胰腺癌免疫治疗的研究进展
Research Advances in Immunotherapy for Pancreatic Cancer
DOI: 10.12677/ACM.2023.133493, PDF, HTML, XML, 下载: 372  浏览: 628 
作者: 黄英杰, 尹志洁, 韩 玮*:新疆医科大学第一附属医院消化血管外科中心胰腺外科,新疆 乌鲁木齐
关键词: 胰腺癌免疫疗法免疫检查点抑制剂Pancreatic Cancer Immunotherapy Immune Checkpoint Inhibitors
摘要: 胰腺癌是一种恶性程度高、发病率高、死亡率高的肿瘤。免疫治疗是胰腺癌除手术和化疗外的另一种重要治疗方法,但由于胰腺癌免疫抑制微环境具有高度异质性,对免疫治疗提出了挑战。本文综述了目前胰腺癌免疫治疗的研究进展,提出胰腺癌免疫治疗发展的前景和主要方向。
Abstract: Pancreatic cancer is a tumor with a high degree of malignancy, morbidity and mortality. Immuno-therapy is another important treatment for pancreatic cancer in addition to surgery and chemo-therapy, but the immunosuppressive microenvironment of pancreatic cancer is highly heteroge-neous and poses a challenge to immunotherapy. This article reviews the current research progress of immunotherapy for pancreatic cancer and proposes the prospects and main directions for the de-velopment of immunotherapy for pancreatic cancer.
文章引用:黄英杰, 尹志洁, 韩玮. 胰腺癌免疫治疗的研究进展[J]. 临床医学进展, 2023, 13(3): 3457-3462. https://doi.org/10.12677/ACM.2023.133493

1. 引言

胰腺癌是一种侵袭性极强的消化道恶性肿瘤,预后极差,5年生存率仅为6%~7% [1] 。近年来胰腺癌的发病率呈上升趋势,预计至2030年,胰腺癌将成为全球癌症相关死亡的第二大常见原因 [2] 。手术和辅助化疗可以显著改善生存时间,但仅适用于少数根治性切除的患者 [3] 。由于缺乏有效的早期诊断方法和疾病表现出的非特异性症状,超过80%的患者确诊后已发展至局部晚期或远处阶段 [4] 。针对这类患者的治疗,目前主要采用包含吉西他滨/白蛋白紫杉醇或FOLFIRINOX (亚叶酸、5-氟尿嘧啶、伊立替康和奥沙利铂)的全身化疗方案,但总体效果欠佳 [5] 。

免疫疗法是通过诱导、增强或抑制免疫反应来治疗疾病。癌症免疫治疗的目标是通过克服肿瘤逃避和抑制免疫反应的机制,增强或恢复免疫系统检测和摧毁癌细胞的能力。近年来,肿瘤免疫疗法在一些实体肿瘤的晚期治疗中起到革命性的作用,但对于胰腺癌的临床治疗效果有限,这可能是由于纤维化、缺氧和免疫抑制的特征以及肿瘤微环境的复杂变化 [6] 。尽管如此,目前研究显示胰腺癌患者在接受免疫治疗后可以激发局部和全身免疫反应,这表明其具有激发抗肿瘤的作用,同时为多模式联合治疗肿瘤提供更多的机会和策略 [7] 。目前胰腺癌的免疫疗法主要集中在免疫检查点阻断、疫苗接种、溶瘤病毒和过继免疫等方面 [8] 。与此同时,临床前动物实验及早期临床数据为免疫治疗建立了重要的研究基础,多模式联合疗法可以更好地诱导免疫反应,提高胰腺癌免疫治疗的效果 [9] 。

2. 免疫治疗

2.1. 免疫检查点抑制剂

免疫检查点抑制剂(immune checkpoint inhibitors, ICIs)的出现是肿瘤免疫治疗领域的革命性里程碑,ICIs已在多种癌症中产生了显著的抗肿瘤活性 [10] 。肿瘤细胞逃避免疫监测,通过激活免疫检测点通路和抑制抗肿瘤免疫机制促进肿瘤的发生发展,而ICIs则通过阻断共抑制信号通路和促进免疫介导的肿瘤细胞消除来重新激活抗肿瘤免疫反应 [11] 。ICIs主要包括程序性死亡蛋白-1/程序性死亡蛋白配体-1 (PD-1/PD-L1)抗体、细胞毒性T淋巴细胞抗原-4 (CTLA-4)抗体等 [12] 。针对PD-1 (纳武单抗、派姆单抗和匹地利珠单抗)、PD-L1 (阿替立珠单抗)和CTLA-4 (伊匹单抗和替西木单抗)的免疫治疗已广泛应用于转移性黑色素瘤、肺癌、头颈部癌、肾细胞癌、泌尿道上皮癌、霍奇金淋巴瘤、宫颈癌和其他癌症的免疫治疗 [13] 。

在胰腺癌的治疗中,多种针对ICIs的药物正在进行临床试验研究 [14] 。PD-1在实体肿瘤中的树突状细胞和巨噬细胞中高表达,PD-L1在胰腺癌中的表达可用于评估肿瘤的增殖和判断肿瘤侵袭性 [15] 。阻断PD-L1可以显著增强免疫应答,耗竭的肿瘤特异性效应T细胞然后可以被重新活化以增强其功能 [16] ,敲除PD-L1可以抑制胰腺癌细胞的增殖 [17] 。阻断PD-1-PD-L1信号通路,肿瘤中PD-L1和PD-L2表达升高并显示与胰腺癌预后不良显著相关 [18] 。有研究显示,dectn-1和galectin-9两种蛋白在胰腺癌中异常高表达,他们的相互作用可以帮助胰腺癌细胞逃脱免疫攻击。胰腺癌对抗PD-1抗体不敏感,但当小鼠同时给予抗PD-1和抗galectin-9抗体时,会发生协同效应,小鼠肿瘤体积比单独使用任意单一抗体治疗的小鼠肿瘤体积大50%以上 [19] 。目前一些CTLA-4抗体也已经在临床试验中进行了测试,有研究证明伊匹单抗与CTLA-4结合,阻断T细胞的抑制作用,产生细胞毒性T淋巴细胞,增强抗癌免疫应答 [20] 。胰腺癌的小鼠动物模型显示,当CTLA-4被抑制时,它可以控制肿瘤生长并缩小肿瘤 [21] 。有临床研究显示,伊匹单抗联合粒细胞–巨噬细胞集落刺激因子疫苗(GVAX)可产生协同效应。在一项研究中,25名胰腺癌患者被随机分配接受GVAX疫苗加伊匹单抗,或单独使用伊匹单抗,27%接受联合治疗的患者中观察到生存期延长。该联合疗法在胰腺癌治疗中值得进一步研究 [22] 。在一项伊匹单抗的II期临床试验中,20例转移性胰腺癌患者和7例局部晚期胰腺癌患者接受了伊匹单抗治疗,但疾病进展无明显改善,但1例患者发生了延迟的肿瘤消退,这表明伊匹单抗单独治疗晚期胰腺癌无效 [23] 。替西木单抗也能阻断CTLA-4与其配体的结合,而联合吉西他滨则显示可改善胰腺癌患者的生存期延长 [24] 。免疫检查点抑制剂在胰腺癌患者中的作用差异可能是由于肿瘤微环境的不同,对检查点抑制剂治疗敏感的肿瘤表现含有大量浸润的CD8+ T细胞,因此针对联合免疫微环境的检查点治疗是免疫治疗进一步研究的方向 [25] 。

2.2. 疫苗

肿瘤治疗性疫苗通过主动免疫放大肿瘤患者的抗肿瘤免疫反应,招募患者的免疫细胞来对抗癌症,在肿瘤免疫治疗中发挥着重要作用 [26] 。肿瘤治疗性疫苗的基本原理是将肿瘤细胞、肿瘤相关蛋白或多肽、表达肿瘤抗原的基因等多种形式的肿瘤抗原引入患者体内,克服肿瘤引起的免疫抑制状态,增强免疫原性,诱发人体免疫反应,从而控制肿瘤生长 [27] 。

GVAX是一种由两个分泌GM-CSF的辐照胰腺癌细胞系组成,在动物实验中发现,在未经治疗的胰腺癌模型中,胰腺癌细胞中PD-L1的表达水平较低,但在接受GVAX的患者中,PD-L1的表达水平上调。此外,PD-1单药治疗和GVAX单药治疗胰腺癌小鼠的总生存期为50天和59天,GVAX和PD-1抗体抑制剂的联合使用显著提高了胰腺癌小鼠的生存率(81.5天) [28] 。因此,PD-1/PD-L1抑制剂联合化疗和疫苗是未来胰腺癌治疗的研究方向。在一项临床试验中,30名晚期胰腺癌患者接受了伊匹单抗加GVAX或伊匹单抗单药治疗,总生存期(OS)无显著差异(5.7个月对3.6个月) [29] 。胰腺癌疫苗algenpantucel-L是由转染小鼠α-1,3-半乳糖基转移酶的胰腺癌细胞株制成的,可诱导超急性免疫排斥反应,通过特异性免疫发挥抗肿瘤作用,但在III期临床试验中,它未能显著提高胰腺癌患者的生存率 [30] 。WT-1在肿瘤生长、侵袭、血管生成和转移过程中起着至关重要的作用,在大约75%的PDAC患者中观察到过表达 [31] 。树突状细胞是机体中抗原呈递能力最强的专业抗原呈递细胞,它可以诱导细胞毒性T细胞的生成,介导特异性抗肿瘤细胞免疫。在一项32例晚期胰腺癌患者的临床试验中,WT1肽树突状细胞疫苗联合吉西他滨治疗,中位OS为8.1个月,并未显示出显著疗效 [32] 。生理条件下,VEGF在胚胎及正常生长和组织修复过程中都是血管生成必要条件。在癌症中,由于VEGF的异常表达导致这一过程失去调控,导致血管结构异常,从而促进肿瘤生长、侵袭和扩散,同时阻碍淋巴细胞的正常归巢和外渗 [33] 。有研究报道一项II/III期随机对照试验的结果,其中153例放化疗局晚期和远处转移的胰腺癌患者被纳入,并分别行皮下注射VEGFR2肽疫苗联合吉西他滨(n = 100)或安慰剂联合吉西他滨(n = 53)治疗。结果显示,两个治疗组的OS相当(8.4个月和8.5个月,p = 0.9) [34] 。

2.3. 溶瘤病毒

溶瘤病毒(OVs)是一种经过改良的治疗药物,可选择性地感染肿瘤细胞并在肿瘤细胞中自我复制,具有溶瘤作用 [35] 。OVs具有特异性强、毒性低、耐药性低等优点,它们可以诱导炎症级联反应并参与适应性免疫反应。OVs的抗肿瘤作用不仅依赖于肿瘤溶解作用,还与病毒诱导的抗肿瘤免疫有关。OVs作用于肿瘤后,可以释放肿瘤抗原,上调趋化因子,从而招募淋巴细胞进行浸润 [36] 。在一项II期临床试验中,76名患者随机接受溶瘤病毒pelareorep联合化疗(卡铂和紫杉醇)或单独化疗,中位OS无显著差异(7.3个月和8.8个月) [37] 。尽管如此,添加pelareorep确实导致了明显的免疫反应,增加了促炎细胞因子、Th1 CD4+和CD8+ T细胞的表达水平,同时也增强了调节性T细胞的数量。另一项临床研究者,在10例局晚期胰腺癌患者中使用intratumoralHF-10 (一种天然溶瘤HSV-1病毒)联合厄洛替尼(抗egfr抗体)和吉西他滨,获得了15.5个月的生存期 [38] 。

2.4. 过继免疫疗法

过继免疫治疗是将具有抗肿瘤活性的免疫细胞转移到患者体内以介导肿瘤消退的方法。过继免疫细胞被刺激并通过暴露于肿瘤细胞或抗原或在实验室通过人工工程扩增,然后注入患者体内 [39] 。嵌合抗原受体(CAR) T细胞疗法是一种过继细胞疗法。T细胞通过单采法从患者或捐赠者身上收集,然后进行扩增和基因修饰,以表达识别肿瘤细胞的CAR。最后,CAR-T细胞被注射到患者体内,以靶向并杀死肿瘤细胞。CAR-T可以直接识别肿瘤细胞表面的抗原,不受HLA分子的限制。靶向特异性CAR-T细胞被设计用于靶向高表达的胰腺癌肿瘤相关抗原,使治疗更具特异性。CAR-T细胞在治疗实体瘤方面存在困难。由于胰腺癌肿瘤免疫微环境复杂,各种抑制性免疫细胞是CAR-T细胞难以治疗实体瘤的主要障碍。为了通过肿瘤细胞或抗原刺激T细胞,以往的研究诱导MUC1肽脉冲的树突状细胞(MUC1-DC),通过MUC1-DC激活患者外周血单个核细胞中的T淋巴细胞。之后,被刺激的T细胞被重新注入患者体内,转移患者的症状得到缓解 [40] 。CAR-T细胞疗法被广泛研究,在淋巴瘤治疗中取得了巨大的成功。癌胚抗原(CEA)和MUC1在胰腺癌细胞膜上过表达,并被选为CAR-T细胞的靶点 [41] 。

3. 总结

尽管胰腺癌的治疗取得了较大进展,但它仍然是最致命的消化道癌症之一。随着分子分析技术的出现和药物开发新靶点的识别,一些肿瘤部位的治疗效果有了显著改善。免疫治疗是癌症治疗研究的热点。胰腺癌免疫治疗目前的研究效果非常有限,这与胰腺癌独特的生物学行为和免疫微环境有关。胰腺癌的微环境通常包括免疫抑制细胞增多,免疫细胞失活,肿瘤突变负荷低。个体化、联合化、精准化的免疫治疗,仍是免疫治疗亟待解决的关键问题。免疫疗法的联合应用将成为胰腺癌治疗极具希望的研究,需要更多的临床前和临床研究来证实其安全性和有效性。

NOTES

*通讯作者。

参考文献

[1] Sebastiano, M.R., Pozzato, C., Saliakoura, M., et al. (2020) ACSL3-PAI-1 Signaling Axis Mediates Tumor-Stroma Cross-Talk Promoting Pancreatic Cancer Progression. Science Advances, 6, eabb9200.
https://doi.org/10.1126/sciadv.abb9200
[2] Liu, L., Huang, X., Shi, F., et al. (2022) Combination Therapy for Pancreatic Cancer: Anti-PD-(L)1-Based Strategy. Journal of Experimental & Clinical Cancer Research, 41, Article No. 56.
https://doi.org/10.1186/s13046-022-02273-w
[3] Conroy, T., Hammel, P., Hebbar, M., et al. (2018) FOLFIRINOX or Gemcitabine as Adjuvant Therapy for Pancreatic Cancer. New England Journal of Medicine, 379, 2395-2406.
https://doi.org/10.1056/NEJMoa1809775
[4] Bengtsson, A., Andersson, R. and Ansari, D. (2020) The Actual 5-Year Survivors of Pancreatic Ductal Adenocarcinoma Based on Real-World Data. Scientific Reports, 10, Article No. 16425.
https://doi.org/10.1038/s41598-020-73525-y
[5] Timmer, F.E.F., Geboers, B., Nieuwenhuizen, S., et al. (2021) Pancreatic Cancer and Immunotherapy: A Clinical Overview. Cancers, 13, Article No. 4138.
https://doi.org/10.3390/cancers13164138
[6] Huber, M., Brehm, C.U., Gress, T.M., et al. (2020) The Immune Microenvironment in Pancreatic Cancer. International Journal of Molecular Sciences, 21, Article No. 7307.
https://doi.org/10.3390/ijms21197307
[7] Chen, J., Guo, X.-Z. and Qi, X.-S. (2017) Clinical Outcomes of Spe-cific Immunotherapy in Advanced Pancreatic Cancer: A Systematic Review and Meta-Analysis. Journal of Immunology Research, 2017, Article ID: 8282391.
https://doi.org/10.1155/2017/8282391
[8] Principe, D.R., Korc, M., Kamath, S.D., Munshi, H.G. and Rana, A. (2021) Trials and Tribulations of Pancreatic Cancer Immunotherapy. Cancer Letters, 504, 1-14.
https://doi.org/10.1016/j.canlet.2021.01.031
[9] Bear, A.S., Vonderheide, R.H. and O’Hara, M .H. (2020) Chal-lenges and Opportunities for Pancreatic Cancer Immunotherapy. Cancer Cell, 38, 788-802.
https://doi.org/10.1016/j.ccell.2020.08.004
[10] Darvin, P., Toor, S.M., Sasidharan Nair, V. and Elkord, E. (2018) Immune Checkpoint Inhibitors: Recent Progress and Potential Biomarkers. Experimental & Molecular Medicine, 50, 1-11.
https://doi.org/10.1038/s12276-018-0191-1
[11] Khasraw, M., Reardon, D.A., Weller, M. and Sampson, J.H. (2020) PD-1 Inhibitors: Do They Have a Future in the Treatment of Glioblastoma? Clinical Cancer Research, 26, 5287-5296.
https://doi.org/10.1158/1078-0432.CCR-20-1135
[12] Wei, S.C., Duffy, C.R. and Allison, J.P. (2018) Funda-mental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discovery, 8, 1069-1086.
https://doi.org/10.1158/2159-8290.CD-18-0367
[13] Ruiz-Bañobre, J. and Goel, A. (2019) DNA Mismatch Repair Deficiency and Immune Checkpoint Inhibitors in Gastrointestinal Cancers. Gastroenterology, 156, 890-903.
https://doi.org/10.1053/j.gastro.2018.11.071
[14] Henriksen, A., Dyhl-Polk, A., Chen, I. and Nielsen, D. (2019) Checkpoint Inhibitors in Pancreatic Cancer. Cancer Treatment Reviews, 78, 17-30.
https://doi.org/10.1016/j.ctrv.2019.06.005
[15] Feng, M., Xiong, G., Cao, Z., et al. (2017) PD-1/PD-L1 and Im-munotherapy for Pancreatic Cancer. Cancer Letters, 407, 57-65.
https://doi.org/10.1016/j.canlet.2017.08.006
[16] Messenheimer, D.J., Jensen, S.M., Afentoulis, M.E., et al. (2017) Timing of PD-1 Blockade Is Critical to Effective Combination Immunotherapy with Anti-OX40. Clinical Cancer Research, 23, 6165-6177.
https://doi.org/10.1158/1078-0432.CCR-16-2677
[17] Mace, T.A., Shakya, R., Pitarresi, J.R., et al. (2018) IL-6 and PD-L1 Antibody Blockade Combination Therapy Reduces Tumour Progression in Murine Models of Pancreatic Cancer. Gut, 67, 320-332.
https://doi.org/10.1136/gutjnl-2016-311585
[18] Gao, Y., Li, S., Xu, D., et al. (2017) Prognostic Value of Pro-grammed Death-1, Programmed Death-Ligand 1, Programmed Death-Ligand 2 Expression, and CD8(+) T Cell Density in Primary Tumors and Metastatic Lymph Nodes From Patients with Stage T1-4N + M0 Gastric Adenocarcinoma. Chinese Journal of Cancer, 36, Article No. 61.
https://doi.org/10.1186/s40880-017-0226-3
[19] Daley, D., Mani, V., Mohan, N., et al. (2017) Dectin 1 Activation on Macrophages by Galectin 9 Promotes Pancreatic Carcinoma and Peritumoral Immune Tolerance. Nature Medicine, 23, 556-567.
https://doi.org/10.1038/nm.4314
[20] Lheureux, S., Butler, M.O., Clarke, B., et al. (2018) Association of Ipilimumab with Safety and Antitumor Activity in Women with Metastatic or Recurrent Human Papillomavirus-Related Cervical Carcinoma. JAMA Oncology, 4, e173776.
https://doi.org/10.1001/jamaoncol.2017.3776
[21] Huang, Y., Fan, H., Li, N. and Du, J. (2019) Risk of Im-mune-Related Pneumonitis for PD1/PD-L1 Inhibitors: Systematic Review and Network Meta-Analysis. Cancer Medicine, 8, 2664-2674.
https://doi.org/10.1002/cam4.2104
[22] Christenson, E.S., Jaffee, E. and Azad, N.S. (2020) Current and Emerging Therapies for Patients with Advanced Pancreatic Ductal Adenocarcinoma: A Bright Future. The Lancet Oncology, 21, e135-e145.
https://doi.org/10.1016/S1470-2045(19)30795-8
[23] Hingorani, S.R., Zheng, L., Bullock, A.J., et al. (2018) HALO 202: Randomized Phase II Study of PEGPH20 Plus Nab-Paclitaxel/Gemcitabine versus Nab-Paclitaxel/Gemcitabine in Patients with Untreated, Metastatic Pancreatic Ductal Adenocarcinoma. Journal of Clinical Oncology, 36, 359-366.
https://doi.org/10.1200/JCO.2017.74.9564
[24] Aglietta, M., Barone, C., Sawyer, M.B., et al. (2014) A Phase I Dose Escalation Trial of Tremelimumab (CP-675,206) in Combination with Gemcitabine in Chemotherapy-Naive Patients with Metastatic Pancreatic Cancer. Annals of Oncology, 25, 1750-1755.
https://doi.org/10.1093/annonc/mdu205
[25] Riley, R.S., June, C.H., Langer, R. and Mitchell, M.J. (2019) Delivery Technologies for Cancer Immunotherapy. Nature Reviews Drug Discovery, 18, 175-196.
https://doi.org/10.1038/s41573-018-0006-z
[26] Kartikasari, A.E.R., Prakash, M.D., Cox, M., et al. (2018) Ther-apeutic Cancer Vaccines-T Cell Responses and Epigenetic Modulation. Frontiers in Immunology, 9, Article 3109.
https://doi.org/10.3389/fimmu.2018.03109
[27] Brar, G., Greten, T.F. and Brown, Z.J. (2018) Current Frontline Approaches in the Management of Hepatocellular Carcinoma: The Evolving Role of Immunotherapy. Therapeutic Ad-vances in Gastroenterology, 11.
https://doi.org/10.1177/1756284818808086
[28] Soares, K.C., Rucki, A.A., Wu, A.A., et al. (1997) PD-1/PD-L1 Blockade Together with Vaccine Therapy Facilitates Effector T-Cell Infiltration into Pancreatic Tumors. Journal of Immunotherapy, 38, 1-11.
https://doi.org/10.1097/CJI.0000000000000062
[29] Le, D.T., Lutz, E., Uram, J.N., et al. (1997) Evaluation of Ipilimumab in Combination with Allogeneic Pancreatic Tumor Cells Transfected with a GM-CSF Gene in Previously Treated Pancreatic Cancer. Journal of Immunotherapy, 36, 382-389.
https://doi.org/10.1097/CJI.0b013e31829fb7a2
[30] Coveler, A.L., Rossi, G.R., Vahanian, N.N., et al. (2016) Algenpantucel-L Immunotherapy in Pancreatic Adenocarcinoma. Immunotherapy, 8, 117-125.
[31] Koido, S., Okamoto, M., Kobayashi, M., Shimodaira, S. and Sugiyama, H. (2017) Significance of Wilms’ Tumor 1 Antigen as a Cancer Vaccine for Pancreatic Cancer. Discovery Medicine, 24, 41-49.
[32] Nishida, S., Koido, S., Takeda, Y., et al. (2014) Wilms Tumor Gene (WT1) Peptide-Based Cancer Vaccine Combined with Gemcitabine for Patients with Advanced Pancreatic Cancer. Journal of Immunotherapy, 37, 105-114.
https://doi.org/10.1097/CJI.0000000000000020
[33] Rivadeneira, D.B. and Delgoffe, G.M. (2018) Antitumor T-Cell Reconditioning: Improving Metabolic Fitness for Optimal Cancer Immunotherapy. Clinical Cancer Research, 24, 2473-2481.
https://doi.org/10.1158/1078-0432.CCR-17-0894
[34] Yamaue, H., Tsunoda, T., Tani, M., et al. (2015) Random-ized Phase II/III Clinical Trial of Elpamotide for Patients with Advanced Pancreatic Cancer: PEGASUS-PC Study. Cancer Science, 106, 883-890.
https://doi.org/10.1111/cas.12674
[35] Samson, A., Bentham, M.J., Scott, K., et al. (2018) Oncolytic Reovirus as a Combined Antiviral and Anti-Tumour Agent for the Treatment of Liver Cancer. Gut, 67, 562-573.
https://doi.org/10.1136/gutjnl-2016-312009
[36] Lichty, B.D., Breitbach, C.J., Stojdl, D.F. and Bell, J.C. (2014) Going Viral with Cancer Immunotherapy. Nature Reviews Cancer, 14, 559-567.
https://doi.org/10.1038/nrc3770
[37] Noonan, A.M., Farren, M.R., Geyer, S.M., et al. (2016) Randomized Phase 2 Trial of the Oncolytic Virus Pelareorep (Reolysin) in Upfront Treatment of Metastatic Pancreatic Adenocarcinoma. Molecular Therapy, 24, 1150-1158.
https://doi.org/10.1038/mt.2016.66
[38] Hirooka, Y., Kasuya, H., Ishikawa, T., et al. (2018) A Phase I Clinical Trial of EUS-Guided Intratumoral Injection of the Oncolytic Virus, HF10 for Unresectable Locally Advanced Pancreatic Cancer. BMC Cancer, 18, Article No. 596.
https://doi.org/10.1186/s12885-018-4453-z
[39] Habtetsion, T., Ding, Z.C., Pi, W., et al. (2018) Alteration of Tumor Metabolism by CD4+ T Cells Leads to TNF-α- Dependent Intensification of Oxidative Stress and Tumor Cell Death. Cell Metabolism, 28, 228-242.
https://doi.org/10.1016/j.cmet.2018.05.012
[40] Kondo, H., Hazama, S., Kawaoka, T., et al. (2008) Adoptive Immunotherapy for Pancreatic Cancer Using MUC1 Peptide-Pulsed Dendritic Cells and Activated T Lymphocytes. Anticancer Research, 28, 379-387.
[41] Santos do Carmo, F., Ricci-Junior, E., Cerqueira-Coutinho, C., et al. (2016) Anti-MUC1 Nano-Aptamers for Triple- Negative Breast Cancer Imaging by Single-Photon Emission Computed To-mography in Inducted Animals: Initial Considerations. International Journal of Nanomedicine, 12, 53-60.
https://doi.org/10.2147/IJN.S118482