperative Hyponatremia Following Endoscopic Transsphenoidal Surgery for Non-Adenomatous Parasellar Tumors. Cancers, 12, Article No. 3849.
https://doi.org/10.3390/cancers12123849
[16] Lin, K., Li, J., Lu, L., Zhang, S., Mu, S., Pei, Z., Wang, C., Lin, J., Xue, L., Wei, L., Zhao, L. and Wang, S. (2021) Diaphragma Sellae Sinking Can Predict the Onset of Hyponatremia after Transsphenoidal Surgery for Pituitary Adenomas. Journal of Endocrinological Investigation, 44, 2511-2520.
https://doi.org/10.1007/s40618-021-01611-7
[17] Bopeththa, B.V.K.M., Niyaz, S.M.M. and Medagedara, C. (2019) Pituitary Macroadenoma Presenting as Severe Hyponatremia: A Case Report. Journal of Medical Case Reports, 13, Arti-cle No. 40.
https://doi.org/10.1186/s13256-019-2000-4
[18] Kuramatsu, J.B., Bobinger, T., Volbers, B., Staykov, D., Lücking, H., Kloska, S.P., Köhrmann, M. and Huttner, H.B. (2014) Hyponatremia Is an Independent Predictor of In-Hospital Mortality in Spontaneous Intracerebral Hemorrhage. Stroke, 45, 1285-1291.
https://doi.org/10.1161/STROKEAHA.113.004136
[19] Gill, G., Huda, B., Boyd, A., Skagen, K., Wile, D., Wat-son, I. and Van Heyningen, C. (2006) Characteristics and Mortality of Severe Hyponatraemia—A Hospital-Based Study. Clinical Endocrinology, 65, 246-249.
https://doi.org/10.1111/j.1365-2265.2006.02583.x
[20] Kuo, S.C.H., Kuo, P.-J., Rau, C.-S., Wu, S.-C., Hsu, S.-Y. and Hsieh, C.-H. (2017) Hyponatremia Is Associated with Worse Outcomes from Fall Injuries in the Elderly. Interna-tional Journal of Environmental Research and Public Health, 14, Article No. 460.
https://doi.org/10.3390/ijerph14050460
[21] Sherlock, M., O’Sullivan, E., Agha, A., Behan, L.A., Rawluk, D., Brennan, P., Tormey, W. and Thompson, C.J. (2006) The Incidence and Pathophysiology of Hyponatraemia after Sub-arachnoid Haemorrhage. Clinical Endocrinology, 64, 250-254.
https://doi.org/10.1111/j.1365-2265.2006.02432.x
[22] Katayama, Y., Haraoka, J., Hirabayashi, H., et al. (2007) A Randomized Controlled Trial of Hydrocortisone against Hyponatremia in Patients with Aneurysmal Subarachnoid Hem-orrhage. Stroke, 38, 2373-2375.
https://doi.org/10.1161/STROKEAHA.106.480038
[23] Hannon, M.J. and Thompson, C.J. (2019) Hyponatremia in Neurosurgical Patients. In: Peri, A., Thompson, C.J. and Verbalis, J.G., Eds., Disorders of Fluid and Electrolyte Me-tabolism. Focus on Hyponatremia, Vol. 52, Karger, Basel, 143-160.
https://doi.org/10.1159/000493244
[24] Sivakumar, V., Rajshekhar, V. and Chandy, M.J. (1994) Management of Neurosurgical Patients with Hyponatremia and Natriuresis. Neurosurgery, 34, 269-274.
https://doi.org/10.1227/00006123-199402000-00010
[25] Carcel, C., Sato, S., Zheng, D., Heeley, E., Arima, H., Yang, J., Wu, G., Chen, G., Zhang, S., Delcourt, C., Lavados, P., Robinson, T., Lindley, R.I., Wang, X., Chalmers, J. and Anderson, C.S. (2016) Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial 2 Investigators. Prognostic Significance of Hyponatremia in Acute Intracerebral Hemorrhage: Pooled Analysis of the Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial Studies. Critical Care Medicine, 44, 1388-1394.
https://doi.org/10.1097/CCM.0000000000001628
[26] Zhang, J., Dong, W., Dou, X., Wang, J., Yin, P. and Shi, H. (2022) Etiology Analysis and Diagnosis and Treatment Strategy of Traumatic Brain Injury Complicated with Hypo-natremia. Frontiers in Surgery, 9, Article 848312.
https://doi.org/10.3389/fsurg.2022.848312
[27] Patel, S., Chiu, R.G., Rosinski, C.L., Chaker, A.N., Burch, T.G., Behbahani, M., Sadeh, M. and Mehta, A.I. (2020) Risk Factors for Hyponatremia and Perioperative Complications with Malignant Intracranial Tumor Resection in Adults: An Analysis of the Nationwide Inpatient Sample from 2012 to 2015. World Neurosurgery, 144, e876-e882.
https://doi.org/10.1016/j.wneu.2020.09.097
[28] See, A.P., Wu, K.C., Lai, P.M., Gross, B.A. and Du, R. (2016) Risk Factors for Hyponatremia in Aneurysmal Subarachnoid Hemorrhage. Journal of Clinical Neuroscience, 32, 115-118.
https://doi.org/10.1016/j.jocn.2016.04.006
[29] Vrsajkov, V., Javanović, G., Stanisavljević, S., Uvelin, A. and Vrsajkov, J.P. (2012) Clinical and Predictive Significance of Hyponatremia after Aneurysmal Subarachnoid Hemor-rhage. Balkan Medical Journal, 29, 243-246.
https://doi.org/10.5152/balkanmedj.2012.037
[30] Halawa, I., Andersson, T. and Tomson, T. (2011) Hyponatremia and Risk of Seizures: A Retrospective Cross-Sectional Study. Epilepsia, 52, 410-413.
https://doi.org/10.1111/j.1528-1167.2010.02939.x
[31] Ferrero, N.A., Ward, C.T., Groff, R.F., Prabhakar, A. and Fiza, B. (2021) A Rare Case of Neurological Dysfunction due to Severe Hyponatremia after Carotid Artery Endarterec-tomy: A Review of the Clinical Approach to Hyponatremia. Clinical Case Reports, 9, e05171.
https://doi.org/10.1002/ccr3.5171
[32] Schwartz, W.B., Bennett, W., Curelop, S. and Bartter, F.C. (1957) A Syn-drome of Renal Sodium Loss and Hyponatremia Probably Resulting from Inappropriate Secretion of Antidiuretic Hor-mone. The American Journal of Medicine, 23, 529-542.
https://doi.org/10.1016/0002-9343(57)90224-3
[33] Lohani, S. and Devkota, U.P. (2011) Hyponatremia in Patients with Traumatic Brain Injury: Etiology, Incidence, and Severity Correlation. World Neurosurgery, 76, 355-360.
https://doi.org/10.1016/j.wneu.2011.03.042
[34] Peters, J.P., Welt, L.G., Sims, E.A.H., Orloff, J. and Needham, J. (1950) A Sal-Wasting Syndrome Associated with Cerebral Disease. Transactions of the Association of American Physi-cians, 63, 57-64.
[35] Arieff, A.I., Gabbai, R. and Goldfine, I.D. (2017) Cerebral Salt-Wasting Syndrome: Diagnosis by Urine Sodium Excretion. The American Journal of the Medical Sciences, 354, 350-354.
https://doi.org/10.1016/j.amjms.2017.05.007
[36] Nakajima, H., Okada, H., Hirose, K., Murakami, T., Shiotsu, Y., Kadono, M., Inoue, M. and Hasegawa, G. (2017) Cerebral Salt-Wasting Syndrome and Inappropriate Antidiuretic Hor-mone Syndrome after Subarachnoid Hemorrhaging. Internal Medicine, 56, 677-680.
https://doi.org/10.2169/internalmedicine.56.6843
[37] 韩宇涵, 王秀存, 马强, 于如同. 颅脑外伤后并发低钠血症的危险因素分析[J]. 局解手术学杂志, 2020, 29(4): 292-295.
[38] Baylis, P.H. (2003) The Syndrome of Inappro-priate Antidiuretic Hormone Secretion. The International Journal of Biochemistry & Cell Biology, 35, 1495-1499.
https://doi.org/10.1016/j.medcli.2022.02.015
[39] Gurnurkar, S., Villacres, S., Warner, L. and Chegondi, M. (2018) Successful Use of Fludrocortisone in a Child with Refractory Cerebral Salt Wasting Syndrome: A Case Report and Re-view of Literature. Cureus, 10, e3505.
https://doi.org/10.7759/cureus.3505
[40] Indirli, R., Ferreira de Carvalho, J., Cremaschi, A., Mantovani, B., Sala, E., Serban, A.L., Locatelli, M., Bertani, G., Carosi, G., Fiore, G., Tariciotti, L., Arosio, M., Mantovani, G. and Ferrante, E. (2021) Tolvaptan in the Management of Acute Euvolemic Hyponatremia after Transsphenoidal Surgery: A Retrospec-tive Single-Center Analysis. Frontiers in Endocrinology, 12, Article 689887.
https://doi.org/10.3389/fendo.2021.689887
[41] Sterns, R.H. (2018) Treatment of Severe Hyponatremia. Clinical Journal of the American Society of Nephrology, 13, 641-649.
https://doi.org/10.2215/CJN.10440917
[42] Mickel, H.S., Oliver, C.N. and Starke-Reed, P.E. (1990) PProtein Oxidation and Myelinolysis Occur in Brain Following Rapid Correction of Hyponatremia. Biochemical and Biophysical Research Communications, 172, 92-97.
https://doi.org/10.1016/S0006-291X(05)80177-9
[43] Kieninger, M., Kerscher, C., Bründl, E., Bele, S., Proe-scholdt, M., Zeman, F., Graf, B., Schmidt, N.-O. and Schebesch, K.-M. (2021) Acute Hyponatremia after Aneurysmal Subarachnoid Hemorrhage: Frequency, Treatment, and Outcome. Journal of Clinical Neuroscience, 88, 237-242.
https://doi.org/10.1016/j.jocn.2021.04.004