空洞型肺结核的相关研究进展
Research Progress of Cavitary Pulmonary Tuberculosis
摘要: 肺空洞是结核病(TB)中最常见的临床特征之一。有大量文献对空洞型肺结核相关的潜在危险因素进行研究,本文就目前提出的一些潜在危险因素进行综述。根据本文中总结,DM (糖尿病)、结核分枝杆菌(MTB)载量、结核分枝杆菌(MTB)的耐药性以及吸烟作为空洞型肺结核疾病的潜在危险因素,与结核性空洞的发生、发展相互关联,互相影响。随着对空洞型肺结核临床相关因素的研究不断地深入,使我们能够确定导致空洞疾病风险增加的分子因素,让我们可以通过对早期存在危险因素的人群进行干预,以降低空洞型肺结核的发病率。
Abstract: Pulmonary cavity is one of the most common clinical features of tuberculosis. There are a large number of literatures on the potential risk factors related to cavitary pulmonary tuberculosis. This article reviews some potential risk factors proposed at present. According to the summary in this article, DM (diabetes), bacterial load, drug resistance of tuberculosis bacteria and smoking, as potential risk factors of cavitary pulmonary tuberculosis disease, are related to and affect the oc-currence and development of tuberculous cavities. With the continuous deepening of the research on clinical related factors of cavitary pulmonary tuberculosis, we can determine the molecular factors that lead to the increased risk of cavitary disease, so that we can reduce the incidence rate of cavitary pulmonary tuberculosis by intervening the population with early risk factors.
文章引用:岳阳, 李元军. 空洞型肺结核的相关研究进展[J]. 临床医学进展, 2023, 13(3): 3228-3233. https://doi.org/10.12677/ACM.2023.133459

1. 引言

结核病(Tuberculosis,简称TB)一直是一个严重的公共卫生问题,2022年WHO (世界卫生组织)发布的《2022年全球结核病报告》中表示我国2021年的初治结核病人数约为78.0万(2020年84.2万),结核病发病率约为55/10万(2020年59/10万)。在全球30个结核病高负担国家中我国结核病发病数排第3位,仅次于印度尼西亚(96.9万)和印度(295万) [1] 。而空洞性肺结核又是活动性肺结核最常见的影像学表现,是由干酪样坏死组织液化并经气道排出所致。空洞是肺结核的一种危险表现,与不良结果、高复发率、高传播率和耐药性的发展有关 [2] [3] 。空洞性肺结核具有病程长、痰菌阳性时间长、合并支气管结核、传染性高、空腔闭合困难、治疗效果不佳、复发率高等特点。应用常规化疗药物治疗药物不易进入腔内,难以达到有效浓度 [2] [4] 。然而,在抗生素时代,空洞往往被认为是治疗失败的最极端结果,也是结核病研究最少的方面之一。现就空洞型肺结核形成的危险因素的相关性研究进行综述。

2. 糖尿病与空洞型肺结核

国际糖尿病联合会(International Federation of diabetes)估计,2019年全球糖尿流行率估计为9.3% (4.63亿人),到2030年上升至10.2% (5.78亿人)和2045年上升至10.9% (7亿人) [5] 。糖尿病和结核病之间的联系已经有几个世纪了 [6] ,Restrepo BI在报告中总结到,在20世纪50年代,没有死于糖尿病的糖尿病患者很可能死于结核病 [7] 。随着糖尿病用胰岛素和治疗结核病的抗生素的出现,这种联系减少了,但在20世纪80年代,由于糖尿病“大流行”,这种共存现象开始重新出现,预计到2030年将达到4.39亿患者,主要归因于2型糖尿病 [8] 。因此,世界卫生组织已将糖尿病确定为一个被忽视的、重要的和重新出现的结核病危险因素 [7] 。

在这篇综述中,“糖尿病”主要指的是2型糖尿病,因为它是最普遍的形式。几项研究报告表明与没有糖尿病(DM)的肺结核(TB)患者相比,患有糖尿病(DM)的肺结核(TB)患者出现空洞的频率更高 [9] - [17] 。Perez Guzman报告称,仅在肺结核(TB)患者中,空洞随着年龄的增长而变得不那么常见,而在所有年龄段的糖尿病(DM)患者中空洞的发生率仍然很高 [18] 。而另一项研究却认为在35~44岁的人群中,空洞性病变患者的比例最高,并且随着年龄的增长而逐渐减少,糖尿病(DM)并没有掩盖老年人和年轻人之间空洞病变的不同风险,反而加剧了这种风险 [19] 。Chiang C-Y的研究表明了糖尿病(DM)增加了空洞病变的风险,尤其是在年轻患者中更甚,且糖尿病(DM)患者肺部出现空洞的风险是由血糖控制驱动的,血糖控制不佳的患者肺部空洞形成的概率大大增加 [19] 。血糖控制不佳的糖尿病(DM)患者肺部空洞病变的频率增加可能与Th1相关细胞因子的表达减少有关 [14] [20] [21] [22] ,所以适当的血糖控制不仅可以降低糖尿病(DM)患者患结核病(TB)的风险,还可以降低糖尿病(DM)病人患肺结核(TB)空洞病变的风险 [19] 。

3. 结核分枝杆菌(MTB)载量与空洞型肺结核

空洞型肺结核是结核病中最常观察到的临床特征之一,在诊断时占成人肺结核患者的40%以上 [23] [24] [25] ,有发现表明,结核空洞腔壁中的结核分枝杆菌(MTB)的细菌载量是干酪坏死的105倍 [23] [26] 。多项实验室检查也表明,空洞与痰液中结核分枝杆菌(MTB)载量较高有关,可能因为腔内的高氧浓度有利于细菌的复制并增加痰液中的结核分枝杆菌(MTB)负荷 [27] [28] 。同时因为这些空洞的腔壁存在,屏障的作用使之降低了空洞内血药的浓度,导致空洞内细菌载量高,增加了空洞的危险性 [29] 。这可能是早期治疗的有力指标 [26] [27] [28] ,另几项使用定性涂片和培养的研究也证实了这一点 [27] [28] [30] [31] 。

在早期的组织病理学研究中,Lowenstein Jensen斜面上的半定量读数显示结核腔的内部坏死区和软化干酪样物质含有更多的结核杆菌,大大超过闭合性病变 [31] 。一项定量研究证明,在纳入研究的病例中,有80%的闭合腔每倾斜斜面上半定量读数有 > 200个菌落,而只有22%的闭合病变有相同数量 [24] 。尽管由于研究方法上的差异,我们不能直接对这些研究进行比较,但最终的结果证实了早期的组织学和细菌学研究。同时作者还比较了初始胸片上疾病的程度和空洞病的存在与细菌负荷的关系,在空洞组和非空洞组中,细菌负荷随着疾病的影像学严重程度而增加,但无论疾病类别的程度怎么发展,空洞患者的痰标本都有较高的CFU (菌落形成单位)计数 [24] 。这些研究都表明空洞性病变患者的结核杆菌数量远高于非空洞性患者。

4. 耐药性与空洞型肺结核

耐药结核病(MDR-TB)的持续蔓延是全球结核病控制面临的最紧迫和最困难的挑战之一 [32] 。结核分枝杆菌(MTB)的多重耐药性是与空洞性肺结核相关的另一个重要因素 [33] 。在耐多药病例中,结核杆菌对抗结核药物产生耐药性,导致慢性进展性疾病,继而使患者肺部出现空洞 [34] 。而之前的一项研究中提到,肺部空洞的存在与治疗期间耐药性的发展有关 [33] 。因此,肺空洞与耐药之间存在相互作用的关系,这可能会加速肺空洞的产生和扩大。

空洞是肺结核患者常见的影像征象,被认为是活动性结核的影像学表现之一 [35] 。以往有文献对耐药结核病(MDR-TB)的影像学研究来看,耐药结核病(MDR-TB)的常见影像学有小叶中心小结节、分支线状和结节状混浊(树芽征)、斑片状或小叶状实变区、空洞和支气管扩张等征象,与继发性肺结核具有相似的影像学特征 [36] 。但是耐药结核病(MDR-TB)却更容易出现结节、空洞、支气管扩张等慢性病程的影像学表现 [37] [38] 。国内外多数文献报道认为耐药结核病(MDR-TB)与厚壁、多发、较大空洞相关,虽然存在敏感度低的问题,但如果空洞数量 ≥ 3个,空洞直径 ≥ 30 mm,对MDR-TB诊断的特异度相对较高 [37] [39] [40] [41] 。

5. 吸烟与空洞型肺结核

烟草使用是一个重大的公共卫生问题,也是一个重要的可预防的过早死亡风险 [42] ,大量的研究已证明吸烟与结核病之间存在关联 [43] [44] ,并发现吸烟者死于结核病的风险增加 [45] 。Janah Hicham在文中总结出烟草烟雾通过多种机制促进结核分枝杆菌感染:分别是粘膜纤毛清除受、肺泡巨噬细胞性能下降、肺淋巴细胞免疫抑制、自然杀伤细胞的细胞毒活性降低、肺树突状细胞 [46] 。也有研究表明吸烟会引起呼吸系统内许多病理生理学变化,包括免疫效应、清除率降低和吸入病原体粘附性改变 [47] ,吸烟还通过抑制固有免疫激活和肺T细胞募集来阻碍抗结核T辅助因子1型(Th-1)免疫的肺部表达 [48] 。Altet-Gômez在研究中证实吸烟者更容易患上更多的肺部疾病(aOR 1.5)和更多的空洞病变(aOR 1.9),并且更有可能需要住院治疗(aOR 1.8),而且住院时间更长 [49] 。一项研究表明,吸烟者和前吸烟者与不吸烟者之间相比,在治疗完成后胸部X光显示空洞清除率降低 [46] 。

6. 小结与展望

空洞型肺结核具有病程长、病灶迁延不愈、治疗效果差、传染性强等特点,对人体的消耗极大,患者体质通常较差,空洞病灶导致结核杆菌在肺内传播,使病情进展迅速,进一步破坏患者肺组织,严重影响患者肺功能。同时因为病情反复的可能性大,给患者本身、家庭乃至社会带来了严重的负担和经济压力。通过上述总结,我们认识到了DM、细菌载量、结核杆菌耐药性及吸烟与空洞型肺结核之间密切的关系,他们相互影响,相互作用,使疾病进展更快,更甚者威胁患者生命。相信在对空洞型肺结核的相关临床因素的不断研究下,我们可以更清楚地认识到其中的危险因素,早期为存在危险因素的患者进行临床干预,为临床工作中预防空洞的形成以及疾病的进展提供了便利。

参考文献

[1] World Health Organization (2022) Global Tuberculosis Report 2022. World Health Organization, Geneva.
[2] Han, J., Yuan, L., Li, J., et al. (2021) Transbronchial Tuberculosis Cavity Plugging Therapy for Pulmonary Tuberculosis. Journal of International Medical Research, 49, No. 8.
https://doi.org/10.1177/03000605211035889
[3] Kim, S.-H., Shin, Y.M., Yoo, J.Y., et al. (2021) Clinical Factors Associated with Cavitary Tuberculosis and Its Treatment Outcomes. Journal of Personalized Medicine, 11, 1081.
https://doi.org/10.3390/jpm11111081
[4] Liu, X., Wu, Q. and Liang, C. (2007) Clinical Study of Antituberculosis Gel Interventional Therapy for Multi-Drug Resistant Pulmonary Tuberculosis. Journal of Clinical Pulmonary Medicine, 12, 558-559.
[5] Saeedi, P., Petersohn, I., Salpea, P., et al. (2019) Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Research and Clinical Practice, 157, Article ID: 107843.
https://doi.org/10.1016/j.diabres.2019.107843
[6] Restrepo, B.I. and Schlesinger, L.S. (2013) Host-Pathogen Interactions in Tuberculosis Patients with Type 2 Diabetes Mellitus. Tuberculosis (Edinb), 93, S10-S14.
https://doi.org/10.1016/S1472-9792(13)70004-0
[7] Restrepo, B.I. and Schlesinger, L.S. (2014) Impact of Dia-betes on the Natural History of Tuberculosis. Diabetes Research and Clinical Practice, 106, 191-199.
https://doi.org/10.1016/j.diabres.2014.06.011
[8] Rieder, H.L. (2014) The Dynamics of Tuberculosis Epidemi-ology. Indian Journal of Tuberculosis, 61, 19-29.
[9] Pérez-Guzmán, C., Torres-Cruz, A., Villareal-Velarde, H., et al. (2001) Atypical Radiological Images or Pulmonary Tuberculosis in 192 Diabetic Patients: A Comparative Study. The International Journal of Tuberculosis and Lung Disease, 5, 455-461.
[10] Agrawal, A.K., Nigam, P., Agrawal, M.C., et al. (1988) Overt Diabetes Mellitus in Pulmonary Tuberculosis. Lung India, 6, 177-180.
[11] Wang, C.S., Yang, C.J., Chen, H.C., et al. (2009) Impact of Type 2 Diabetes on Manifestations and Treatment Outcome of Pulmonary Tuber-culosis. Epidemiology & Infection, 137, 203-210.
https://doi.org/10.1017/S0950268808000782
[12] Wang, J.Y., Hsueh, P.R., Lee, H.C., et al. (2006) Recognising Tuberculosis in the Lower Lung Field: An Age- and Sex-Matched Controlled Study. The International Journal of Tu-berculosis and Lung Disease, 10, 578-584.
[13] Hendy, M. and Stableforth, D. (1983) The Effect of Established Dia-betes Mellitus on the Presentation of Infiltrative Pulmonary Tuberculosis in the Immigrant Asian Community of an Inner City Area of the United Kingdom. British Journal of Diseases of the Chest, 77, 87-90.
https://doi.org/10.1016/0007-0971(83)90010-4
[14] Chang, J.Y., Dou, H.Y., Yen, C.L., et al. (2011) Effect of Type 2 Diabetes Mellitus on the Clinical Severity and Treatment Outcome in Patients with Pulmonary Tuberculosis: A Potential Role in the Emergence of Multidrug-Resistance. Journal of the Formosan Medical Association, 110, 372-378.
https://doi.org/10.1016/S0929-6646(11)60055-7
[15] Umut, S., Tosun, G.A. and Yildirim, N. (1994) Radiographic Location of Pulmonary Tuberculosis in Diabetic Patients. Chest, 106, 326.
https://doi.org/10.1378/chest.106.1.326a
[16] Shaikh, M.A., Singla, R., Khan, N.B., et al. (2003) Does Diabetes alter the Radiological Presentation of Pulmonary Tuberculosis. Saudi Medical Journal, 24, 278-281.
[17] Jiménez-Corona, M.E., Cruz-Hervert, L.P., García-García, L., et al. (2013) Association of Diabetes and Tuberculosis: Impact on Treatment and Post-Treatment Outcomes. Thorax, 68, 214-220.
https://doi.org/10.1136/thoraxjnl-2012-201756
[18] Perez-Guzman, C., Torres-Cruz, A., Villarreal-Velarde, H. and Vargas, M.H. (2000) Progressive Age-Related Changes in Pulmonary Tuberculosis Images and the Effect of Diabetes. American Journal of Respiratory and Critical Care Medicine, 162, 1738-1740.
https://doi.org/10.1164/ajrccm.162.5.2001040
[19] Wilcke, J.T., Askgaard, D.S., Nybo, J.B., et al. (1998) Radio-graphic Spectrum of Adult Pulmonary Tuberculosis in a Developed Country. Respiratory Medicine, 92, 493-497.
https://doi.org/10.1016/S0954-6111(98)90297-9
[20] Tsukaguchi, K., Okamura, H., Matsuzawa, K., et al. (2002) Longitudinal Assessment of IFN-Gamma Production in Patients with Pulmonary Tuberculosis Complicated with Dia-betes Mellitus. Kekkaku, 77, 409-413. (In Japanese)
[21] Yamashiro, S., Kawakami, K., Uezu, K., et al. (2005) Lower Expression of Th1-Related Cytokines and Inducible Nitric Oxide Synthase in Mice with Streptozotocin-Induced Diabetes Mellitus Infected with Mycobacterium tuberculosis. Clinical & Experimental Immunology, 39, 57-64.
https://doi.org/10.1111/j.1365-2249.2005.02677.x
[22] Podell, B.K., Ackart, D.F., Kirk, N.M., et al. (2012) Non-Diabetic Hyperglycemia Exacerbates Disease Severity in Mycobacterium tuberculosis Infected Guinea Pigs. PLOS ONE, 7, e46824.
https://doi.org/10.1371/journal.pone.0046824
[23] Chiang, C.-Y., Lee, J.-J., Chien, S.-T., et al. (2014) Glycemic Control and Radiographic Manifestations of Tuberculosis in Diabetic Patients. PLOS ONE, 9, e93397.
https://doi.org/10.1371/journal.pone.0093397
[24] Palaci, M., Dietze, R., Hadad, D.J., et al. (2007) Cavitary Disease and Quantitative Sputum Bacillary Load in Cases of Pulmonary Tuberculosis. Journal of Clinical Microbiology, 45, 4064-4066.
https://doi.org/10.1128/JCM.01780-07
[25] Canetti, G. (1965) Present Aspects of Bacterial Resistance in Tuberculosis. American Review of Respiratory Disease, 92, 687-703.
https://doi.org/10.1164/arrd.1980.121.3.477
[26] Greenbaum, M., Beyt Jr., B.E. and Murray, P.R. (1980) The Accuracy of Diagnosing Pulmonary Tuberculosis at a Teaching Hospital. American Review of Respiratory Disease, 121, 477-481
[27] Matsuoka, S., Uchiyama, K., Shima, H., et al. (2004) Relationship between CT Findings of Pulmonary Tuberculosis and the Number of Acid-Fast Bacilli on Sputum Smears. Clinical Imaging, 28, 119-123.
https://doi.org/10.1016/S0899-7071(03)00148-7
[28] Rathman, G., Sillah, J., Hill, P.C., Murray, J.F., et al. (2003) Clinical and Radiological Presentation of 340 Adults with Smear-Positive Tuberculosis in the Gambia. The International Journal of Tuberculosis and Lung Disease, 7, 942-947.
[29] 吴吉丽, 黄姣, 马鑫, 张睿, 柴春维. 耐多药与药物敏感性结核肺部空洞CT特征分析[J]. 山西医药杂志, 2022, 51(15): 1718-1720.
[30] Gomes, M., Saad Junior, R. and Stirbulov, R. (2003) Pulmonary Tuberculosis: Relationship between Sputum Bacilloscopy and Radiological Lesions. Revista do Instituto de Medicina Tropical de São Paulo, 45, 275-281.
https://doi.org/10.1590/S0036-46652003000500007
[31] Canetti, G. (1955) The Tubercle Bacillus in the Pulmo-nary Lesion of Man: Histobacteriology and Its Bearing on the Therapy of Pulmonary Tuberculosis. Springer Verlag, New York.
https://doi.org/10.1097/00000441-195604000-00012
[32] Seung, K.J., Keshavjee, S. and Rich, M.L. (2015) Multidrug-Resistant Tuberculosis and Extensively Drug-Resistant Tuberculosis. Cold Spring Harbor Perspec-tives in Medicine, 5, a017863.
https://doi.org/10.1101/cshperspect.a017863
[33] Zhang, L., Pang, Y., Yu, X., et al. (2016) Risk Factors for Pulmonary Cavitation in Tuberculosis Patients from China. Emerging Microbes & Infections, 5, e110.
https://doi.org/10.1038/emi.2016.111
[34] Vadwai, V., Daver, G., Udwadia, Z., et al. (2011) Clonal Popu-lation of Mycobacterium tuberculosis Strains Reside within Multiple Lung Cavities. PLOS ONE, 6, e24770.
https://doi.org/10.1371/journal.pone.0024770
[35] 杨钧, 张海青, 周新华, 吕平欣. 肺结核空洞的CT表现及病理基础[J]. 中国医学影像技术, 2007, 23(12): 1831-1833.
[36] 李成海, 周新华, 吕岩, 等. 不同耐药类型及药物敏感肺结核患者的CT征象分析[J]. 中国防痨杂志, 2018, 40(7): 707-712.
[37] 董莘, 陈红兵, 洪剑, 敖国昆. 耐多药继发性肺结核的薄层CT特征[J]. 中华临床医师杂志(电子版), 2013, 7(21): 9494-9497.
[38] Li, D., He, W., Chen, B., et al. (2017) Primary Multidrug-Resistant Tuberculosis versus Drug-Sensitive Tuberculosis in Non-HIV-Infected Patients: Comparisons of CT Findings. PLOS ONE, 12, e0176354.
https://doi.org/10.1371/journal.pone.0176354
[39] 周婕, 党丽云, 沈聪, 等. 耐多药肺结核患者胸部影像学特征分析[J]. 实用放射学杂志, 2018, 34(9): 1348-1350, 1385.
[40] Chung, M.J., Lee, K.S., Koh, W.J., et al. (2006) Drug-Sensitive Tuberculosis, Multidrugresistant Tuberculosis, and Nontuberculous Mycobacterial Pulmonary Disease in Non-AIDS Adults: Comparisons of Thin-Section CT Findings. European Radiology, 16, 1934-1941.
https://doi.org/10.1007/s00330-006-0174-9
[41] Wáng, Y.X., Chung, M.J., Skrahin, A., et al. (2018) Radiological Signs Associated with Pulmonary Multi-Drug Resistant Tuberculosis: An Analysis of Published Evidences. Quantitative Imaging in Medicine and Surgery, 8, 161-173.
https://doi.org/10.21037/qims.2018.03.06
[42] de Boer Renee, N., et al. (2014) Delayed Culture Conversion Due to Cigarette Smoking in Active Pulmonary Tuberculosis Patients. Tuberculosis (Edinb), 94, 87-91.
https://doi.org/10.1016/j.tube.2013.10.005
[43] Bates, M.N., Khalakdina, A., Pai, M., et al. (2007) Risk of Tu-berculosis from Exposure to Tobacco Smoke: A Systematic Review and Meta-Analysis. Archives of Internal Medicine, 167, 335e-342.
https://doi.org/10.1001/archinte.167.4.335
[44] Van Zyl Smit, R.N., Pai, M., Yew, W.W., et al. (2010) Global Lung Health: The Colliding Epidemics of Tuberculosis, Tobacco Smoking, HIV and COPD. European Respiratory Journal, 35, 27-33.
https://doi.org/10.1183/09031936.00072909
[45] Singla, R., Osman, M.M., Khan, N., et al. (2007) Factors Pre-dicting Persistent Sputum Smear Positivity among Pulmonary Tuberculosis Patients 2 Months after Treatment. The In-ternational Journal of Tuberculosis and Lung Disease,, 7, 48-64.
[46] Hicham, J., Hicham, S., Hatim, K., et al. (2014) La tuberculose pulmonaire et le tabac: À propos de 100 cas. Pan African Medical Journal, 19, Article No. 202.
https://doi.org/10.11604/pamj.2014.19.202.5329
[47] Gajalakshmi, V., Peto, R., Kanaka, T.S. and Jha, R. (2003) Smoking and Mortality from Tuberculosis and Other Diseases in India: Retrospective Study of 43 000 Adult Male Deaths and 35000 Controls. The Lancet Infectious Diseases, 362, 507-515.
https://doi.org/10.1016/S0140-6736(03)14109-8
[48] Abal, A.R., Jayakrishnan, B., Parwer, S., et al. (2005) Effect of Cigarette Smoking on Sputum Smear Conversion in Adults with Active Pulmonary Tuberculosis. Respiratory Medicine, 99, 415-420.
https://doi.org/10.1016/j.rmed.2004.08.016
[49] Altet-Gômez, M.N., Alcaide, J., Godoy, P., et al. (2005) Clinical and Epidemiological Aspects of Smoking and Tuberculosis: A Study of 13,038 Cases. The International Journal of Tuberculosis and Lung Disease, 9, 430-436.