CRAMP诱导自噬提高烟曲霉角膜炎中巨噬细胞的杀真菌能力
CRAMP Inducing Autophagy to Improve the Fungicidal Ability of Macrophages during Aspergillus fumigatus Keratitis
DOI: 10.12677/ACM.2023.133622, PDF, HTML, XML, 下载: 376  浏览: 484 
作者: 侯晓晨, 彭旭东, 林 静*:青岛大学附属医院眼科,山东 青岛
关键词: CRAMP烟曲霉菌巨噬细胞自噬杀真菌力CRAMP Aspergillus fumigatus Macrophages Autophagy Fungicidal Ability
摘要: CRAMP是一种能够抑制多种真菌生长的抗微生物肽,据报道CRAMP在细菌感染中能够调控巨噬细胞。本文对小鼠烟曲霉菌性角膜炎中CRAMP的治疗效果及对巨噬细胞的调控展开研究。方法:体内实验通过建立小鼠烟曲霉菌角膜炎模型,比较CRAMP或PBS处理组在裂隙灯照片、临床评分以及真菌负荷方面的差异。体外实验通过流式细胞技术分析CRAMP对巨噬细胞吞噬、杀灭细胞内杀真菌力的影响。RT-PCR和免疫蛋白印迹法检测巨噬细胞自噬相关基因和蛋白的表达,如LAMP-3、Beclin-1。结果:在烟曲霉角膜炎期间,CRAMP减少了小鼠角膜的真菌负荷并降低了角膜的临床评分。虽然CRAMP对烟曲霉感染巨噬细胞的吞噬作用无显著影响,但可显著加速巨噬细胞对细胞内真菌的清除。进一步的机制研究表明,CRAMP可上调LAMP-3和Beclin-1的表达,并通过诱导自噬提高巨噬细胞胞内杀真菌能力。结论:CRAMP可诱导自噬提高巨噬细胞的杀真菌能力,改善小鼠烟曲霉角膜炎预后。
Abstract: CRAMP is an antimicrobial peptide that inhibits the growth of a variety of fungi and has been re-ported to modulate macrophages in bacterial infections. In this paper, the therapeutic effect of CRAMP on Aspergillus fumigatus keratitis in mice and the regulation of macrophage were studied. Methods: In vivo, mice models with Aspergillus fumigatus keratitis were established to compare the statistic differences in slit-lamp photographs, clinical scores, and fungal loads between the CRAMP-treated or PBS-treated groups. In vitro, the effects of CRAMP on the phagocytosis and intra-cellular fungicidal ability of macrophages were analyzed by flow cytometry. RT-PCR and Western blot were used to detect the expression of autophagy related genes and proteins of macrophages, such as LAMP-3 and Beclin-1. Results: During Aspergillus fumigatus keratitis, CRAMP reduced fun-gal loads of mice corneas and lowered clinical scores. Although CRAMP had no significant effect on the phagocytosis of macrophages infected with Aspergillus fumigatus, it could significantly acceler-ate the intracellular fungal clearance by macrophages. Further mechanism studies showed that CRAMP could up-regulate the expression of LAMP-3 and Beclin-1, and elevate the intracellular fun-gicidal ability of macrophages by inducing autophagy. Conclusion: CRAMP can induce autophagy to elevate the fungicidal ability of macrophages and improve the prognosis of Aspergillus fumigatus keratitis in mice.
文章引用:侯晓晨, 彭旭东, 林静. CRAMP诱导自噬提高烟曲霉角膜炎中巨噬细胞的杀真菌能力[J]. 临床医学进展, 2023, 13(3): 4335-4343. https://doi.org/10.12677/ACM.2023.133622

1. 引言

真菌性角膜炎(Fungal Keratitis, FK)是一种进展迅速的、致盲率高的严重角膜感染性疾病,发病率逐年增加 [1]。植物划伤角膜损伤是真菌性角膜炎的主要危险因素,同时隐形眼镜和激素的广泛应用也越发成为重要的危险因素 [2] [3] [4]。然而,目前临床上最常用的抗真菌药物(例如氟康唑、伊曲康唑等)具有显著的局限性,如价格昂贵、通透性较差以及可供选择的范围有限而易产生耐药性等 [5] [6] [7]。这些使得真菌性角膜炎成为一种严重威胁视力的难治性疾病 [8] [9]。因此,我们急需探索针对真菌角膜炎的安全、有效的新型治疗方案。

当真菌开始入侵机体时,Dectin-1、Dectin-2、EphA2等真菌识别受体识别真菌,通过信号级联反应募集并激活免疫细胞、调控炎症因子的分泌和病原体的清除 [10] - [16]。在此过程中,巨噬细胞是一种具有多功能的重要免疫细胞,他既能通过M2/M1极化调控炎症反应 [17],又能通过吞噬、自噬等清除病原体,减轻组织损伤 [18] [19]。CRAMP是一种天然抗微生物肽 [20] [21]。它广泛存在于多种上皮细胞和免疫细胞中 [22] [23],也是细菌感染中调控巨噬细胞防御的重要分子之一 [24] [25] [26],例如CRAMP诱导巨噬细胞自噬或活性氧的生成上调巨噬细胞胞内细菌清除力 [24] [25] ;在细菌感染的巨噬细胞中,Cathelicidin还能直接结合并中和脂多糖(LPS),抑制Toll样受体4 (TLR 4)炎症信号通路的激活,限制促炎症因子和一氧化氮的分泌 [26] [27]。然而,CRAMP在小鼠烟曲霉菌角膜炎中的作用和机制及其对巨噬细胞的调控仍知之甚少。

在本研究中,我们发现在烟曲霉角膜炎期间,CRAMP减少了小鼠角膜的真菌负荷并降低了角膜的临床评分。CRAMP可上调LAMP-3和Beclin-1的表达,通过诱导自噬提高巨噬细胞的杀真菌能力,减轻小鼠烟曲霉角膜炎严重程度。

2. 材料和方法

2.1. 真菌培养和CFSE染色

于中国微生物菌种保藏管理中心购买标准烟曲霉菌菌株(编号:3.0772)。烟曲霉菌分生孢子在37℃下于沙氏葡萄糖琼脂板上培养4天。用含少量玻璃珠的无菌水清洗平板制备分生孢子悬浮液,并经40 μm无菌尼龙网过滤,于4℃保存。

为了对烟曲霉菌分生孢子进行染色,当分生孢子生长到对数相时,我们将5 × 108 CFU烟曲霉菌分生孢子浸泡到50 µg/mL 5(6)-二醋酸羧基荧光素(CFSE;Sigma-Aldrich,美国)在37℃的3 ml PBS中浸泡30分钟。染色的分生孢子在含2%胎牛血清(FBS;Gibco,美国)的5 ml PBS中洗涤,并在1.5 mL PBS中重悬。

2.2. 角膜炎动物模型

2月龄雌性C57BL/6小鼠购自山东省济南市鹏月动物实验中心。所有小鼠均按照视力和眼科研究协会(ARVO)关于在眼科和视觉研究中使用动物的声明进行处理。我们的实验已经通过了实验动物伦理委员会的批准,批准号是:QYFYWZLL27576。实验前用裂隙灯显微镜观察所有角膜确保眼部健康。然后用8%水合氯醛麻醉小鼠。向无菌微升注射器(10 μL;Hamilton Corp,瑞士)中加入2 μL孢子悬液(3 × 107 CFU/mL),插入右眼角膜中央间质层。完成基质内注射约6小时,实验组右眼用5 μL CRAMP (150 µg/mL)局部滴眼治疗,对照组右眼同时给予PBS滴眼,左眼不给予处理作为空白对照。抽筋治疗从感染后6小时开始,然后在感染后1到5天每天3次给药。使用之前描述的疾病严重程度统计比较量表 [17] 对感染后第1、3和5天的角膜状态进行分级,采用临床评分评估角膜炎的严重程度,并于裂隙灯下拍摄小鼠眼前节照片。

2.3. 真菌负荷分析

如之前所描述的菌落计数方法 [17],我们将感染后3天不同处理的小鼠角膜组织研磨成匀浆。用PBS稀释后,在37℃下均匀的平铺于沙氏葡萄糖琼脂板上孵育30小时。拍摄琼脂板上所形成的真菌菌落并计数,以定量不同处理的小鼠角膜中存活的真菌。

2.4. 小鼠腹腔提取巨噬细胞

向C57BL/6小鼠的腹腔内注射1 ml 3%的硫代乙醇培养基溶液,5天后引颈处死小鼠并使用75%乙醇消毒过的剪刀纵向剪开小鼠的腹部皮肤,确保腹膜完整。将5 ml含10% FBS的RPMI 1640培养液,注入腹腔,按摩小鼠腹腔并冲洗。冲洗得到的细胞悬液离心10分钟(40℃, 1250 rpm),用无菌红细胞裂解液处理再离心,重悬后,计数细胞并接种到6孔板中,在37℃培养箱中孵育2小时之后得到贴壁的巨噬细胞。

2.5. 巨噬细胞刺激实验

向6孔板中的小鼠腹腔巨噬细胞中加入CRAMP (10 μg/mL;GL biochem,中国上海)或PBS预先孵育10分钟,最后加入烟曲霉菌分生孢子(1 × 107 CFU/Ml, MOI = 5)共培养。在感染后不同时间点(0小时、1小时、4小时、5小时)收取细胞进行RT-PCR,Western blot或流式细胞术实验。

2.6. 吞噬试验

如如前所述 [19],在感染前10分钟将CRAMP (10 μg/mL)或PBS加入到小鼠巨噬细胞悬液中,然后加入CFSE标记的烟曲霉菌分生孢子(MOI = 5)共培养1小时。之后将细胞悬液转移到冰中停止吞噬,用冷的FACS缓冲液(Gibco)彻底清洗巨噬细胞。流式细胞仪测定含分生孢子的巨噬细胞比例。吞噬率(%)为巨噬细胞吞噬CFSE标记的分生孢子的百分比。

2.7. 杀真菌试验

6孔板中的小鼠腹腔巨噬细胞中加入或不加入自噬抑制剂3-MA (10 mM;MedChemExpress,中国上海),2小时后再加入CRAMP (10 μg/mL)或PBS。10分钟后加入CFSE标记的烟曲霉菌分生孢子共培养1小时(MOI = 5),通过将巨噬细胞转移到冰中停止吞噬。然后用冷的PBS彻底清洗巨噬细胞。将细胞重悬后,在37℃含10% FBS的RPMI 1640温培养基中再培养5小时。含烟曲霉菌分生孢子的巨噬细胞用流式细胞仪测定。杀灭率(%) = [1 − (再培养后剩余CFSE阳性巨噬细胞的百分比/再培养开始时CFSE阳性巨噬细胞的百分比)] × 100%。

2.8. RT-PCR实验

采用总RNA提取试剂(Takara,日本)溶液从小鼠角膜和巨噬细胞中提取总RNA,并用分光光度法定量。以β-actin基因的表达为内参。用PrimeScript RT Reagent Kit (Takara)将RNA逆转录为互补cDNA。采用LightCycler 480 SYBR Green Master Mix体系进行PCR扩增:5 min 95℃;95℃ 10 s变性,60℃ 25 s退火,72℃ 25 s延伸,循环42次 [17]。反应结束后,根据内参及目的基因循环数,计算CRAMP、LAMP-3和Beclin-1 mRNA相对表达量。引物序列如表1所示。

Table 1. Primer sequences used for RT-PCR

表1. RT-PCR实验中所用的引物序列

F: Forward; R: Reverse.

2.9. Western Blot实验

在4℃下,小鼠角膜蛋白或巨噬细胞蛋白在RIPA裂解缓冲液(Solarbio,中国北京)中裂解2小时,裂解液每15分钟搅拌一次。然后在离心15分钟(4℃, 12,000 rpm)。总蛋白用双辛酸法定量,用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)分离蛋白,并转移到聚偏氟乙烯(PVDF)膜上(Solarbio)。膜浸于Western阻滞缓冲液(Beyotime,中国江苏)中封闭3小时后,与抗Beclin-1 (1:1500;Cell Signaling Technology,美国)或GAPDH (1:1000;Elabscience,美国)抗体在4℃下孵育过夜。清洗后用相应的二抗(Elabscience)孵育1小时,DAB显色。Image Lab软件对条带进行分析。

2.10. 统计学分析

两组各时间点临床评分差异采用Mann-Whitney U检验。两组间比较采用双尾Student’s t检验,三组及以上比较采用单因素方差分析。各组间采用Bonferroni检验方法进行多重比较。使用GraphPad Prism 7.0软件进行统计学分析,数据均以平均值 ± SEM表示。P < 0.05为差异有统计学意义(* P < 0.05, ** P < 0.01, *** P < 0.001)。每项实验至少独立重复3次。

3. 结果

3.1. CRAMP能减轻小鼠烟曲霉菌角膜炎

在小鼠烟曲霉菌角膜炎中,PBS处理组从第3天起临床评分明显高于CRAMP处理组(图1(a))。感染后第3天,与PBS处理组相比,CRAMP处理的小鼠角膜水肿度更轻微、溃疡面积更小、透明度更高(图1(b))、真菌负荷明显更低(图1(c)和图1(d))。表明CRAMP可以降低烟曲霉菌角膜炎小鼠的临床评分并减少真菌负荷,改善临床症状。

注:(a) CRAMP或PBS处理的小鼠角膜在感染烟曲霉菌的第1、3、5天的临床评分(n = 6组)。感染后第3天,CRAMP或PBS处理的小鼠角膜的裂隙灯照片(b)和真菌负荷(c)、(d)。

Figure 1. CRAMP alleviates the severity of Aspergillus fumigatum keratitis in mice

图1. CRAMP减轻小鼠烟曲霉菌性角膜炎的严重程度

3.2. CRAMP能通过自噬促进巨噬细胞对细胞内烟曲霉菌分生孢子的清除

流式细胞技术显示烟曲霉菌感染后1小时,CRAMP处理组巨噬细胞吞噬率与PBS处理组无统计学差异(图2(a)),说明了CRAMP并没有影响巨噬细胞对烟曲霉菌分生孢子的吞噬作用。将感染后1小时的巨噬细胞彻底洗净后,单独培养4小时,CRAMP处理组含荧光标记的分生孢子的巨噬细胞比例明显少于PBS处理组(图2(b)),说明CRAMP处理组细胞内分生孢子存活几率减少。计算获得CRAMP处理组巨噬细胞的胞内真菌杀伤率高于PBS处理组(图2(c))。与单纯CRAMP处理组相比,预先加入自噬抑制剂3-MA的CRAMP处理组含荧光标记的分生孢子的巨噬细胞比例明显上升(图2(b)),而胞内真菌杀伤率明显下降(图2(c))。这些表明CRAMP通过自噬快速清除胞内烟曲霉菌。

注:(a)烟曲霉菌感染后1小时,CRAMP或PBS处理组巨噬细胞吞噬率。将感染后1小时的巨噬细胞彻底洗净后,再进一步培养4小时,各处理组剩余含荧光标记的分生孢子的巨噬细胞比例(b)和巨噬细胞胞内真菌杀伤率(c)。

Figure 2. CRAMP can increase the intracellular fungicidal ability of macrophages

图2. CRAMP能提高巨噬细胞的胞内真菌杀伤力

3.3. CRAMP能提高烟曲霉菌感染的巨噬细胞的自噬水平

PCR的实验结果揭示了CRAMP能够促进烟曲霉菌感染的巨噬细胞自噬相关基因如LAMP3或Beclin-1 mRNA的表达(图3(a)和图3(b))。Western Blot揭示了CRAMP上调感染后的巨噬细胞Beclin-1蛋白的表达,进一步验证了CRAMP与自噬的紧密联系。

注:烟曲霉菌感染巨噬细胞后,CRAMP或PBS处理组LAMP3 mRNA (a)、Beclin-1mRNA (b)以及Beclin-1蛋白((c)~(d))的表达。

Figure 3. CRAMP can up-regulate the expression of autophagy related genes and proteins in macrophages infected with Aspergillus fumigus

图3. CRAMP能上调烟曲霉菌感染的巨噬细胞的自噬相关基因和蛋白的表达

4. 讨论

烟曲霉菌角膜炎是一种进展迅速、经常导致失明的严重疾病。真菌的生长和侵袭通常会引起过度炎症,导致严重的角膜损伤,如溃疡或穿孔 [17]。因此,限制真菌负担和炎症反应在烟熏假单胞菌角膜炎中都很重要。CRAMP是一种多功能的天然抗微生物肽,不仅能直接抑制微生物生长还能参与炎症反应调控 [19] - [26],在感染性疾病中具有重要价值。例如小鼠烟曲霉菌肺炎中,CRAMP可直接抑制烟曲霉菌菌丝生长并抑制巨噬细胞炎症因子分泌 [19]。在我们的研究中,通过建立小鼠烟曲霉菌性角膜炎模型,我们发现相比于对照组小鼠,CRAMP处理的小鼠真菌负荷明显减少,临床评分显著降低,裂隙灯照片可清楚地显示感染后第3天CRAMP处理的小鼠角膜溃疡面积更小、角膜水肿更轻、透明度更高,这表明CRAMP在烟曲霉菌角膜炎中起到了有效清除真菌和限制炎症反应的双重作用。

巨噬细胞是感染性疾病中一种重要的免疫细胞,它既能够消灭多种侵入人体的病原又能通过调节M2/M1极化等调控炎症反应 [24] [27]。而CRAMP是细菌感染中调控巨噬细胞防御力的主要因子之一 [24] [25] [28]。例如:CRAMP诱导巨噬细胞自噬或活性氧的生成上调巨噬细胞胞内细菌清除力 [24] [25] ;在细菌感染的巨噬细胞中,Cathelicidin还能抑制Toll样受体4 (TLR 4)炎症信号通路的激活,限制炎症反应 [28]。因此,我们推测CRAMP可能通过调控巨噬细胞的免疫活动抵御烟曲霉菌角膜炎。我们的研究证实了这个推测。通过用流式细胞技术定量烟曲霉菌感染的巨噬细胞的吞噬率和胞内真菌杀伤率,我们发现烟曲霉菌感染时CRAMP虽然对巨噬细胞的吞噬力没有明显的影响,但却能显著上调巨噬细胞的胞内真菌杀伤力。

据报道,巨噬细胞可诱导自噬消灭细胞内的大肠杆菌 [24] 或结核分枝杆菌 [25],因此我们假设CRAMP可能是通过诱导自噬上调巨噬细胞的胞内真菌杀伤力。与此一致的是,在我们的实验中,CRAMP诱导的胞内杀伤力的增加大部分被自噬抑制剂3-MA抵消。同时我们检测了自噬相关基因和蛋白的表达,发现LAMP-3 mRNA、Beclin-1 mRNA和Beclin-1蛋白水平也呈升高趋势,并且自噬蛋白表达升高的时间点与杀伤率强的时间点一致。这进一步验证了在烟曲霉菌性角膜炎中,CRAMP可诱导自噬提高巨噬细胞对真菌的杀伤力。因此,用CRAMP调控巨噬细胞杀真菌能力可被认为是治疗真菌感染性疾病的有效的治疗方案。但这尚缺乏CRAMP对烟曲霉菌感染的巨噬细胞炎症信号通路及炎症因子分泌影响的研究,这将在我们未来的实验中进一步探索和完善。

NOTES

*通讯作者Email: linjing_yk@126.com

参考文献

[1] Li, C., Zhao, G., Che, C., et al. (2015) The Role of LOX-1 in Innate Immunity to Aspergillus fumigatus in Corneal Epi-thelial Cells. Investigative Ophthalmology & Visual Science, 56, 3593-3603.
https://doi.org/10.1167/iovs.14-15989
[2] Li, C., Zhao, G.Q., Che, C.Y., Lin, J., Li, N., Jia, W.Y., et al. (2012) Effect of Corneal Graft Diameter on Therapeutic Penetrating Keratoplasty for Fungal Keratitis. International Journal of Ophthalmology, 5, 698-703.
[3] He, K., Yue, L.H., Zhao, G.Q., Li, C., Lin, J., Jiang, N., et al. (2016) The Role of LOX-1 on Innate Immunity against Aspergillus fumigatus Keratitis in Mice. International Journal of Ophthalmology, 9, 1245-1250.
[4] Zhang, J., Zhao, G., Lin, J., Che, C., Li, C., Jiang, N., et al. (2016) Role of PTX3 in Corneal Epithelial Innate Immunity against Aspergillus fumigatus Infection. Experimental Eye Research, 167, 152-162.
https://doi.org/10.1016/j.exer.2016.11.017
[5] Latgé, J.P. (1999) Aspergillusfumigatus and Aspergillosis. Clinical Microbiology Review, 12, 310-350.
https://doi.org/10.1128/CMR.12.2.310
[6] O’Day, D.M., Head, W.S., Robinson, R.D. and Clanton, J.A. (1986) Corneal Penetration of Topical Amphotericin Band Natamycin. Current Eye Research, 5, 877-882.
https://doi.org/10.3109/02713688609029240
[7] Peng, X.D., Zhao, G.Q., Lin, J., Jiang, N., Xu, Q., Zhu, C.C., et al. (2015) Fungus Induces the Release of IL-8 in Human Corneal Epithelial Cells, via Dectin-1-Mediated Protein Kinase C Pathways. International Journal of Ophthalmology, 8, 441-447.
[8] Kawakami, H., Inuzuka, H., Hori, N., Takahashi, N., Ishida, K., Mochizuki, K., et al. (2015) Inhibitory Effects of Antimicrobial Agents against Fusarium Species. Medical Mycology, 53, 603-611.
https://doi.org/10.1093/mmy/myv016
[9] Yilmaz, S., Ozturk, I. and Maden, A. (2007) Microbial Keratitis in West Anatolia, Turkey: A Retrospective Review. International Ophthalmology, 27, 261-268.
https://doi.org/10.1007/s10792-007-9069-2
[10] Khani, S., Seyedjavadi, S.S., Hosseini, H.M., Goudarzi, M., Valadbeigi, S., Khatami, S., et al. (2020) Effects of the Antifungal Peptide Skh-AMP1 Derived from Satureja khuzistan-ica on Cell Membrane Permeability, ROS Production, and Cell Morphology of Conidia and Hyphae of Aspergillus fu-migatus. Peptides, 123, Article ID: 170195.
https://doi.org/10.1016/j.peptides.2019.170195
[11] Amulic, B., Cazalet, C., Hayes, G.L., Metzler, K.D. and Zych-linsky, A. (2012) Neutrophil Function: From Mechanisms to Disease. Annual Review of Immunology, 30, 459-489.
https://doi.org/10.1146/annurev-immunol-020711-074942
[12] Lübow, C., Bockstiegel, J. and Weindl, G. (2020) Lysosomotropic Drugs Enhance Pro-Inflammatory Responses to IL-1β in Macrophages by Inhibiting Internalization of the IL-1 Receptor. Biochemical Pharmacology, 175, Article ID 113864.
https://doi.org/10.1016/j.bcp.2020.113864
[13] Swidergall, M., Solis, N.V., Wang, Z.P., et al. (2019) EphA2 Is a Neutrophil Receptor for Candida albicans that Stimulates Antifungal Activity during Oropharyngeal Infection. Cell Re-ports, 28, 423-433.
https://doi.org/10.1016/j.celrep.2019.06.020
[14] Yang, H., Wang, Q., Han, L., Yang, X., Zhao, W., Lyu, L., et al. (2020) Nerolidol Inhibits the LOX-1/IL-1β Signaling to Protect against the Aspergillus fumigatus Keratitis Inflammation Damage to the Cornea. International Immunopharmacology, 80, Article ID: 106118.
https://doi.org/10.1016/j.intimp.2019.106118
[15] Meresman, G.F., Götte, M. and Laschke, M.W. (2021) Plants as Source of New Therapies for Endometriosis: A Review of Preclinical and Clinical Studies. Human Reproduction Update, 27, 367-392.
https://doi.org/10.1093/humupd/dmaa039
[16] Cao, Y., Dai, B., Wang, Y., Huang, S., Xu, Y., Cao, Y., et al. (2008) In Vitro Activity of Baicalein against Candida albicans Biofilms. International Journal of Antimicrobial Agents, 32, 73-77.
https://doi.org/10.1016/j.ijantimicag.2008.01.026
[17] Jiang, N., Zhang, L., Zhao, G., et al. (2020) Indoleamine 2,3-Dioxygenase Regulates Macrophage Recruitment, Polarization and Phagocytosis in Aspergillus fumigatus Keratitis. Investigative Ophthalmology & Visual Science, 61, 28.
https://doi.org/10.1167/iovs.61.8.28
[18] Lee, H.H., Del Pozzo, J., Salamanca, S.A., et al. (2019) Reduced Phago-cytosis and Killing of Cryptococcus neoformans Biofilm-Derived Cells by J774.16 Macrophages Is Associated with Fungal Capsular Production and Surface Modification. Fungal Genetics and Biology, 132, Article ID: 103258.
https://doi.org/10.1016/j.fgb.2019.103258
[19] Luo, X.-L., Li, J.-X., Huang, H.-R., et al. (2019) LL37 Inhibits Aspergillus fumigatus Infection via Directly Binding to the Fungus and Preventing Excessive Inflammation. Frontiers in Immunology, 10, 283.
https://doi.org/10.3389/fimmu.2019.00283
[20] De Ullivarri, M.F., Arbulu, S., Garcia-Gutierrez, E. and Cotter, P.D. (2020) Antifungal Peptides as Therapeutic Agents. Frontiers in Cellular and Infection Microbiology, 10, 105.
https://doi.org/10.3389/fcimb.2020.00105
[21] De Brucker, K., Delattin, N., Robijns, S., et al. (2014) Derivatives of the Mouse Cathelicidin-Related Antimicrobial Peptide (CRAMP) Inhibit Fungal and Bacterial Biofilm Formation. An-timicrobial Agents and Chemotherapy, 8, 5395-5404.
https://doi.org/10.1128/AAC.03045-14
[22] Kolar, S.S., Baidouri, H. and McDermott, A.M. (2017) Role of Pattern Recognition Receptors in the Modulation of Antimicrobial Peptide Expression in the Corneal Epithelial Innate Response to F. solani. Investigative Ophthalmology & Visual Science, 58, 2463-2472.
https://doi.org/10.1167/iovs.16-20658
[23] Lim, R., Barker, G. and Lappas, M. (2015) Human Cathelicidin Antimicrobial Protein 18 (hCAP18/LL-37) Is Increased in Foetal Membranes and Myometrium after Spon-taneous Labour and Delivery. Journal of Reproductive Immunology, 107, 31-42.
https://doi.org/10.1016/j.jri.2014.10.002
[24] Chen, K.Q., Yoshimura, T., Gong, W.H., et al. (2021) Requirement of CRAMP for Mouse Macrophages to Eliminate Phagocytosed E. coli through an Autophagy Pathway. Journal of Cell Science, 134, jcs252148.
https://doi.org/10.1242/jcs.252148
[25] Torres-Juarez, F., Cardenas-Vargas, A., Montoya-Rosales, A., et al. (2015) LL-37 Immunomodulatory Activity during Mycobacterium tuberculosis Infection in Macrophages. Infection and Immun-ity, 83, 4495-4503.
https://doi.org/10.1128/IAI.00936-15
[26] Rapala-Kozik, M., Bochenska, O., Zawrotniak, M., et al. (2015) Inacti-vation of the Antifungal and Immunomodulatory Properties of Human Cathelicidin LL-37 by Aspartic Proteases Pro-duced by the Pathogenic Yeast Candida albicans. Infection and Immunity, 83, 2518-2530.
https://doi.org/10.1128/IAI.00023-15
[27] Peiser, L. and Gordon, S. (2001) The Function of Scavenger Receptors Expressed by Macrophages and Their Role in the Regulation of Inflammation. Microbes and Infection, 3, 149-159.
https://doi.org/10.1016/S1286-4579(00)01362-9
[28] Vandermeer, T.J., Menconi, M.J., Zhuang, J., et al. (1995) Protective Effects of a Novel 32-Amino Acid C-Terminal Fragment of CAP18 in Endotoxemic Pigs. Surgery, 117, 656-662.
https://doi.org/10.1016/S0039-6060(95)80009-3