植物叶片水力学指标中的争议
Disputes on Hydraulic Indexes of Plant Leaves
DOI: 10.12677/BR.2023.122008, PDF, HTML, XML, 下载: 236  浏览: 428 
作者: 任知洋:浙江师范大学化学与生命科学学院,浙江 金华
关键词: 叶片水力学性状压力–体积曲线膨压丧失点Leaf Hydraulic Properties Pressure-Volumn Curve Leaf Water Potential at Turgor Loss
摘要: 全球生态系统正面临着干旱加剧的挑战,提升关于量化植物对干旱耐受性的理论与实践在目前显得尤为重要。膨压丧失点(πtlp)被视为决定植物干旱耐受性的关键生理因素,然而膨压丧失点的调节基础理论一直存在着争议;此外,叶片膨压丧失时的相对含水量与细胞壁弹性模量在植物耐旱性中起到何种作用仍不明确。在全球气候变化的背景下,对叶片水力学性状调节背后机理的澄清十分重要。
Abstract: Increasing drought is one of the most critical challenges facing ecosystems worldwide, and improved theories and practices are needed for the quantification of species tolerances. Leaf water potential at turgor loss (πtlp) is classically recognised as a major physiological determinant of plant water stress response. However, the basic theory of adjustment πtlp has been controversial. In addition, the role of relative water content at turgor loss point and cell wall elastic modulus in plant drought tolerance is still unclear. In the context of global climate change, it is important to clarify the mechanism behind the regulation of leaf hydraulic properties.
文章引用:任知洋. 植物叶片水力学指标中的争议[J]. 植物学研究, 2023, 12(2): 56-59. https://doi.org/10.12677/BR.2023.122008

1. 背景介绍

根据生态学家预测,气候变化将增加全球生态系统干旱发生的频率与严重程度 [1] 。植物物种耐旱性的不同不仅决定目前的物种分布,同时也决定物种在未来气候背景下的生存前景。预测气候变化对植物生理反应与生存的影响是目前植物科学与生态学面临的难题 [2] 。植物水分胁迫下叶片膨压的维持尤为重要,其对细胞结构的完整性、生理代谢以及植物整体的生理表现有着极大的影响 [3] ,因此膨压丧失时的叶片水势(leaf water potential at turgor loss, πtlp)即膨压丧失点在近几十年来一直被用于植物体生理耐旱性的评估 [4] [5] 。拥有较低πtlp的植物可以在土壤含水量较低时维持气孔导度、水分运输以及光合气体交换。

膨压丧失点数据的测量通常从失水叶片水势(Ψleaf)与叶片含水量的关系图中得到,即叶片压力–体积曲线(pressure-volume curve, PV);同时,从中可计算得到其它叶片水力学指标:膨压丧失点时的相对含水量(the relative water content at πtlp, RWCtlp)、饱和渗透势(osmotic potential at full hydration, πo)、叶片水容(leaf capacitance, Cleaf)、细胞壁弹性模量(bulk tissue modulus of elasticity, ε)、质外体含水量(apoplastic water fraction, af)等,均与植物对干旱的耐受有关 [6] ,而在这些叶片水力学性状中,πtlp被认为是最重要的指标。虽然通过数十年的研究改进PV曲线的分析并阐明从中得到的水分生理指标对应的生物学意义,但关于膨压丧失点调节的机理以及细胞水平上的原理仍不明确,此外πtlp与上述指标间的相互关系一直困扰着生理学与生态学的研究者 [7] ,以下总结近年来关于叶片水力学性状的有关争论。

2. 膨压丧失点的调节机理

研究发现植物叶片可以调节πtlp以适应不同环境,但目前对于πtlp与其它PV性状的相互关系仍没有明确结论。植物通过降低其πtlp来增加对干旱的耐受性,而πtlp的增加一般通过以下三种途径:细胞内积累可溶性物质(降低πo);重新分配叶片水分,增加质外体水分含量(增加af);改变细胞壁的硬度(降低ε),即渗透调节、质外体水分调节以及细胞壁调节。

渗透调节是指叶片细胞主动积累可溶性物质、增加细胞质浓度,从而降低细胞渗透压,增强细胞的吸水能力。在许多物种中都能观察到渗透调节,以维持在干旱期间的生存与生长 [8] [9] 。对于PV曲线的理论分析,一般认为当πoaf固定时ε的增加会使RWCtlp的增加,间接导致πtlp升高(变得不耐旱);而af的增加会导致ε的降低,使πtlp变得更负 [7] 。但往往在渗透调节的同时也存在质外体水分调节与细胞壁调节 [10] ,且在不同的研究中存在不同的结果,在一些研究中,afε随干旱的增加而上升 [11] ,而在另一些情况下,则出现下降 [12] 。正因为πoafε往往同时变化,因此这些参数在πtlp调节中的原理与相对重要性仍不清楚。

3. πtlpRWCtlp在叶片水分生理中的重要性

尽管大多数研究认为,较低的πtlp有利于植物在干旱环境下生存,但也有相反的观点认为,较高的πtlp能提高植株的耐旱性,理由是较高的πtlp使叶片在干旱胁迫下更快得失去膨压,并随着叶片水势的下降,迅速关闭气孔以维持较高的相对含水量(RWCtlp)。事实上,有的研究者认为,维持叶肉细胞的含水量比维持叶片膨压更为重要,因为叶片细胞的过度失水会引起细胞体积的收缩、细胞壁结构的破坏以及细胞内离子浓度增加导致的渗透胁迫。此外,当细胞含水量低于饱和含水量的75%时,会严重抑制ATP、RuBP以及蛋白质的合成 [13] ,因此在选取植物抗旱性指标时,人们经常在πtlpRWCtlp之间出现争论。

4. 细胞壁弹性模量在植物抗旱中的作用

在地中海和半干旱沙漠中,植物趋同进化为具有坚硬细胞壁的硬叶植物,故细胞壁的坚硬程度被认为与植物的抗旱能力有关,虽然硬叶植物有多种定义方式,例如较高的单位叶面积干中(LMA)以及较高的木质素含量,而在植物水分生理学中,一般以细胞壁弹性模量(ε)来表征细胞壁的特性。ε、πtlp以及植物耐旱性之间的关系被称为是植物生态学中最古老的争议之一,并引发众多的假说:1) 较高的ε导致叶片受到干旱胁迫后叶片水势迅速下降,从而允许植物从土壤中持续吸收水分 [14] ;2) 与上述理论推导结果相同,认为更大的ε会促使πtlp变得更负,更有利于植物在干旱下的存活 [15] ;3) 相反有研究认为,更大的ε会导致πtlp变得更高,从而导致叶片气孔迅速关闭,维持较高的相对含水量有利于生理反应的正常进行 [16] ;4) 较高的ε即较大的细胞壁硬度可以为细胞提供足够的机械支撑,以防止细胞在复水时膨压过大导致细胞的破裂;5) 较高的ε可以约束πtlp非常低时细胞体积的收缩,从而维持较高的RWCtlp [17] ;6) 最后,认为ε在植物忍受干旱胁迫中并不起到直接的作用,而是通过延长叶片寿命来维持植物的碳平衡与营养平衡 [18] 。事实上,也有许多ε较低的软叶物种生存在干旱地区,但据目前的研究并没有得到明确的结论。

5. 总结

早在上世纪六七十年代就已开始通过构建植物叶片的压力–体积曲线来评估不同物种的叶片水力学性状,并通过数十年的研究改进PV曲线的分析并阐明从中得到的水分生理指标对应的生物学意义 [19] 。但实际的测量结果有时支持理论分析的结果,而有时与理论截然相反,想要完全澄清上述争议并不简单,可能需要长时间的研究才能得出结论。以下对未来的研究提供一些参考建议:首先,研究者在全球不同的生态环境内选取物种构建PV曲线时,需要有相同且正确的操作方法,因此需要在技术上进行不断的升级与统一;例如有研究表明,在构建PV曲线前进行叶片的复水会严重改变叶片的πtlp,因此是否复水成为PV技术中需要考虑的问题 [20] ,只有在相同标准下得到的叶片水力学参数才能进行后续问题的讨论。其次,在不同生境下测得的水力学参数需进行仔细分析,在不同的生境下相同指标的改变可能会产生不同的结果,并需要与理论分析相结合。最后,新颖的测量技术与测量手段会有助于上述问题的解决,例如量化指标间的关系后,再来探究各个指标间的相关关系;使用压力探针技术对细胞膨压进行更精细的测量等。

参考文献

[1] Sheffield, J. and Wood, E.F. (2008) Global Trends and Variability in Soil Moisture and Drought Characteristics, 1950-2000, from Observation-Driven Simulations of the Terrestrial Hydrologic Cycle. Journal of Climate, 21, 432-458.
https://doi.org/10.1175/2007JCLI1822.1
[2] Grierson, C.S., Barnes, S.R., Chase, M.W., et al. (2011) One Hundred Important Questions Facing Plant Science Research. New Phytologist, 192, 6-12.
https://doi.org/10.1111/j.1469-8137.2011.03859.x
[3] Tyree, M.T. and Hammel, H.T. (1972) The Measurement of the Turgor Pressure and the Water Relations of Plants by the Pressure-Bomb Technique. Journal of Experimental Botany, 23, 267-282.
https://doi.org/10.1093/jxb/23.1.267
[4] Brodribb, T.J. and Holbrook, N.M. (2003) Stomatal Closure during Leaf Dehydration, Correlation with Other Leaf Physiological Traits. Plant Physiology, 132, 2166-2173.
https://doi.org/10.1104/pp.103.023879
[5] Blackman, C.J., Brodribb, T.J. and Jordan, G.J. (2010) Leaf Hydraulic Vulnerability Is Related to Conduit Dimensions and Drought Resistance across a Diverse Range of Woody Angiosperms. New Phytologist, 188, 1113-1123.
https://doi.org/10.1111/j.1469-8137.2010.03439.x
[6] Baltzer, J.L., Davies, S.J., Bunyavejchewin, S., et al. (2008) The Role of Desiccation Tolerance in Determining Tree Species Distributions along the Malay-Thai Peninsula. Functional Ecology, 22, 221-231.
https://doi.org/10.1111/j.1365-2435.2007.01374.x
[7] Bartlett, M.K., Scoffoni, C. and Sack, L. (2012) The Determinants of Leaf Turgor Loss Point and Prediction of Drought Tolerance of Species and Biomes: A Global Meta-Analysis: Drivers of Plant Drought Tolerance. Ecology Letters, 15, 393-405.
https://doi.org/10.1111/j.1461-0248.2012.01751.x
[8] González, A., Martín, I. and Ayerbe, L. (1999) Barley Yield in Water-Stress Conditions. Field Crops Research, 62, 23-34.
https://doi.org/10.1016/S0378-4290(99)00002-7
[9] Merchant, A., Callister, A., Arndt, S., et al. (2007) Contrasting Physiological Responses of Six Eucalyptus Species to Water Deficit. Annals of Botany, 100, 1507-1515.
https://doi.org/10.1093/aob/mcm234
[10] Moore, J.P., Vicré-Gibouin, M., Farrant, J.M., et al. (2008) Adaptations of Higher Plant Cell Walls to Water Loss: Drought vs Desiccation. Physiologia Plantarum, 134, 237-245.
https://doi.org/10.1111/j.1399-3054.2008.01134.x
[11] Chimenti, C.A. and Hall, A.J. (1994) Responses to Water Stress of Apoplastic Water Fraction and Bulk Modulus of Elasticity in Sunflower (Helianthus annuus L.) Genotypes of Contrasting Capacity for Osmotic Adjustment. Plant and Soil, 166, 101-107.
https://doi.org/10.1007/BF02185486
[12] Kozlowski, T.T. and Pallardy, S.G. (2002) Acclimation and Adaptive Responses of Woody Plants to Environmental Stresses. The Botanical Review, 68, 270-334.
https://doi.org/10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2
[13] Lawlor, D.W. and Cornic, G. (2002) Photosynthetic Carbon Assimilation and Associated Metabolism in Relation to Water Deficits in Higher Plants. Plant, Cell & Environment, 25, 275-294.
https://doi.org/10.1046/j.0016-8025.2001.00814.x
[14] Bowman, W.D. and Roberts, S.W. (1985) Seasonal Changes in Tissue Elasticity in Chaparral Shrubs. Physiologia Plantarum, 65, 233-236.
https://doi.org/10.1111/j.1399-3054.1985.tb02388.x
[15] Lenz, T.I., Wright, I.J. and Westoby, M. (2006) Interrelations among Pressure-Volume Curve Traits across Species and Water Availability Gradients. Physiologia Plantarum, 127, 423-433.
https://doi.org/10.1111/j.1399-3054.2006.00680.x
[16] Read, J., Sanson, G.D., Garine-Wichatitsky, M.D., et al. (2006) Sclerophylly in Two Contrasting Tropical Environments: Low Nutrients vs. Low Rainfall. American Journal of Botany, 93, 1601-1614.
https://doi.org/10.3732/ajb.93.11.1601
[17] Cheung, Y.N.S., Tyree, M.T. and Dainty, J. (1975) Water Relations Parameters on Single Leaves Obtained in a Pressure Bomb and Some Ecological Interpretations. Canadian Journal of Botany, 53, 1342-1346.
https://doi.org/10.1139/b75-162
[18] Sack, L. (2004) Responses of Temperate Woody Seedlings to Shade and Drought: Do Trade-Offs Limit Potential Niche Differentiation? Oikos, 107, 110-127.
https://doi.org/10.1111/j.0030-1299.2004.13184.x
[19] Tyree, M.T. and Zimmermann, M.H. (2002) Hydraulic Architecture of Whole Plants and Plant Performance. In: Tyree, M.T. and Zimmermann, M.H., Eds., Xylem Structure and the Ascent of Sap, Springer, Berlin, 175-214. http://link.springer.com/chapter/10.1007/978-3-662-04931-0_6
https://doi.org/10.1007/978-3-662-04931-0_6
[20] Meinzer, F.C., Woodruff, D.R., Marias, D.E., et al. (2014) Dynamics of Leaf Water Relations Components in Co-Occurring Iso- and Anisohydric Conifer Species: Dynamics of Leaf Water Relations Components. Plant, Cell & Environment, 37, 2577-2586.
https://doi.org/10.1111/pce.12327