肝癌血供特点及影响
Characteristics and Influence of Blood Supply of Liver Cancer
DOI: 10.12677/ACM.2023.132309, PDF, HTML, XML, 下载: 262  浏览: 585 
作者: 叶艳霞*:青海大学附属医院肝胆胰二外科,青海 西宁
关键词: 原发性肝癌肝硬化门静脉血管生成血流动力学门静脉癌栓Primary Liver Cancer Cirrhosis Portal Vein Angiogenesis Hemodynamics Portal Vein Tumor Thrombus
摘要: 肝脏是人体中重要的器官,肝脏疾病,影响人们健康状况,恶性肿瘤更是使其雪上加霜。肝脏自身血供特点,也决定了肝脏疾病的特殊性,肝脏疾病过程中,病理生理学的改变必然引起肝脏血流动力学的改变。探讨肝癌血流动力学的改变,从不同的角度为肝癌的诊断、治疗提供新的临床思路。
Abstract: The liver is an important organ in the human body, liver disease affects people’s health, malignant tumors make it worse. The characteristics of the blood supply of the liver itself also determine the particularity of the liver disease. In the process of the liver disease, changes in the Pathophysiology will inevitably lead to changes in the Hemodynamics of the liver to explore the changes of liver can-cer Hemodynamics, and to provide new clinical ideas for the diagnosis and treatment of liver cancer from different angles.
文章引用:叶艳霞. 肝癌血供特点及影响[J]. 临床医学进展, 2023, 13(2): 2200-2205. https://doi.org/10.12677/ACM.2023.132309

1. 引言

原发性肝癌是最常见的恶性肿瘤之一。作为最具有侵袭力和快速增长能力的恶性肿瘤,肝癌是仅次于肺癌和胃癌的全球第三大癌症相关死亡原因 [1] [2] [3] [4] 。在过去的时间,肝癌的发病率一直呈现上升趋势 [5] [6] 。根据世界卫生组织国际癌症研究机构2020年发布的全球最新癌症负担数据显示肝癌的发病人数占恶性肿瘤第六位,死亡人数占恶性肿瘤第三位,2020年,全世界被新确诊为肝癌的人超过90万,因肝癌死亡的人超过83万,死亡人数接近新发病人数 [7] 。

2. 肝癌发病诱因

原发性肝癌(Hepatocellular Carcinoma, HCC),病因不明,发病机制复杂,目前尚无一致的说法来阐述肝癌的发病机制。其诱发的危险因素主要包括:1) 病毒感染:慢性感染乙型肝炎病毒(Hepatitis B Virus, HBV)丙型肝炎病毒(Hepatitis C Virus, HCV)等;2) 长期的大量的酗酒;3) 黄曲霉毒素B1接触;4) 长期的化学、放射接触史;5) 遗传因素。流行病学的角度显示,全世界80%以上的肝癌病例都有肝硬化病史;病理学的角度可见,80%~90%的肝癌患者有潜在的纤维化,三分之一的肝硬化患者将发展为肝癌 [8] ;分子学的角度分析,肝癌的侵袭性于基因相关,与侵袭性正相关的,这表明肝癌的早发现、早治疗的有效性受其生物学特性的限制 [9] 。无论肝损伤的病因如何,肝癌都与肝纤维化和肝硬化密切相关。慢性肝损伤、炎症和肝纤维化是HCC癌前微环境的特征 [8] 。

HBV慢性感染是人类HCC中最常见的潜在因素,它会导致慢性肝损,伤诱发肝癌。最终导致肝硬化的慢性肝损伤可能以多种方式促进肝细胞转化,包括促进HBV DNA整合、易于获得细胞突变和产生突变性氧反应物种。通常在HBV感染的HCC患者中先检测到DNA整合。随后,整合的病毒DNA可以直接重排宿主染色体。乙型肝炎病毒x蛋白(Hepatitis B Virus, HBV X HBx)和截短的前S/S基因产物被认为在HCC中发挥致癌作用。HBx可以转录激活多种病毒启动子以及细胞基因的启动子,可能与细胞增殖和转化有关 [10] [11] [12] 。

酒精蓄积,代谢物中的酒精会产生乙醛,乙醛会与DNA结合,从而引发癌症。此外,酒精诱导细胞色素P450 2E1生成游离氧,并增加环境前致癌物(如亚硝胺)的激活。相关报道称,长期饮酒会导致肝脏中的维甲酸减少,进而导致肝细胞再生,最终导致肝硬化 [11] [13] 。

黄曲霉毒素(Aflatoxin B_1 AFB1)是一种自然产生的真菌毒素,通过p53突变与肝癌发病率增加相关,尤其是在HBV感染患者中表现明显 [14] 。此外,AFB1可能在HBV诱导的肝癌发生过程中发挥协同作用,产生肝硬化,并最终导致肝癌发生 [15] 。

3. 肝癌血供特点

肝癌是一种血管化良好的肿瘤,肝脏的双重血管供应,为肿瘤的生长提供了优渥的生存环境,使其生长快,预后差。血管生成在其发生、侵袭和转移中起着重要作用 [16] [17] 。HCC的发展过程中,肝动脉供血比例逐渐增加,门静脉供血逐渐减少 [18] 。Saitoh等人 [19] 观察到,在高分化肝细胞癌中,门脉血流在动脉血流增加之前就消失了。当高分化肝细胞癌有门脉血流且无血管增生时,其生长缓慢,当它失去门脉血流并变得丰富时,就会迅速生长。Nakashima等人 [20] 报告说,随着小HCC尺寸的增加;它们变得越来越去分化,门静脉束的数量明显减少,肿瘤内小动脉发育。随着动脉形成的增加,HCC表现出明显的血管异常、血管扭曲、直径不均和分支不规则、功能性侧支动脉形成、肝窦毛细血管、微血管密度增加 [21] [22] [23] [24] 。

与典型的HCC不同,一些早期分化良好的HCC是由门静脉系统供血,而不是由肝动脉供血 [25] [26] [27] 。晚期HCC通常只有动脉样血管作为血液供应系统,并显示退化的门静脉 [28] 。病理生理学上,肝细胞癌结节的血流通过肝细胞癌包膜周围的门静脉分支流出。因此,肝癌的引流血管被认为位于门静脉系统 [29] [30] [31] 。临床观察表明,在肝癌影像辅助检查下,在肝细胞癌结节周围经常观察到流出恒定波形信号和流入脉动波形信号 [32] 。这些流出道信号通常在病理上对应于残余的门静脉分支 [28] 。临床动态CTA或彩色多普勒成像可将肝静脉识别为引流静脉。虽然这种HCC很少见,但静脉引流可能与肺转移或远处转移有关,这需要进一步的经验来证明这个假设是否成立。

4. 肝癌血流改变

在肝硬化的背景下的肝癌,不良结节–不典型变–典型小肝癌–进展期肝癌,不可逆的发展过程中,血供慢慢从以门静脉为主到以动脉为主的过度转变,有研究显示动脉血供可达90%以上 [33] 。研究血流动力学在考虑动脉系统、毛细血管、静脉系统等整体的血供情况的同时,还要关注血管局部结构的变化情况。Hsieh等 [34] 研究证实,肝癌血管内膜不完整,血管平滑肌相对较少,血管扭曲或呈囊状,血管走行丰富且杂乱无章。肿瘤新生血管一旦生成后,供血明显增加,同时由于微血管基底膜不完整性,使得毛细血管通透性增加 [35] 。故而,肝癌虽然富血性,但发育不良的肿瘤血管、动静脉短路的存在,加速了血液的流动,形成的涡流和层流对新生血管和门静脉的远端分支造成冲刷损害 [36] 。

肝癌的发生过程从增生性结节到早期HCC,再到早期显性HCC,最终发展为晚期显性高血管性HCC [37] [38] [39] [40] [41] 。在这个过程中,血管内血流动力学发生改变 [26] ,包括肝动脉和门静脉局部血管重构及其血流流场变化 [42] 。在癌变的初始阶段,血流动力学模式显示动脉血管丰富,伴有低血管和门静脉灌注(I型)。下一步,动脉和门脉血供均减少(II型)。随后,结节内动脉血管增加至等血管(III型),然后增加至高血管(IV型)。另一个血液动力学转变发生在I型到V型(在门静脉灌注的低血管背景下,动脉血管与局部血管斑点) [26] [28] 。早期高分化HCC中动脉和门脉血管密度降低的病理证据支持了动脉和门脉供应减少 [43] 。

由此可以看出肝癌的发展过程中,首先,肝癌结节中门静脉的血供逐渐减少,结节内动脉血供先减少后增加,而肝癌结节的引流从肝静脉到肝静脉窦,最后变成门静脉引流;随着肝癌的发展,肿瘤周围的微血管甚至较大的血管渐渐被肿瘤侵犯 [42] [32] [43] 。肿瘤边缘血流动力学改变反映其浸润程度、生长情况,从而判断其恶性程度。研究显示,与肿瘤中心相比,肿瘤边缘的肝血流、门静脉灌注量明显增多,而肝动脉灌注指数、肝动脉灌注量则呈递减趋势,提示肿瘤病灶向周围肝脏组织过渡浸润时血流动力学发生明显改变,血流动力学改变对肝癌的超声、CT等影像学诊断有较大的意义 [44] [45] 。

5. 肝癌血流改变的意义

肝癌的进展依赖于新生血管生成,不同阶段所生成的血管密度、走向、血流量不完全一致。由于早晚期肝细胞癌在形态学和血流动力学方面存在显著差异,因此有学者认为通过观察肿瘤血管的密度和血流动力学,有助于评价肿瘤生长,对于诊断治疗及预后评估有重要价值 [46] 。

HCC的进展过程中动–静脉瘘的形成,向肿瘤供血动脉阻力降低,进而导致血流灌注指数(Perfusion Index, PI),阻力指数(Resistance Index, RI)降低,收缩期峰值速度(Peak Systolic Velocity, PSV)升高 [47] 。HCC生长过程中不断有新生血管生成,为其提供营养物质,尤其肿瘤复发组织受激产生新生毛细血管,导致肿瘤内血流异常丰富,出现异常的血流改变。这些改变在超声检测下表现为PI、RI降低,PSV升高 [48] [49] 。肿瘤复发时,组织处于高代谢状态,需大量血供维持肿瘤细胞增殖,血流灌注升高,进而提升PSV [50] 。

有关这些改变的临床意义也得到了相应证实:Cabibbo [51] 等认为肝动脉管径增宽对肝癌的诊断有一定帮助;Taylor [52] 等则认为可以通过肝内肿瘤的血供丰富程度,鉴别肝脏良恶性肿瘤;梁丽 [53] 等认为PI、RI值与肝癌复发呈正相关,与PSV呈负相关,PI、RI、PSV为影响肝癌复发的主要因素。

6. 结论

综上所述,对于肝脏血流动力学改变的探讨,可以为肝癌诊断和治疗选择提供颇具价值的理论依据。

NOTES

*Email: 1179093685@qq.com

参考文献

[1] Ferlay, J., Colombet, M., Soerjomataram, I., et al. (2019) Estimating the Global Cancer Incidence and Mortality in 2018: GLOBOCAN Sources and Methods. International Journal of Cancer, 144, 1941-1953.
https://doi.org/10.1002/ijc.31937
[2] Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424.
https://doi.org/10.3322/caac.21492
[3] Shiraha, H., Iwamuro, M. and Okada, H. (2020) Hepatic Stellate Cells in Liver Tumor. Advances in Experimental Medicine and Biology, 1234, 43-56.
https://doi.org/10.1007/978-3-030-37184-5_4
[4] Bertuccio, P., Turati, F., Carioli, G., et al. (2017) Global Trends and Predictions in Hepatocellular Carcinoma Mortality. Journal of Hepatology, 67, 302-309.
https://doi.org/10.1016/j.jhep.2017.03.011
[5] McGuire, S. (2016) World Cancer Report 2014. Geneva, Switzer-land: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Advances in Nutri-tion, 7, 418-419.
https://doi.org/10.3945/an.116.012211
[6] El-Serag, H.B. (2011) Hepatocellular Carcinoma. The New England Journal of Medicine, 365, 1118-1127.
https://doi.org/10.1056/NEJMra1001683
[7] Zheng, R.S., et al. (2022) Cancer Incidence and Mortality in China 2016. Journal of the National Cancer Center, 2, 1-9.
https://doi.org/10.1016/j.jncc.2022.02.002
[8] Baglieri, J., Brenner, D.A. and Kisseleva, T. (2019) The Role of Fibrosis and Liver-Associated Fibroblasts in the Pathogenesis of Hepatocellular Carcinoma. International Journal of Molecular Sciences, 20, pii: E1723.
https://doi.org/10.3390/ijms20071723
[9] Tang, Z.Y., Qin, L.X., Wang, X.M., et al. (1998) Alterations of Onco-genes, Tumor Suppressor Genes and Growth Factors in Hepatocellular Carcinoma: With Relation to Tumor Size and In-vasiveness. Chinese Medical Journal, 111, 313-318.
[10] Murakami, S. (2001) Hepatitis B Virus X Protein: A Multi-functional Viral Regulator. Journal of Gastroenterology, 36, 651-660.
https://doi.org/10.1007/s005350170027
[11] Inoue, H. and Seitz, H.K. (2001) Viruses and Alcohol in the Patho-genesis of Primary Hepatic Carcinoma. European Journal of Cancer Prevention, 10, 107-110.
https://doi.org/10.1097/00008469-200102000-00016
[12] Wang, Y.M., Ng, W.C. and Lo, S.K. (1999) Detection of pre-S/S Gene Mutants in Chronic Hepatitis B Carriers with Concurrent Hepatitis B Surface Antibody and Hepatitis B Surface Antigen. Journal of Gastroenterology, 34, 600-606.
https://doi.org/10.1007/s005350050379
[13] Seitz, H.K. (2000) Alcohol and Retinoid Metabolism. Gut, 47, 748-750.
https://doi.org/10.1136/gut.47.6.748
[14] Jackson, P.E., Groopman, J.D. (1999) Aflatoxin and Liver Cancer. Bailliere’s Clinical Gastroenterology, 13, 545-555.
https://doi.org/10.1053/bega.1999.0047
[15] Wogan, G.N. (1992) Aflatoxins as Risk Factors for Hepatocellular Carcinoma in Humans. Cancer Research, 52, 2114s-2118s.
[16] Fodor, D., Jung, I., Turdean, S., et al. (2019) Angio-genesis of Hepatocellular Carcinoma: An Immunohistochemistry Study. World Journal of Hepatology, 11, 294-304.
https://doi.org/10.4254/wjh.v11.i3.294
[17] Morse, M.A., Sun, W., Kim, R., et al. (2019) The Role of Angiogene-sis in Hepatocellular Carcinoma. Clinical Cancer Research, 25, 912-920.
https://doi.org/10.1158/1078-0432.CCR-18-1254
[18] Robinson, P. (2008) Hepatocellular Carcinoma: Develop-ment and Early Detection. Cancer Imaging, 8, S128-S131.
https://doi.org/10.1102/1470-7330.2008.9019
[19] Saitoh, S., Ikeda, K., Koida, I., et al. (1995) Serial Hemody-namic Measurements in Well Differentiated Hepatocellular Carcinomas. Hepatology, 21, 1530-1534.
https://doi.org/10.1002/hep.1840210609
[20] Nakashima, Y., Nakashima, O., Hsia, C.C., et al. (1999) Vasculari-zation of Small Hepatocellular Carcinomas: Correlation with Differentiation. Liver, 19, 12-18.
https://doi.org/10.1111/j.1478-3231.1999.tb00003.x
[21] Muto, J., Shirabe, K., Sugimachi, K., et al. (2015) Re-view of Angiogenesis in Hepatocellularcarcinoma. Hepatology Research, 45, 1-9.
https://doi.org/10.1111/hepr.12310
[22] Carr, B.I. (2004) Hepatocellular Carcinoma: Current Management and Fu-ture Trends. Gastroenterology, 127, S218-S224.
https://doi.org/10.1053/j.gastro.2004.09.036
[23] Zhu, A.X., Du-da, D.G., Sahani, D.V., et al. (2011) HCC and Angiogenesis: Possible Targets and Future Directions. Nature Reviews Clinical Oncology, 8, 292-301.
https://doi.org/10.1038/nrclinonc.2011.30
[24] Heil, M., Eitenmuller, I., Schmitz-Rixen, T., et al. (2006) Arteriogenesis versus Angiogenesis: Similarities and Differences. Journal of Cellular and Molecular Medicine, 10, 45-55.
https://doi.org/10.1111/j.1582-4934.2006.tb00290.x
[25] Matsui, O., Kadoya, M., Kameyama, T., et al. (1991) Benign and Malignant Nodules in Cirrhotic Livers. Distinction Based on Blood Supply. Radiology, 178, 493-497.
https://doi.org/10.1148/radiology.178.2.1846240
[26] Kudo, M., Tomita, S., Kashida, H., et al. (1991) Tumor Hemodynamics in Hepatic Nodules Associated with Liver Cirrhosis. Relationship between Cancer Progression and Tumor Hemodynamic Change. Japanese Journal of Gastroenterology, 88, 1554-1565.
[27] Kudo, M., Tomita, S., Tochio, H., et al. (1992) Hemodynamic Characteristics of Early Stage Hepatocellular Carcinoma. In Vivo Evaluation with Vascular Imagings. Acta Hepatologica Japonica, 33, 283-291.
https://doi.org/10.2957/kanzo.33.283
[28] Kudo, M. (1999) Imaging Diagnosis of Hepatocellular Carcinoma and Premalignant/Borderline Lesions. Seminars in Liver Disease, 19, 297-309.
https://doi.org/10.1055/s-2007-1007119
[29] Ueda, K., Matsui, O., Kawamori, Y., et al. (1998) Hypervascular Hepatocellular Carcinoma: Evaluation of Hemodynamics with Dynamic CT during Hepatic Arteriography. Radiology, 206, 161-165.
https://doi.org/10.1148/radiology.206.1.9423667
[30] Yamanaka, N., Okamoto, E., Fujihara, S., et al. (1992) Do the Tumor Cells of Hepatocellular Carcinomas Dislodge into the Portal Venous Stream during Hepatic Resection? Cancer, 70, 2263-2267.
https://doi.org/10.1002/1097-0142(19921101)70:9<2263::AID-CNCR2820700909>3.0.CO;2-M
[31] Tanaka, T., Yamanaka, N., Oriyama, T., et al. (1997) Factors Regulating Tumor Pressure in Hepatocellular Carcinoma and Implica-tions for Tumor Spread. Hepatology, 26, 283-287.
https://doi.org/10.1002/hep.510260205
[32] Fang, K.J., Wang, L.F., Huang, H.Y., et al. (2020) Construction of Nucleolin-Targeted Lipid Nanobubbles and Contrast-Enhanced Ultra-sound Molecular Imaging in Triple-Negative Breast Cancer. Nature, 37, 145.
https://doi.org/10.1007/s11095-020-02873-1
[33] Hayashi, M., Matsui, O., Ueda, K., et al. (2002) Progression to Hypervascular Hepatocellular Carcinoma: Correlation with Intranodular Blood Supply Evaluated with CT during Intraar-terial Injection of Contrast Material. Radiology, 225, 143-149.
https://doi.org/10.1148/radiol.2251011298
[34] Hsieh, M.C., Hsu, H.T., Hsiao, P.C., et al. (2014) Role of VEGF-C Gene Polymorphisms in Susceptibility to Hepatocellular Carcinoma and Its Pathological Development. Journal of Clinical Laboratory Analysis, 28, 237-244.
https://doi.org/10.1002/jcla.21672
[35] Miles, K.A. (1999) Tumour Angiogenesis and Its Relation to Contrast En-hancement on Computed Tomography: A Review. European Journal of Radiology, 30, 198-205.
https://doi.org/10.1016/S0720-048X(99)00012-1
[36] 聂东雷, 陈亚晗, 陆玉敏. 肝细胞癌CT表现、病理分级与CD34表达的关系研究[J]. 右江医学, 2016, 44(6): 639-642.
[37] Kojiro, M., Nakashima, T. and Mori, T (1988) Pathomorphologic Characteristics of 102 Cases of Thorotrast-Related Hepatocellular Carcinoma, Cholangiocarcinoma, and Hepatic Angiosarcoma. Cancer, 62, 1153-1162.
https://doi.org/10.1002/1097-0142(19880915)62:6<1153::AID-CNCR2820620619>3.0.CO;2-I
[38] Sakamoto, M., Hirohashi, S. and Shimosato, Y. (1991) Early Stage of Multistep Hepatocarcinogenesis: Adenomatous Hyperplasia and Early Hepatocellular Carcinoma. Human Pathology, 22, 172-178.
https://doi.org/10.1016/0046-8177(91)90039-R
[39] Takayama, T., Makuuchi, M., Hirohashi, S., et al. (1990) Ma-lignant Transformation of Adenomatous Hyperplasia to Hepatocellular Carcinoma. The Lancet, 336, 1150-1153.
https://doi.org/10.1016/0140-6736(90)92768-D
[40] Kim, S.R., Hayashi, Y., Kudo, M., et al. (2000) A Case of Hepatocellular Carcinoma Transforming from Adenomatous Hyperplasia in Three Years with the Background of Non-B Non-C, Non-TTV Chronic Persistent Hepatitis. Intervirology, 43, 13-15.
https://doi.org/10.1159/000025017
[41] Kim, S.R., Hayashi, Y., Kudo, M., et al. (2000) Hepatocellular Carcinoma Transforming from Dysplastic Nodule with Background of Non-B Non-C Chronic Persistent Hepatitis. Journal of Hepatology, 33, 857-858.
https://doi.org/10.1016/S0168-8278(00)80323-2
[42] Berzigotti, A., Dapporto, S., Angeloni, L., et al. (2004) Postprandial Splanchnic Haemodynamic Changes in Patients with Liver Cirrhosis and Patent Paraumbilical Vein. Euro-pean Journal of Gastroenterology & Hepatology, 16, 1339-1345.
https://doi.org/10.1097/00042737-200412000-00018
[43] Kutami, R., Nakashima, Y., Nakashima, O., et al. (2000) Pathomorphologic Study on the Mechanism of Fatty Change in Small Hepatocellular Carcinoma of Humans. Journal of Hepatology, 33, 282-289.
https://doi.org/10.1016/S0168-8278(00)80369-4
[44] 黄大庆, 曾波, 牟忠亮, 等. 多层螺旋CT灌注成像下肝癌结节血流动力学的改变[J]. 实用癌症杂志, 2014(10): 1304-1306.
[45] Wei, Y., Yang, Q., Zhang, Y., et al. (2017) Plumbagin Restrains Hepatocellular Carcinoma Angiogenesis by Suppressing the Migration and Invasion of Tu-mor-Derived Vascular Endothelial Cells. Oncotarget, 8, 15230-15241.
https://doi.org/10.18632/oncotarget.14774
[46] Xiang, X., You, X.M. and Li, L.Q. (2018) Expression of HSP 90AA1/HSPA8 in Hepatocellular Carcinoma Patients with Depression. OncoTargets and Therapy, 22, 3013-3023.
https://doi.org/10.2147/OTT.S159432
[47] 邵佳娴. 术前彩色多普勒超声血流参数对分化型甲状腺癌颈部淋巴结转移的诊断价值[J]. 中国药物与临床, 2019, 19(12): 1991-1992.
[48] 韩建梅, 葛玲, 任冰, 等. 卵巢癌患者经阴道彩色多普勒超声血流参数与血管新生及肿瘤恶性程度的关系[J]. 临床超声医学杂志, 2018, 20(5): 314-317.
[49] 汪荣, 洪云, 严稳开. 超声血流参数在预测甲状腺乳头状癌患者颈部淋巴结转移中的价值分析[J]. 生物医学工程与临床, 2020, 24(6): 693-697.
[50] 周艳珂, 李潜, 田婧, 等. 超声血流参数及高频超声诊断甲状腺癌颈部淋巴结转移的临床价值[J]. 医学影像学杂志, 2020, 30(10): 1945-1947.
[51] Cabibbo, G., Maida, M., Genco, C., et al. (2013) Survival of Patients with Hepatocellular Carcinoma (HCC) Treated by Percutaneous Radio-Frequency Ablation (RFA) Is Affected by Complete Radiological Response. PLOS ONE, 8, e70016.
https://doi.org/10.1371/journal.pone.0070016
[52] Taylor, K.J., Ramos, I., Morse, S.S., et al. (1987) Focal Liver Masses: Differential Diagnosis with Pulsed Doppler US. Radiology, 164, 643-647.
https://doi.org/10.1148/radiology.164.3.3039570
[53] 梁丽, 宋妮. 肝脏超声血流参数对肝癌术后复发的预测价值[J]. 实用癌症杂志, 2019, 34(8): 1286-1289.