腺苷激活A1与A2A受体诱导睡眠的研究进展
Advances in Sleep Induction by Adenosine Activation of A1 and A2A Receptors
DOI: 10.12677/ACM.2023.132291, PDF, HTML, XML, 下载: 325  浏览: 665  科研立项经费支持
作者: 蒋单栋:杭州医学院临床医学院,浙江 杭州;俞 盈, 么春艳*:杭州医学院食品科学与工程学院,浙江 杭州;任思齐:杭州医学院药学院,浙江 杭州;邹 莹:浙江中医药大学附属第二医院,浙江 杭州
关键词: 腺苷睡眠咖啡因腺苷A1受体腺苷A2A受体Adenosine Sleep Caffeine Adenosine A1 Receptor Adenosine A2A Receptor
摘要: 睡眠–觉醒是一个涉及多系统、多中枢的生理过程,这一变化过程可通过脑内多种神经递质和内源性睡眠物质共同作用而实现。作为一种核苷,腺苷是目前发现的最强的内源性促眠物质之一,激活A1和A2A受体诱导睡眠,其中又以A2A受体占主导作用,A1受体在不同脑区表现出区域特异性。作为中枢腺苷受体拮抗剂,咖啡因通过纹状体伏隔核壳区的A2A受体发挥觉醒效能。为更好地理解腺苷对睡眠的调节机制以及为新型失眠药的研发提供思路,本文对腺苷的代谢和睡眠稳态、A1、A2A受体对睡眠调节作用的差异、咖啡因与A2A受体的关系等内容进行了系统描述。
Abstract: Sleep-wakefulness is a multi-system and multi-center physiological process, which can be realized through the interaction of various neurotransmitters and endogenous sleep substances in the brain. Adenosine, a nucleoside with the strongest sleep-inducing effect, has been found involving in the accumulation of sleep stress and inducing sleep through activation of A2A and A1 receptors, with A2A receptor playing a dominant role and A1 receptor showing regional specificities in different brain regions. As a central receptor antagonist of adenosine, caffeine exerts its awakening effect through A2A receptor in the nucleus accumbens region of the striatum. In order to better under-stand the regulatory mechanism of adenosine on sleep and provide ideas for the product develop-ment of new insomnia drugs, this paper systematically described the metabolism and sleep homeo-stasis of adenosine, the difference of A1 and A2A receptors on sleep regulation, and the relationship between caffeine and A2A receptors.
文章引用:蒋单栋, 俞盈, 任思齐, 邹莹, 么春艳. 腺苷激活A1与A2A受体诱导睡眠的研究进展[J]. 临床医学进展, 2023, 13(2): 2083-2092. https://doi.org/10.12677/ACM.2023.132291

1. 前言

睡眠(Sleep)作为生命必不可少的过程,占据人生命的三分之一,是机体生长、恢复、整合和巩固记忆的重要环节。正常成年人一般以90 min为一个睡眠周期,周期性交替出现4~6次非快动眼睡眠(non-rapid eye movement sleep, NREMS)和快动眼睡眠(rapid eye movement sleep, REMS)后觉醒。睡眠和觉醒的发生及转换是脑内神经递质和内源性睡眠促进物质共同作用的结果,同时受昼夜节律和睡眠稳态调控 [1] 。昼夜节律(Chronobiology)影响一天中发生睡眠表达的时间;睡眠稳态(Sleep homeostasis)提供累积的“持续清醒”输入,从而随着清醒量的增加而增加睡眠驱动力 [2] 。哺乳动物脑内存在着睡眠和觉醒二大神经调节系统。主要的睡眠促进神经元包括下丘脑腹外侧视前区(Ventrolateral preopticarea, VLPO)神经丛、基底前脑(Basal Forebrain, BF)、视前区、基底神经节、大脑皮层、边缘系统GABA能神经元,以及脑干和丘脑的GABA能神经元。主要的觉醒神经元包括脑干网状结构、中缝核(Raphenucleus, RN) 5-羟色胺能神经元、蓝斑(Locuscoeruleus, LC)去甲肾上腺素能神经元及结节乳头核(Tuberomammillary nucleus, TMN)的组胺能神经元等 [3] 。睡眠由许多内源性促睡眠物质共同调节以改善睡眠障碍,包括多种神经递质(如GABA、5-HT、组胺、腺苷等)、前列腺素D2、神经肽/肽类激素、胺类衍生物、核苷类物质、细胞因子/生长因子(IFN、TNF)、甾体激素、NO等 [4] 。

自1929年Drury和Szent-Gyorgyi [5] 首次报道以来,腺苷即受到了广泛关注。腺苷由腺嘌呤(Adenine)通过β-N9糖苷键连接到核糖核酸构成,属于核苷类睡眠调节物质,广泛存在于大脑网络中,药理学和行为学研究表明,脑内细胞外腺苷水平的变化,直接影响睡眠–觉醒过程 [6] 。腺苷的睡眠诱导作用最初由Feldberg和Sherwood [7] 于1954年在猫脑内证实,1973年Haulilca等 [6] 在狗脑中亦发现相同作用,随后更是被广泛证实具有镇静催眠作用。Basheer [8] 等发现升高细胞外腺苷水平,或外源性注射腺苷衍生物 [9] 可增加大鼠的NREMS;相反,阻断腺苷合成降低细胞外腺苷浓度,或阻断其受体效应可显著降低NREMS,增加觉醒 [8] 。在睡眠觉醒动态调控的各环节中,受体既为细胞内信号效应的启动点,亦是重要的干预靶点 [10] 。腺苷通过激活A1和A2A受体发挥睡眠诱导作用,其中A2A受体在睡眠诱导中占主导地位,A1受体以区域特异性的方式促进睡眠 [11] 。众所周知的兴奋剂咖啡因和茶碱,皆通过拮抗腺苷A2A受体而发挥觉醒诱导作用 [12] ;天然药物如芍药苷 [13] 、蛹虫草菌 [14] [15] 及日本清酒 [16] 均作用于腺苷A1受体发挥睡眠诱导作用。本文就腺苷的生成、清除、代谢与睡眠诱导作用做一阐述,围绕腺苷受体如何参与睡眠机制、A1、A2A受体对睡眠调节作用的差异、咖啡因的作用机制等研究进展进行深入探讨,为寻找安全、不良反应小的“安眠药”提供研究思路和可能的新靶点。

2. 腺苷的生成与清除

腺苷可在细胞内或细胞膜表面形成,共有胞内合成与胞外合成两条途径。胞内腺苷以5-核苷酸酶(5-Nucleotidase)催化AMP产生腺苷途径为主。环磷酸腺苷(Cyclic Adenosine monophosphate, cAMP)也可作为底物,由G蛋白偶联受体(G-protein-coupled receptor, GPCR)在细胞内产生后通过磷酸二酯酶(Phosphodiesterase)转化为AMP,进而生成腺苷 [17] 。此外,S-腺苷–同型半胱氨酸(S-adenosyl-homocysteine, SAH)可受S-腺苷–同型半胱氨酸水解酶(S-adenosyl-homocysteine hydrolase, SAHH)水解形成腺苷 [17] [18] 。细胞外腺苷的合成主要通过外切-5-核苷酸酶(Exo-5-nucleotidase)水解ATP或cAMP来源的胞外AMP产生腺苷 [18] ,(如图1)。

细胞内外的腺苷浓度主要通过胞膜上丰富表达的核苷转运蛋白保持平衡,转运方向取决于膜两侧的浓度梯度 [19] 。此外,胞内可逆反应也可调节腺苷浓度的动态平衡,如腺苷通过腺苷激酶可逆性产生AMP;ATP、AMP和cAMP在磷酸二酯酶、腺苷酸环化酶作用下相互转化等,这种双向反应确保在生理条件下,细胞内外腺苷浓度在十到几百nM范围内保持恒定。

腺苷的清除依赖于核苷转运蛋白、腺苷激酶(Adenosine kinase, AK)、腺苷脱氨酶(Adenosinedeaminase, ADA)和S-腺苷–同型半胱氨酸水解酶(S-adenosyl-homocysteine hydrolase, SAHH)。细胞内的腺苷通过AK逆向形成AMP,或在ADA作用下不可逆分解为肌苷,进而被清除。细胞外腺苷的清除主要通过不集中分布的核苷转运蛋白,或通过胞外腺苷脱氨酶(Ecto-adenosinedeaminase)不可逆分解为肌苷 [20] (如图1)。

Figure 1. Intracellular and extracellular generation of adenosine (cited from Jana [21] )

图1. 腺苷在细胞内和细胞外生成与代谢途径(引自Jana [21] )

3. 腺苷与睡眠

3.1. 腺苷与睡眠稳态

腺苷参与睡眠压力积累,增加睡眠稳态倾向。随着清醒时间的延长,胞外腺苷浓度尤其是BF胞外腺苷浓度增加显著,当到达一定阈值时更易诱导机体进入NREM和REM睡眠循环。Porkka-Heiskanen [22] 利用成年公猫自体对比发现,睡眠剥夺6小时后,实验动物NREM时期脑内的腺苷含量较前增长了140%,并且在3小时的恢复性睡眠期间仍保持高水平状态。Baptiste [23] 发现大鼠在觉醒时BF等脑区内腺苷生成更加活跃,随着觉醒时间延长,腺苷浓度逐渐积累,觉醒时腺苷代谢水平比NREM睡眠时相高出约30%。那么,是否睡眠剥夺对BF以外脑区的腺苷浓度同样存在影响?Porkka-Heiskanen [22] 研究证实,成年公猫经过6h睡眠剥夺后,大脑皮层腺苷浓度略有增加,而丘脑、下丘脑视前区、中缝背侧核、桥足被盖核等脑区内腺苷的含量无显著变化或无变化。因此,我们推测,BF可能是睡眠剥夺后发挥睡眠诱导效应的重要脑区,而腺苷则是BF调节睡眠稳态重要的效应分子 [23] 。彭婉玲 [24] 等通过光遗传学发现,BF区域的谷氨酸能神经元活动可促进腺苷快速释放,若选择性敲除BF区域谷氨酸能神经元,该区域腺苷水平降低,睡眠稳态调控即受损。这也进一步揭示了腺苷通过BF区域谷氨酸能神经元活动参与睡眠稳态的神经调控机制,并为探索改善睡眠障碍的治疗方案提供重要理论参考。

除神经元外,星形胶质细胞也参与睡眠压力的积累。星形胶质细胞可通过包括胞吐作用在内的多种途径释放ATP,进而改变细胞外腺苷浓度 [25] 。Ljiljana [26] 运用基因编辑技术选择性构造SNARE阴性的结构域,非特异性阻断星形胶质细胞ATP释放,降低细胞外腺苷浓度。实验结果显示,基因编辑小鼠在睡眠剥夺后较野生鼠更难诱导进入NREM和REM睡眠循环,表现出更短的慢波活动和更长的睡眠恢复时长,提示星形胶质细胞通过调节细胞外腺苷浓度参与睡眠压力的积累与消除。

3.2. 腺苷睡眠诱导作用

腺苷可诱导睡眠,细胞外腺苷浓度与睡眠呈正相关。最初,Porkka-Heiskanen [22] 于2000年通过体内微透析技术从猫的BF、VLPO、RN、大脑皮层等6个脑区收集脑脊液样本,发现在NREM初期,各脑区中腺苷的浓度远高于觉醒时相应脑区腺苷的含量。相较于清醒状态,自发睡眠后细胞外腺苷浓度下降了15%~20%。为进一步明确细胞外腺苷浓度与睡眠的关系,Halassa [27] 通过侧脑室微注射ADA抑制剂—脱氧霉素,提高大鼠中枢神经系统细胞外腺苷浓度,发现大鼠REM和NREM睡眠时相明显增加。此外,直接在大鼠BF部微注射腺苷,同样使NREM睡眠时相增加 [28] 。

如果阻断腺苷消除的其他通路,如注射腺苷转运抑制剂S-4-硝基苄基-6-硫代肌苷 [29] (S-4-nitrobenzyl- 6-thioinosine, NBTI)或腺苷激酶AK阻断剂-ABT-702,皆可升高细胞外腺苷水平,从而延长REM和NREM睡眠时相,并增加慢波脑电波活动。

此外,腺苷还可以作为关键信号分子参与前列腺素D2 (Prostaglandin, PGD2)诱导睡眠。PGD2是生理睡眠中最有效的促睡眠因子之一 [1] [30] ,是大鼠和大多哺乳动物体内最丰富的前列腺素类物质。Huang [30] 发现L-PGDS/PGD2/DP1R系统在生理睡眠的调节中起着关键作用。Mizoguchi [31] 等将PGD2注入小鼠BF的蛛网膜下腔,发现PGD2受体(DP1R)表达明显丰富,细胞外腺苷浓度随PGD2剂量呈线性增加;而在DP1R基因编辑敲除小鼠中则没有观察到PGD2诱导的细胞外腺苷增加。此外,腹腔注射腺苷A2A受体特异性拮抗剂KF17837可阻断PGD2的睡眠诱导效应 [32] ,这提示腺苷的增加取决于DP1R的激活,作用于A2A受体的内源性腺苷可能是PGD2诱导睡眠的中介。腺苷和PGD2是目前公认的最强内源性促睡眠因子,两者之间的相互作用的机制仍有待进一步研究,若清晰两者之间的协同作用机制将为治疗失眠提供重要突破。

4. 腺苷受体与睡眠

作为神经递质,腺苷需要与腺苷受体结合以发挥其生物学效应。腺苷有A1、A2A、A2B、A3四种亚型受体,都属于G蛋白偶联家族。A1和A3受体主要与G蛋白的Gq家族偶联,而A2A和A2B受体主要与Gs家族偶联 [33] 。A1、A2A受体与睡眠密切相关,其中以A2A受体在睡眠诱导中占主要地位。根据已有研究,腺苷诱导睡眠可以分为激活抑制性A1受体或激活兴奋性A2A受体两条途径。

4.1. 腺苷A1受体睡眠诱导机制

A1受体主要分布于BF、VLPO、TMN和下丘脑外侧部(Lateralhypothalamus, LHA),激活A1受体可以增加NREM和REM睡眠时长。研究表明大鼠脑室注射A1受体激动剂—N6-环戊基腺苷(N6-cyclopentyl adenosine, CPA),可剂量依赖地延长NREM睡眠时相 [34] ;但如果仅对侧脑室输注CPA并不改变小鼠NREM和REM睡眠时相 [35] ,推测腺苷对大鼠不同脑区睡眠和觉醒可能具有不同甚至相反的作用。

Mendelson等 [36] 发现,大鼠BF双侧微注射氟马西尼(Flumazenil, Flu),阻断BF区域的GABA能神经元,腺苷睡眠诱导作用被阻断。Yang等 [37] 发现,大鼠BF双侧微注射腺苷,腺苷与A1受体结合抑制胆碱能神经元释放Ach,诱导NREM发生(如图2(c))。因此,BF的腺苷可通过抑制兴奋性神经递质释放或结合抑制性神经元发挥睡眠诱导效应。

大量A1受体分布于TMN中,尤其在组胺能神经元中富集 [38] 。Oishi等 [38] 发现对TMN双侧注射CPA可显著增加NREM时相,或对大鼠TMN区域微注射腺苷或ADA抑制剂也可以增加NREM;如若注射选择性A1受体拮抗剂——1,3-二甲基-8-环丁基黄嘌呤则可减少NREM时相,促进觉醒。因此,TMN中的内源性腺苷通过激活TMN中A1受体抑制组胺能觉醒系统,促进NREM (如图2(a))。此外,腺苷还可以通过A1受体抑制下丘脑外侧的食欲素/垂体神经元(OX/Hcrt)诱导睡眠 [39] ,在此区微注射CPA可延长NREM和REM,注射A1受体拮抗剂则出现觉醒。

A1受体在VLPO的作用机制较复杂,激活VLPO中A1受体不诱导睡眠而是促进觉醒。腺苷激动A1受体后不直接在VLPO发挥促睡眠效应,而是通过触发器切换机制(flip–flop switching mechanism)向脑干和下丘脑投射抑制觉醒神经元。A1受体是抑制性受体,抑制VLPO对脑干和后丘脑的投射,进而减弱了对脑干和后丘脑区觉醒神经元的抑制作用,提高TMN组胺能神经元、LC去甲肾上腺素能神经元、DR的5-羟色胺能神经元和侧脑背侧被盖核(cholinergic laterodorsal tegmentalnucleus, LDT)胆碱能神经元兴奋性,觉醒神经元兴奋性增加,从而反向发挥觉醒作用。触发器切换机制用于避免过渡状态,快速进入替代状态,可以解释唤醒–睡眠转换通常是相对突然的(如人的入睡和突然唤醒) [40] 。下丘脑和脑干之间的触发器开关的稳定性依赖于下丘脑外侧(LHA)的食欲素/垂体(orexin/hypocretin, OX/HCRT) (如图2(b))。

在众多研究的基础上,A1受体的睡眠诱导作用可总结为具有区域特异性。如激活TMN的A1受体,可抑制组胺能神经系统,促进NREM睡眠;相反,激活VLPO的A1受体却促进觉醒 [41] 。

4.2. A2A受体睡眠诱导机制与咖啡因

尽管A1和A2A受体都参与了睡眠诱导,近年来积累的证据表明,A2A受体对睡眠诱导起着更为关键的作用。在大鼠BF微注射高选择性A2A受体激动剂——CGS21680可以稳定可靠地诱导REM睡眠 [42] ;Rtorelli [43] 对大鼠脑桥内侧网状区微注射CGS21680也得到同样的研究结果。中枢神经系统中高浓度的A2A受体主要存在于纹状体(Striatum)、嗅觉结节(olfactorytubercle, OT) [44] 。A2A受体在整个纹状体大量表达,包括伏隔核(Nucleus accumbens, NAc)壳区和核心区 [45] 。若向NAc壳区直接灌流CGS21680,可诱导NREM和REM睡眠,睡眠量相当于向蛛网膜下腔灌流A2A受体激动剂时的3/4 [46] ,同时引起NAc壳区中c-Fos表达显著增加,这提示NAc壳区的A2A受体在纹状体睡眠诱导中占主导地位,且A2A受体对伏隔核存在投射作用 [47] [48] 。亦有学者证明NAc壳区的腺苷A2A受体睡眠诱导机制不直接作用于NAC,而是通过GABA能神经元间接投射抑制LHA、TMN和LC等睡眠唤醒区域的觉醒神经元,从而介导睡眠诱导作用 [49] 。这种投射抑制作用同样受触发器开关(flip-flop switch)控制,用于避免过渡状态,快速进入替代状态 [40] (如图2)。

Figure 2. Sleep wake modulation of adenosine A1 and A2A receptors in various brain regions (cited from Lazarus [38] )

图2. 腺苷A1和A2A受体在各脑区睡眠–觉醒调节机制(引自Lazarus [38] )

此外,嗅觉结节(OT)同样表达丰富的腺苷A2A受体而发挥重要的睡眠调节作用。Li等 [50] 通过化学遗传学激活OT的腺苷A2A受体神经元可增加5小时NREMS,而使用药物阻断A2A受体则可减少NREMS,电生理技术进一步追踪发现OTA2A受体神经元通过投射到苍白腹侧和下丘脑外侧,形成抑制性神经元介导睡眠。

咖啡因是世界上最常用的神经兴奋药,同时又是许多食品的主要添加剂,广泛存在于软饮料、咖啡、茶等饮品中,其唤醒兴奋效能最重要的机制便是拮抗中枢腺苷A2A受体 [12] 。研究发现,咖啡因的主要药理作用,如精神兴奋、运动刺激、行为增强以及对某些神经疾病的保护等,均与其非特异拮抗中枢腺苷受体密切相关。咖啡因的基本化学结构是含有甲基黄嘌呤类活性成分,与A1和A2A受体亲和力极为相近,且对这两种受体亚型皆有拮抗作用 [41] ;而Huang等 [51] 发现敲除A2A受体可破坏咖啡因唤醒作用,敲除A1受体则无影响。因此,不是A1受体,而是A2A受体介导咖啡因的唤醒诱导作用。咖啡因须在A2A受体存在的前提下才能发挥觉醒作用,这提示咖啡因的唤醒可能发生在A2A受体广泛分布的纹状体NAc中 [52] 。Lazarus等 [53] 进一步选择性向NAc壳区、核区、基底核等脑区双侧注入携带短发夹RNA的腺病毒,依靠腺病毒耗竭A2A受体,结果显示选择性敲除NAc壳区内的A2A受体导致咖啡因促觉醒作用消失,而选择性敲除NAc核区或基底核其他区域的A2A受体则对咖啡因的促觉醒作用没有显著影响,证实咖啡因的促觉醒作用部位位于NAc壳区内的A2A受体。因此,咖啡因的兴奋唤醒机制可归纳为:咖啡因阻断NAc壳层的A2A受体,消除了GABA能神经元对LHA、TMN和LC等睡眠唤醒区域觉醒神经元的投射抑制 [53] (如图3)。

Figure 3. A2A receptor-related neurons in the NAc shell region regulate wake mechanisms and caffeine induction (cited from M. Lazarus [53] )

图3. NAc壳区A2A受体相关神经元调控觉醒机制和咖啡因促觉醒作用(引自M. Lazarus [53] )

5. 总结与展望

腺苷是一种高效的内源性促睡眠物质,由AMP或ATP为底物合成,直接影响睡眠–觉醒周期及睡眠稳态。BF是睡眠剥夺后发挥睡眠诱导效应的重要脑区,而腺苷则是重要的效应分子,兴奋BF的谷氨酸能神经元可以快速大量释放腺苷。腺苷睡眠诱导作用可以概括为激活抑制性A1受体和兴奋性A2A受体两条通路。A1受体的睡眠诱导作用可总结为具有区域特异性。如激活TMN和BF的A1受体,可抑制组胺能神经系统和胆碱能神经系统,促进NREM睡眠;相反,激活VLPO的A1受体却促进觉醒。A2A受体在睡眠诱导中占主要地位,纹状体壳区和核心区皆有A2A受体高度表达,其中NAc壳区的A2A受体在纹状体睡眠诱导中占主导地位。NAc壳区的A2A受体通过GABA能神经元间接投射抑制LHA、TMN和LC等睡眠唤醒区域的觉醒神经元发挥睡眠诱导作用,且与咖啡因的兴奋作用密切相关。咖啡因的兴奋机制与A2A受体密切相关,尤其是NAc壳层的A2A受体,因为若是选择性敲除NAc壳区内的A2A受体将导致咖啡因促觉醒作用消失。A1和A2A受体的信号转导通路尚存在较大争议,目前比较公认的是两者都属于G蛋白偶联受体,但A2A受体是cAMP-PKA途径,A1受体是IP3/DAG-Ca2+-PKC途径 [54] 。

目前,全球有近1/4的人受到失眠困扰,我国亦有3亿成年人存在睡眠障碍,且仍有逐年增长的趋势,失眠严重影响了人们的身体健康和生活质量,尤其是老年人的认知功能 [55] [56] 。腺苷及其受体作为筛选镇静催眠药物的靶点具有重要研究意义。然而,腺苷A1和A2A受体信号传导通路仍存在较大争议,不同脑区腺苷如何影响睡眠及脑区之间的相互作用机制并不清晰,除神经元、星形胶质细胞外,其他类型细胞是否也参与腺苷的分泌和调节作用都需要进行深入探讨。此外,考虑到腺苷受体的广泛分布及可能的不良反应,研究腺苷受体构象及其作用机制可为开放脑区特异的高选择性激动剂或变构增强剂提供理论基础。天然产物由于安全性好,可作为改善睡眠药物的“原料库”,但基于腺苷为筛选靶点的研究较少。咖啡因通过腺苷改善睡眠的作用机制不明确,已有的研究结果也不一致;缬草酸 [57] 、芍药苷 [13] 、蛹虫草菌 [14] [15] 及日本清酒 [16] 均作用于腺苷受体发挥睡眠诱导作用,但研究并不深入。随着人们对腺苷改善睡眠作用机制的深入研究,相信会有越来越多安全、高效的天然产物或者选择性受体激动剂成为治疗失眠的候选药物。

基金项目

国家级创新创业训练项目(202113023003);浙江省大学生科技创新活动计划(新苗人才计划)项目(2021R424006)。浙江省自然科学基金(LQY18H280001);浙江中医药大学中青年科研创新基金(KC201942);浙江中医药大学校级科研基金(2019ZZ03);浙江省医药卫生科技计划(2021447171)。

NOTES

*通讯作者。

参考文献

[1] Huang, Z., Urade, Y. and Hayaishi, O. (2007) Prostaglandins and Adenosine in the Regulation of Sleep and Wakefulness. Current Opinion in Pharmacology, 7, 33-38.
https://doi.org/10.1016/j.coph.2006.09.004
[2] Saper, C.B., Roma-novsky, A.A. and Scammell, T.E. (2012) Neural Circuitry Engaged by Prostaglandins during the Sickness Syndrome. Nature Neuroscience, 15, 1088-1095.
https://doi.org/10.1038/nn.3159
[3] 郭配, 李秀华, 张晓韬, 等. 伴有睡眠障碍帕金森病患者的睡眠特征及其影响因[J]. 山东大学学报(医学版), 2018, 56(4): 76-80.
https://doi.org/10.6040/j.issn.1671-7554.0.2017.1020
[4] 王楠, 李丽娟, 马莹莹, 等. 导致睡眠障碍内源性因素的研究进展[J]. 中国临床实用医学, 2020, 11(3): 78-80.
https://doi.org/10.3760/cma.j.cn115570-20200311.00298
[5] Drury, A.N. and Szent-Györgyi, A. (1929) The Physiological Activity of Adenine Compounds with Especial Reference to Their Action upon the Mammalian Heart. The Journal of Physiology, 68, 213-237.
https://doi.org/10.1113/jphysiol.1929.sp002608
[6] Haulică, I., Ababei, L., Brănişteanu, D., et al. (1973) Prelimi-nary Data on the Possible Hypnogenic Role of Adenosine. Revue Roumaine de Physiologie, 10, 275-279.
https://doi.org/10.1111/j.1471-4159.1973.tb07549.x
[7] Eldberg, W. and Sherwood, S.L. (1954) Injections of Drugs into the Lateral Ventricle of the Cat. The Journal of Physiology, 123, 148-167.
https://doi.org/10.1113/jphysiol.1954.sp005040
[8] Basheer, R., Strecker, R.E., Thakkar, M.M., et al. (2004) Adenosine and Sleep-Wake Regulation. Progress in Neurobiology, 73, 379-396.
https://doi.org/10.1016/j.pneurobio.2004.06.004
[9] 杨婉琪, 贾少博, 李栩琳, 等. 腺苷衍生物差向异构体YZG-330和YZG-331的中枢抑制作用比较研究[J]. 中国药理学通报, 2018, 34(6): 785-789.
https://doi.org/10.3969/j.issn.1001-1978.2018.06.010
[10] 张照环, 刘振宇, 张瀚文, 等. 从受体角度研究睡眠-觉醒调控机制[J]. 中国现代神经疾病杂志, 2013, 13(5): 368-371.
https://doi.org/10.3969/j.issn.1672-6731.2013.05.003
[11] Homola, M., Pfeffer, M., Robson, S.C., et al. (2016) Melatonin Receptor Deficiency Decreases and Temporally Shifts Ecto-5’-nucleotidase mRNA Levels in Mouse Prosen-cephalon. Cell and Tissue Research, 365, 147-156.
https://doi.org/10.1007/s00441-016-2378-x
[12] Borroto-Escuela, D.O. and Fuxe, K. (2019) Adenosine Hetero-receptor Complexes in the Basal Ganglia Are Implicated in Parkinson’s Disease and Its Treatment. Journal of Neural Transmission, 126, 455-471.
https://doi.org/10.1007/s00702-019-01969-2
[13] Zhang, B., Shao, S., Aritake, K., et al. (2017) Interleukin-1β In-duces Sleep Independent of Prostaglandin D2 in Rats and Mice. Neuroscience, 340, 258-267.
https://doi.org/10.1016/j.neuroscience.2016.09.053
[14] 刘宽博, 王芬, 柴一秋, 等. 广义虫草类真菌来源的N6-(2-羟乙基)腺苷的研究开发现状与思考[J]. 菌物学报, 2017, 36(1): 6-13.
https://doi.org/10.13346/j.mycosystema.160206
[15] 聂开美, 杜思邈, 陈梅, 等. 蛹虫草N6-(2-羟乙基)腺苷与多糖组合给药对小鼠睡眠的影响[J]. 食药用菌, 2021, 29(3): 216-221.
[16] Prescott, S.L., Wegienka, G., Logan, A.C., et al. (2018) Dysbiotic Drift and Biopsychosocial Medicine: How the Microbiome Links Personal, Public and Planetary Health. BioPsychoSocial Medicine, 12, 1-7.
https://doi.org/10.1186/s13030-018-0126-z
[17] Latini, S. and Pedata, F. (2001) Adenosine in the Central Nervous System: Release Mechanisms and Extracellular Concentrations. Journal of Neurochemistry, 79, 463-484.
https://doi.org/10.1046/j.1471-4159.2001.00607.x
[18] Huang, Z. (2017) Genetically Engineered Systems Re-vealed the Roles of Basal Ganglia in Sleep-Wake Regulation. Chinese Journal of Pharmacology and Toxicology, 31, 470-471.
[19] Oliveira, S., Oliveira, M. and Hipolide, D.C. (2019) A1 Adenosine Receptors in the Striatum Play a Role in the Memory Impairment Caused by Sleep Deprivation through Downregulation of the PKA Pathway. Neurobiology of Learning and Memory, 160, 91-97.
https://doi.org/10.1016/j.nlm.2018.03.025
[20] Huang, S., Yan, J., Luo, H., et al. (2018) IL-33/ST2 Signaling Contributes to Radicular Pain by Modulating MAPK and NF-κB Activation and Inflam-matory Mediator Expression in the Spinal Cord in Rat Models of Noncompressive Lumber Disk Herniation. Journal of Neuroinflammation, 15, 12.
https://doi.org/10.1186/s12974-017-1021-4
[21] Sawynok, J. and Xue, J. (2003) Adenosine in the Spinal Cord and Periphery: Release and Regulation of Pain. Progress in Neurobiology, 69, 313-340.
https://doi.org/10.1016/S0301-0082(03)00050-9
[22] Porkka-Heiskanen, T., Strecker, R.E. and McCarley, R.W. (2000) Brain Site-Specificity of Extracellular Adenosine Concentration Changes during Sleep Deprivation and Sponta-neous Sleep: An in Vivo Microdialysis Study. Neurosciences, 99, 507-517.
https://doi.org/10.1016/S0306-4522(00)00220-7
[23] Balana, B., Meiller, A., Bezin, L., et al. (2016) Altered Hy-permetabolic Response to Cortical Spreading Depolarizations after Traumatic Brain Injury in Rats. Journal of Cerebral Blood Flow & Metabolism, 37, 1670-1686.
https://doi.org/10.1177/0271678X16657571
[24] Peng, W., Wu, Z., Song, K., et al. (2020) Regulation of Sleep Homeostasis Mediator Adenosine by Basal Forebrain Glutamatergic Neurons. Science, 369, 1208-1212.
https://doi.org/10.1126/science.abb0556
[25] Fredholm, B.B., IJzerman, A.P., Jacobson, K.A., et al. (2011) Inter-national Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and Classification of Adenosine Recep-tors—An Update. Pharmacological Reviews, 63, 1-34.
https://doi.org/10.1124/pr.110.003285
[26] Nikolic, L., Shen, W., Nobili, P., et al. (2018) Blocking TNFα-Driven Astrocyte Purinergic Signaling Restores Normal Synaptic Activity during Epileptogenesis. Glia, 66, 2673-2683.
https://doi.org/10.1002/glia.23519
[27] Halassa, M.M. (2011) Thalamocortical Dynamics of Sleep: Roles of Pu-rinergic Neuromodulation. Seminars in Cell & Developmental Biology, 22, 245-251.
https://doi.org/10.1016/j.semcdb.2011.02.008
[28] Chopra, A., Patel, R.S. and Das, P. (2020) Neurobiology of Sleep and Wakefulness. In: Chopra, A., Das, P. and Doghramji, K., Eds., Management of Sleep Disorders in Psychiatry, Oxford Academic, New York.
https://doi.org/10.1093/med/9780190929671.003.0003
[29] Radek, R.J., Decker, M.W. and Jarvis, M.F. (2004) The Adenosine Kinase Inhibitor ABT-702 Augments EEG Slow Waves in Rats. Brain Research, 1026, 74-83.
https://doi.org/10.1016/j.brainres.2004.08.011
[30] Hayaishi, O., Urade, Y. and Huang, Z. (2011) The Role of Adenosine in the Regulation of Sleep. Current Topics in Medicinal Chemistry, 11, 1047-1057.
https://doi.org/10.2174/156802611795347654
[31] Mizoguchi, A., Eguchi, N., Kimura, K., et al. (2001) Dominant Localization of Prostaglandin D Receptors on Arachnoid Trabecular Cells in Mouse Basal Forebrain and Their Involve-ment in the Regulation of Non-Rapid Eye Movement Sleep. The Proceedings of the National Academy of Sciences, 98, 11674-11679.
https://doi.org/10.1073/pnas.201398898
[32] Chen, Y. and Zhang, J. (2021) How Energy Supports Our Brain to Yield Consciousness: Insights from Neuroimaging Based on the Neuroenergetics Hypothesis. Frontiers in Systems Neuroscience, 15, 648-860.
https://doi.org/10.3389/fnsys.2021.648860
[33] Zhu, X. and Chen, W. (2018) In Vivo X-Nuclear MRS Imaging Methods for Quantitative Assessment of Neuroenergetic Biomarkers in Studying Brain Function and Aging. Frontiers in Aging Neuroscience, 10, 394.
https://doi.org/10.3389/fnagi.2018.00394
[34] Borbély, A.A., Daan, S., Wirz-Justice, A., et al. (2016) The Two-Process Model of Sleep Regulation: A Reappraisal. Journal of Sleep Research, 25, 131-143.
https://doi.org/10.1111/jsr.12371
[35] Oishi, Y. and Lazarus, M. (2017) The Control of Sleep and Wakefulness by Mesolimbic Dopamine Systems. Neuroscience Research, 118, 66-73.
https://doi.org/10.1016/j.neures.2017.04.008
[36] Mendelson, W.B. (2000) Sleep-Inducing Effects of Adenosine Microinjections into the Medial Preoptic Area Are Blocked by Flumazenil. Brain Research, 852, 479-481.
https://doi.org/10.1016/S0006-8993(99)02204-0
[37] Yang, C., Franciosi, S. and Brown, R.E. (2013) Adenosine Inhibits the Excitatory Synaptic Inputs to Basal Forebrain Cholinergic, GABAergic, and Parvalbumin Neurons in Mice. Frontiers in Neurology, 4, 77.
https://doi.org/10.3389/fneur.2013.00077
[38] Lazarus, M., Jiang, F., Huang, Z., et al. (2017) Adenosine and Sleep. Handbook of Experimental Pharmacology, Vol. 253, Springer, Berlin, 1-6.
[39] Kuntze, L.B., Ferreira-Junior, N.C., Lagatta, D.C., et al. (2016) Ventral Hippocampus Modulates Bradycardic Response to Peripheral Chemoreflex Activation in Awake Rats. Experimental Physiology, 101, 482-493.
https://doi.org/10.1113/EP085393
[40] Saper, C.B., Scammell, T.E. and Lu, J. (2005) Hypothalamic Regulation of Sleep and Circadian Rhythms. Nature, 437, 1257-1263.
https://doi.org/10.1038/nature04284
[41] Methippara, M.M., Kumar, S., Alam, M.N., et al. (2005) Effects on Sleep of Microdialysis of Adenosine A1 and A2a Receptor Ana-logs into the Lateral Preoptic Area of Rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 289, R1715-R1723.
https://doi.org/10.1152/ajpregu.00247.2005
[42] Keshavarz, M., Farrokhi, M.R. and Amiri, A. (2017) Caffeine Neuroprotective Mechanism against β-Amyloid Neurotoxicity in SHSY5Y Cell Line: In-volvement of Adenosine, Ryanodine, and N-methyl-D-aspartate Receptors. Advanced Pharmaceutical Bulletin, 7, 579-584.
https://doi.org/10.15171/apb.2017.069
[43] BeRtorelli, R., Ferri, N., Adami, M., et al. (2015) Effects of Selective Agonists and Antagonists for A1 or A2A Adenosine Receptors on Sleep-Waking Patterns in Rats. Drug Devel-opment Research, 37, 65-72.
https://doi.org/10.1002/(SICI)1098-2299(199602)37:2<65::AID-DDR1>3.0.CO;2-J
[44] Domingo, C., Palomares, O., Sandham, D.A., et al. (2018) The Prostaglandin D2 Receptor 2 Pathway in Asthma: A Key Player in Airway In-flammation. Respiratory Research, 19, 189.
https://doi.org/10.1186/s12931-018-0893-x
[45] Sykes, D.A., Bradley, M.E., Riddy, D.M., et al. (2016) Fevipiprant (QAW039), a Slowly Dissociating CRTh2 Antagonist with the Potential for Improved Clinical Efficacy. Molecular Pharmacology, 89, 593-605.
https://doi.org/10.1124/mol.115.101832
[46] Chazelas, B., Pepe, F., Wildi, F., et al. (2010) New Scramblers for Precision Radial Velocity: Square and Octagonal Fibers. Proceedings of SPIE, 7739, 134.
https://doi.org/10.1117/12.856874
[47] Satoh, S., Matsumura, H., Koike, N., et al. (2010) Region-Dependent Dif-ference in the Sleep-Promoting Potency of an Adenosine A2A Receptor Agonist. European Journal of Neuroscience, 11, 1587-1597.
https://doi.org/10.1046/j.1460-9568.1999.00569.x
[48] Scammell, T.E., Gerashchenko, D.Y., Mochizuki, T., et al. (2001) An Adenosine A2A Agonist Increases Sleep and Induces Fos in Ventrolateral Preoptic Neurons. Neuroscience, 107, 653-663.
https://doi.org/10.1016/S0306-4522(01)00383-9
[49] Wang, Y., Li, R., Wang, D., et al. (2017) Adenosine A2A Receptors in the Olfactory Bulb Suppress Rapid Eye Movement Sleep in Rodents. Brain Structure and Function, 222, 1351-1366.
https://doi.org/10.1007/s00429-016-1281-2
[50] Li, R., Wang, Y., Liu, W., et al. (2020) Activation of Adenosine A2A Receptors in the Olfactory Tubercle Promotes Sleep in Rodents. Neuropharmacology, 168, Article ID: 107923.
https://doi.org/10.1016/j.neuropharm.2019.107923
[51] Huang, Z., Qu, W., Eguchi, N., et al. (2005) Adenosine A2A, but Not A1, Receptors Mediate the Arousal Effect of Caffeine. Nature Neuroscience, 8, 858-859.
https://doi.org/10.1038/nn1491
[52] Ferré, S., Bonaventura, J., Zhu, W., et al. (2018) Essential Control of the Function of the Striatopallidal Neuron by Pre-Coupled Complexes of Adenosine A2A-Dopamine D2 Receptor Hetero-tetramers and Adenylyl Cyclase. Frontiers in Pharmacology, 9, 243.
https://doi.org/10.3389/fphar.2018.00243
[53] Lazarus, M., Shen, H., Cherasse, Y., et al. (2011) Arousal Effect of Caffeine Depends on Adenosine A2A Receptors in the Shell of the Nucleus Accumbens. Journal of Neuroscience, 31, 10067-10075.
https://doi.org/10.1523/JNEUROSCI.6730-10.2011
[54] Bedford, J.M. (2010) Effects of Duct Ligation on the Fertilizing Ability of Spermatozoa from Different Regions of the Rabbit Epididymis. Journal of Experimental Zoology, 166, 271-282.
https://doi.org/10.1002/jez.1401660210
[55] 吉赛赛, 吕跃斌, 曲英莉, 等. 中国65岁及以上老年人睡眠时长与认知功能受损的关联研究[J]. 中华预防医学杂志, 2021, 55(1): 31-38.
https://doi.org/10.3760/cma.j.cn112150-20200916-01208
[56] 蒋单栋, 么春艳, 肖鹏, 邹莹. 葛根提取物对小鼠免疫功能的影响[J]. 食品与营养科学, 2022, 11(4): 314-321.
[57] Adamatzky, A. (2012) On Attraction of Slime Mould Physarum polycephalum to Plants with Sedative Properties. Nature Precedings, 5, 297-299.