放射性心脏损伤检测方法的研究进展
Research Progress of Radioactive Heart Injury Detection Methods
DOI: 10.12677/ACM.2023.132225, PDF, HTML, XML, 下载: 249  浏览: 414 
作者: 马娜娜, 陈 凡*, 赵 兴:青海大学附属医院放疗科,青海 西宁
关键词: 放射治疗心脏损伤心脏毒性检测方法Radiation Therapy Heart Damage Cardiac Toxicity Detection Method
摘要: 放射治疗(RT)作为肿瘤治疗的重要手段之一,极大地提高了乳腺等胸部恶性肿瘤患者的生存率和生存期,同时,对邻近结构的附带损伤导致了不可避免的并发症,严重降低患者的生活质量和生存获益。随着患者生存期的延长,治疗带来的副作用对肿瘤治疗效果及预后的影响越来越突出。近年来,放射性心脏损伤(RIHD)已成为胸部肿瘤放疗患者非肿瘤性死亡的首要原因。RIHD的早期发现和及时干预对肿瘤患者具有重要的临床意义,本文对血清学检测、影像学检查等RIHD检测方法进行简要综述。
Abstract: As one of the important means of tumor treatment, radiotherapy (RT) has greatly improved the survival rate and survival period of patients with breast and other breast malignant tumors. Meanwhile, the collateral damage to adjacent structures leads to inevitable complications, which seriously reduces the quality of life and survival benefits of patients. With the prolongation of pa-tients’ survival time, the side effects of treatment have more and more prominent influence on the efficacy and prognosis of tumor treatment. In recent years, radiation-induced heart injury (RIHD) has become the leading cause of non-neoplastic death in patients treated with radiotherapy for thoracic tumors. Early detection and timely intervention of RIHD have important clinical signifi-cance for tumor patients. This paper briefly reviews the detection methods of RIHD such as serolog-ical detection and imaging examination.
文章引用:马娜娜, 陈凡, 赵兴. 放射性心脏损伤检测方法的研究进展[J]. 临床医学进展, 2023, 13(2): 1629-1635. https://doi.org/10.12677/ACM.2023.132225

1. 引言

放射治疗(radiotherapy, RT)是肿瘤治疗的重要手段,约70%的肿瘤患者在治疗过程中需要放射治疗 [1] 。在乳腺癌、肺癌、食管癌、淋巴瘤等恶性肿瘤胸部放疗过程中,由于解剖位置接近,心脏不可避免地受到低剂量辐射,这些辐射可导致急性和慢性心脏损伤(radiation-induced heart damage, RIHD),损伤程度与照射剂量、次数和体积呈正相关关系,临床表现为心包炎、心肌病、冠状动脉疾病、心脏瓣膜病和传导系统异常 [2] 。RIHD是一种进行性多因素疾病,发病机制可能与辐射诱导的大分子(包括DNA、蛋白质和脂质)损伤、慢性炎症反应、内皮细胞损伤、微血栓形成、线粒体和内质网损伤、心脏纤维化、细胞死亡、自噬失调等因素相关 [3] 。据报道,治疗5~10年后RIHD的发病率约为10%~30%,心血管并发症已成为接受放疗的肿瘤患者最常见的非肿瘤性死亡原因 [4] 。RIHD早期一般无症状或仅有轻微临床表现,通常在照射数年后才出现临床症状,但亚临床心脏变化可能在临床上显著的心脏事件出现之前很久就发生了 [5] 。因此,临床医生必须应用适当的检测方法早期识别RIHD,以启动心脏保护治疗并防止进一步损伤。本文现将RIHD的检测方法总结如下。

2. 心电图

心电图(electrocardiogram, ECG)是最简便的心脏检查方法,广泛应用于心脏传导系统异常、心肌缺血、心肌梗死的早期识别。一项回顾性研究报道203例肺癌患者接受胸部放疗后,106例(52.2%)出现心电图异常,其中ST-T改变59例(29.1%),窦性心律失常27例(13.3%),偶发房性早搏7例(3.4%),偶发室性早搏6例(2.9%),传导阻滞7例(3.4%) [6] 。文献报道75%接受胸部放疗的癌症幸存者出现ECG异常 [7] [8] ,这些异常通常在放疗后2个月内出现,可累及心脏传导系统的任何结构,放疗半年后70%的心电图异常可恢复正常 [9] 。武霞 [10] 等报道RIHD采用24 h动态心电图在检测心律失常、房室传导阻滞、束支传导阻滞、ST-T改变方面优于常规心电图。事实上,对于RIHD的检测,心电图的敏感性和特异性有限,临床上常用于RIHD无症状患者的一线筛查。

3. 生物标志物

生物标志物是早期识别和监测RIHD的重要工具。陈情 [6] 等对203例胸部肿瘤患者于放疗前后行肌酸激酶(CK)及其同工酶(CK-MB)、脑钠肽(BNP)检查,发现在放疗后2个月CK、CK-MB及BNP水平明显升高,心肌酶谱和BNP异常率分别为39.9%和4.9%。此外,研究发现放疗后c反应蛋白(CRP)、N端脑钠肽前体(NT-proBNP)、肌钙蛋白I (cTnI)等水平升高 [11] [12] [13] [14] ,但也有研究结果表示没有显著变化 [15] 。近年来,一些新的生物标志物被提出。研究发现胸部放疗后的患者,特别是在肺癌和淋巴瘤患者中,胎盘生长因子(PIGF)和生长分化因子-15(GDF-15)水平显著升高,并与MHD、V5和V30独立相关 [16] 。Speers C.等 [17] 在对51名接受放疗的左侧乳腺癌患者的研究中观察到基线IL-6、cTnI和MHD之间显著相关。Zeng Z.-M.等 [18] 人研究发现患者接受胸部放疗时,生长刺激表达基因2蛋白(ST-2)水平在放疗期间随着时间的推移而升高,V5、V10、V20和MHD与ST-2变化率独立且正相关。Hawkins P G等 [19] 在对肺癌放疗患者的研究中发现,14种循环microRNAs血清浓度的变化与三级以上放疗诱导的心脏毒性风险的增加或降低相关。VasbinderA等 [20] 的研究发现8-OH-dG (一种氧化应激和DNA损伤的标志物)与接受放疗的乳腺癌存活者的长期心脏结局独立相关。Marinko T.等 [21] 的研究发现,遗传多态性与乳腺癌患者放疗后心脏不良事件的发生显着相关。生物标志物是RIHD研究的热点,血清、遗传和影像学生物标志物的整合可能是RT诱导心脏毒性的更好预测因素 [22] 。

4. 超声心动图

超声心动图是一种经济、无创、可重复的检查方法,在肿瘤治疗相关心脏毒性的筛查、诊断和监测中发挥着重要作用。超声心动图监测左室射血分数(LVEF)是检测RIHD的最常用的方法。最新EACVI/ASE共识声明将肿瘤治疗所致心脏毒性定义为LVEF下降10%或LVEF < 53%以下 [23] 。然而,LVEF对检测早期亚临床心脏损伤并不敏感 [24] [25] 。近年来,学者提出斑点追踪超声心动图(STE)可评估早期RIHD亚临床表现。Li T.等 [26] 对48例胸部放疗患者在放疗前后进行生物标志物、ECG、超声心动图和二维斑点追踪超声心动图(2D-STE)检查,结果发现放疗后2个月内RIHD发生率为44%,放疗后整体纵向应变指数(GLS)显著下降,并且发现GLS的变化早于LVEF、CK、cTnT、NT-proBNP和ECG参数的变化。与上述一致,多项研究表明GLS是RIHD早期检测的可靠工具,可以更快地诊断心脏毒性 [27] [28] 。早期RIHD主要表现为心脏舒张功能减退,二尖瓣多普勒超声指标E/E'、E/A等指标被广泛应用于抗肿瘤治疗后评价心功能。组织多普勒显像(TDI)技术对心脏舒张功能的评价具有很高的敏感性和客观性。杨菲等 [29] 采用TDI技术评估RIHD的研究结果发现E/Em、左心房容积指数可作为早期左心功能损伤的较好指标。与二维超声心动图相比,三维超声心动图评估左心室容积和LVEF更准确,与心脏MRI检查结果的一致性更好 [30] 。此外,负荷超声心动图可以识别静止时不明显的心脏结构和功能变化,在检测放疗诱发的冠心病方面比心肌灌注成像更敏感、更特异 [31] ,还可用于评估心肌缺血和动态评估放射性瓣膜性心脏病 [32] 。

5. 心脏CT

心脏CT检查包括CT冠状动脉造影(CTA)和冠状动脉钙扫描(CAC),在诊断冠状动脉疾病和心包疾病方面被用做更敏感的检测方法。CTA是唯一能够对冠状动脉进行可靠成像的无创技术,能够评估冠状动脉疾病(CAD)的严重程度、组成和位置,特别适用于CAD早期阶段的检测。Ar Van R.等 [33] 对接受过放化疗的79例淋巴瘤幸存者进行CTA检查,结果59%的患者出现CTA异常,其中,10%的患者出现双血管CAD,24%的患者出现三支血管/左主冠状动脉硬化CAD;53%的患者出现现轻微狭窄严重程度(冠状动脉管腔梗阻 < 30%),7%的患者出现严重狭窄(70%梗阻或闭塞);左前降支、右冠状动脉近端、左主动脉等近端段冠状动脉斑块较多。此外,心脏CT在检测局限性心包积液和心包增厚的敏感性优于超声心动图 [4] 。文献中也提到了CAC评分的价值。CAC评分可以在常规放疗计划CT扫描中自动量化,可用于测量冠状动脉粥样硬化斑块负荷和预测心血管疾病风险。一项多中心队列研究发现乳腺癌放疗计划CT扫描结果的CAC评分与心血管疾病相关,尤其是CAD [34] 。由于心脏CT检查有心率和节律依赖性、辐射、屏气、静脉碘化造影剂等缺点 [35] ,所以并不常用于肿瘤治疗后长期监测RIHD。

6. 心脏MRI

心脏磁共振成像(CMR)结合了断层扫描和功能成像的优点,是评估心室容量和收缩功能的金标准。此外,CMR提供了对心肌的良好监测,包括心肌水肿、灌注异常和心脏纤维化或坏死。研究指出,在心肌炎症/水肿的设定中,T2映射是最敏感的参数,天然T1值升高可反映水肿和纤维化,而细胞外体积分数(ECV)是检测心肌纤维化最敏感的参数 [22] 。一项研究评估了51名接受放疗的左侧乳腺癌女性患者的CMR,结果发现T1 (纤维化标志物)和RVEF随治疗而显著改变,这些不是剂量依赖性的;T2 (水肿标志物)和LVEF无明显变化 [17] 。晚期钆增强(LGE)被认为是无创评估心肌纤维化的金标准 [36] 。Van Der Velde N等 [37] 对80名接受纵隔放疗后20 ± 8年的淋巴瘤幸存者进行CMR检查,结果表明,与健康对照组相比,淋巴瘤幸存者LVEF和左心室质量、左心室应变参数降低,而左心室收缩末期容积显著增加;显示弥漫性心肌纤维化的天然心肌T1显著更高;ECV和心肌T2方面无明显差异;11%的幸存者存在晚期钆增强。CMR不仅能够无创评估心脏结构和功能、心肌组织表征、血流分析、心肌灌注等,还可以提供心外检查(转移灶)的信息,因此可用于解决肿瘤心脏病学新兴领域的各种重要临床问题,但是其有限的可用性和相对较高的成本限制了临床广泛应用。

7. 心脏核医学

心脏放射性核素显像包括单光子发射断层扫描(SPECT)和正电子发射断层扫描(PET)。SPECT可以提供区域心肌灌注成像(MPI)、壁运动和射血分数的定量功能数据。Eftekhari M.等 [38] 采用SPECT评估了71例放化疗乳腺癌患者心肌灌注情况,结果在放疗6个月后,42.9%的左侧乳腺癌患者和16.7%的右侧乳腺癌患者检测到灌注异常。Abraham A.等 [39] 对181名乳腺癌患者在基线、放疗后6个月、1年、2年和5年通过SPECT评估心脏灌注,发现左侧乳腺癌患者放疗后出现短期灌注缺陷,灌注缺损均位于左前降支供血的心脏区域,并在放疗结束后1年恢复,与晚期心脏事件无关,而左心室剂量体积(5 Gy和10 Gy)与晚期心脏事件相关。此外,SPECT相机可用于创建多门采集扫描,以评估左心室收缩和舒张功能 [40] 。PET可以通过利用示踪剂准确定量测量心肌血流量(MBF)来检测心肌灌注,有助于无创检测心肌缺血和冠状动脉微血管疾病,内皮功能障碍的早期征象 [41] 。研究发现15O-H2O PET/CT的摄取与MBF呈线性相关,是MBF无创测量的金标准,该示踪剂还能够通过测量灌注组织分数(PTF)来评估组织活力 [42] 。Żyromska A.等 [43] 对15例接受放疗的乳腺癌患者在放疗前及放疗后2、8个月行15O-H2O PET/CT检查,在静息和负荷条件下定量地评估17个心脏节段的MBF,结果显示在放疗2个月后53%的患者MBF下降,放疗8个月后66%的患者MBF下降。负荷测试比静息测试更敏感,研究显示左冠状动脉前降支(LAD)供血节段灌注是MBF变化的主要部位。值得注意的是,该研究中在放疗后33%的患者MBF增加,可能提示急性炎症反应的存在,而MBF下降可能是先前炎症反应的最终结果,但尚未得到证实。同样,另外两种PET示踪剂13N-NH3和82Rb在RIHD的检测中具有很高的价值 [44] [45] 。此外,文献报道一种新型PET示踪剂18F-FDG可以准确检测细胞心肌代谢的变化,从而在心脏毒性导致左心室功能不全的早期阶段可视化心肌细胞的变化 [46] 。相关动物实验研究检测到照射野中18F-FDG摄取值升高,学者猜测心肌照射野中的高FDG摄取可能与由辐射诱发的微血管损伤和线粒体损伤引起的心肌损伤有关 [47] [48] 。

PET/MRI是一种新型技术,它将MRI序列与功能性PET信息结合在一次扫描中。与PET/CT相比,它具有高组织对比度、更好的运动校正、低电离辐射等优势 [49] 。目前关于PET/MRI的研究极少,其在评估心血管疾病的应用价值需要进一步研究。

8. 总结

《2021CSCO肿瘤治疗相关心血管毒性防治指南》建议,所有计划接受潜在心血管毒性抗肿瘤治疗的患者,应先进行基线风险评估(体格检查、心电图、生物标志物、超声心动图),权衡优化抗肿瘤治疗方案。在抗肿瘤治疗期间和治疗后要定期检测生物标志物、心电图、LVEF和GLS进行心血管毒性监测。若观察到LVEF、GLS下降等早期RIHD表现,可邀请肿瘤心脏病科等进行多学科会诊,尽早采取措施及时干预和启动心脏保护治疗(ACEI/β受体阻滞剂等)。心电图可用于检测RIHD传导系统异常。cTnI和NT-proBNP等多种生物标志物对RIHD的早期发现和辅助诊断具有重要作用。超声心动图被推荐为RIHD检测的首选方法,STE计算的应变和应变率成像是检测心脏早期亚临床损伤的高度特异性方法。CT和CMR在检测某些解剖异常(心包增厚、钙化、心肌纤维化)方面更具特异性。CAC可作为早期检测RIHD动脉粥样硬化的廉价、实用的成像方式。SPECT和PET可早期发现心肌灌注和室壁运动异常的信息,为RT诱导的心脏毒性的早期检测提供了巨大的潜力。总之,早期识别RIHD对改善肿瘤患者的预后和生存至关重要,临床医生应该合理使用现有的检测技术对接受胸部RT的患者进行积极的心脏毒性筛查和监测。

NOTES

*通讯作者。

参考文献

[1] 郎锦义. 中国放疗三十年回顾、思考与展望[J]. 肿瘤预防与治疗, 2017, 30(1): 1-4+6.
[2] Ellahham, S., Khalouf, A., Elkhazendar, M., et al. (2022) An Overview of Radiation-Induced Heart Disease. Radiation Oncology Journal, 40, 89-102.
https://doi.org/10.3857/roj.2021.00766
[3] Sárközy, M., Varga, Z., Gáspár, R., et al. (2021) Pathomecha-nisms and Therapeutic Opportunities in Radiation-Induced Heart Disease: From Bench to Bedside. Clinical Research in Cardiology, 110, 507-531.
https://doi.org/10.1007/s00392-021-01809-y
[4] Lancellotti, P., Nkomo, V.T., Badano, L.P., et al. (2013) Expert Consensus for Multi-Modality Imaging Evaluation of Cardiovascular Complications of Radiotherapy in Adults: A Report from the European Association of Cardiovascular Imaging and The American Society of Echocardiography. European Heart Journal. Cardiovascular Imaging, 14, 721-740.
https://doi.org/10.1093/ehjci/jet123
[5] Zhu, Q., Kirova, Y.M., Cao, L., et al. (2018) Cardiotoxicity Associated with Radiotherapy in Breast Cancer: A Question-Based Review with Current Literatures. Cancer Treatment Reviews, 68, 9-15.
https://doi.org/10.1016/j.ctrv.2018.03.008
[6] 陈情, 李越, 颜若难. 调强放疗对肺癌患者心电图心肌酶谱及b型利钠肽的影响[J]. 中国肿瘤临床, 2020, 47(18): 944-948.
[7] Koutroumpakis, E., Palaskas, N.L., Lin, S.H., et al. (2020) Modern Radiotherapy and Risk of Cardiotoxicity. Chemotherapy, 65, 65-76.
https://doi.org/10.1159/000510573
[8] Belzile-Dugas, E. and Eisenberg, M.J. (2021) Radiation‐Induced Cardio-vascular Disease: Review of an Underrecognized Pathology. Journal of the American Heart Association, 10, e021686.
https://doi.org/10.1161/JAHA.121.021686
[9] Wang, H., Wei, J., Zheng, Q., et al. (2019) Radiation-Induced Heart Disease: A Review of Classification, Mechanism and Prevention. International Journal of Biological Sciences, 15, 2128-2138.
https://doi.org/10.7150/ijbs.35460
[10] 武霞, 杨清华, 刘学键, 等. 24h动态心电图联合心肌肌钙蛋白ⅰ评价放射性心脏损伤的应用研究[J]. 中华放射肿瘤学杂志, 2020, 29(6): 421-426.
[11] Palumbo, I., Palumbo, B., Fravolini, M.L., et al. (2016) Brain Natriuretic Peptide as a Cardiac Marker of Transient Radiotherapy-Related Dam-age in Left-Sided Breast Cancer Patients: A Prospective Study. Breast (Edinburgh, Scotland), 25, 45-50.
https://doi.org/10.1016/j.breast.2015.10.004
[12] D’Errico, M.P., Petruzzelli, M.F., Gianicolo, E.A.L., et al. (2015) Kinetics of b-Type Natriuretic Peptide Plasma Levels in Patients with Left-Sided Breast Cancer Treated with Radiation Therapy: Results after One-Year Follow-Up. International Journal of Radiation Biology, 91, 804-809.
https://doi.org/10.3109/09553002.2015.1027421
[13] Skyttä, T., Tuohinen, S., Boman, E., et al. (2015) Troponin t-Release Associates with Cardiac Radiation Doses during Adjuvant Left-Sided Breast Cancer Radiotherapy. Radiation Oncology (London, England), 10, 141.
https://doi.org/10.1186/s13014-015-0436-2
[14] Tian, S., Hirshfield, K.M., Jabbour, S.K., et al. (2014) Serum Biomarkers for the Detection of Cardiac Toxicity after Chemotherapy and Radiation Therapy in Breast Cancer Patients. Frontiers in Oncology, 4, 277.
https://doi.org/10.3389/fonc.2014.00277
[15] Kozak, K.R., Hong, T.S., Sluss, P.M., et al. (2008) Cardiac Blood Biomarkers in Patients Receiving Thoracic (Chemo)radiation. Lung Cancer (Amsterdam, Netherlands), 62, 351-355.
https://doi.org/10.1016/j.lungcan.2008.03.024
[16] Demissei, B.G., Freedman, G., Feigenberg, S.J., et al. (2019) Early Changes in Cardiovascular Biomarkers with Contemporary Thoracic Radiation Therapy for Breast Cancer, Lung Cancer, and Lymphoma. International Journal of Radiation Oncology, Biology, Physics, 103, 851-860.
https://doi.org/10.1016/j.ijrobp.2018.11.013
[17] Speers, C., Murthy, V.L., Walker, E.M., et al. (2022) Cardiac Magnetic Resonance Imaging and Blood Biomarkers for Evaluation of Radiation-Induced Cardiotoxicity in Patients with Breast Cancer: Results of a Phase 2 Clinical Trial. International Journal of Radiation Oncology Biology Physics, 112, 417-425.
https://doi.org/10.1016/j.ijrobp.2021.08.039
[18] Zeng, Z.-M., Xu, P., Zhou, S., et al. (2020) Positive Association between Heart Dosimetry Parameters and a Novel Cardiac Biomarker, Solublest-2, in Thoracic Cancer Chest Radiation. Journal of Clinical Laboratory Analysis, 34, e23150.
https://doi.org/10.1002/jcla.23150
[19] Hawkins, P.G., Sun, Y., Dess, R.T., et al. (2019) Circulating Micrornas as Biomarkers of Radiation-Induced Cardiac Toxicity in Non-Small-Cell Lung Cancer. Journal of Cancer Research and Clinical Oncology, 145, 1635-1643.
https://doi.org/10.1007/s00432-019-02903-5
[20] Vasbinder, A., et al. (2022) Chronic Oxidative Stress as a Marker of Long-Term Radiation-Induced Cardiovascular Outcomes in Breast Cancer. Journal of Cardiovascular Trans-lational Research.
[21] Marinko, T., Stojanov Konda, J.T., Dolžan, V., et al. (2020) Genetic Variability of Antioxidative Mechanisms and Cardiotoxicity after Adjuvant Radiotherapy in her2-Positive Breast Cancer Patients. Disease Markers, 2020, Article ID: 6645588.
https://doi.org/10.1155/2020/6645588
[22] Podlesnikar, T., Berlot, B., Dolenc, J., et al. (2022) Radiotherapy-Induced Cardiotoxicity: The Role of Multimodality Cardiovascular Imaging. Frontiers in Cardio-vascular Medicine, 9, Article ID: 887705.
https://doi.org/10.3389/fcvm.2022.887705
[23] Frey, M.K. and Bergler-Klein, J. (2021) Echocardiographic Evalua-tion of Patients Undergoing Cancer Therapy. European Heart Journal—Cardiovascular Imaging, 22, 375-382.
https://doi.org/10.1093/ehjci/jeaa341
[24] 朱天刚. 肿瘤心脏病与超声心动图[J]. 临床心血管病杂志, 2018, 34(10): 939-942.
[25] Quintero-Martinez, J.A., Cordova-Madera, S.N. and Villarraga, H.R. (2021) Radiation-Induced Heart Disease. Journal of Clinical Medicine, 11, 146.
https://doi.org/10.3390/jcm11010146
[26] Li, T., Zhuang, H., Wang, Y., et al. (2022) Two-Dimensional Speckle Tracking Echocardiography in Evaluating Radiation-Induced Heart Damage. Asia-Pacific Journal of Oncology Nursing, 9, 119-124.
https://doi.org/10.1016/j.apjon.2021.12.008
[27] Zagar, T.M., Cardinale, D.M. and Marks, L.B. (2016) Breast Cancer Therapy-Associated Cardiovascular Disease. Nature Reviews. Clinical Oncology, 13, 172-184.
https://doi.org/10.1038/nrclinonc.2015.171
[28] Charbonnel, C., Convers-Domart, R., Rigaudeau, S., et al. (2017) Assessment of Global Longitudinal Strain at Low- Dose Anthracycline-Based Chemotherapy, for the Prediction of Sub-sequent Cardiotoxicity. European Heart Journal. Cardiovascular Imaging, 18, 392-401.
https://doi.org/10.1093/ehjci/jew223
[29] 杨菲, 陈勇, 张西志, 等. 组织多普勒联合左心房容积指数评价食管癌患者放疗后早期心脏损伤[J]. 中国医学影像技术, 2016, 32(6): 862-865.
[30] Tamborini, G., Piazzese, C., Lang, R.M., et al. (2017) Feasibility and Accuracy of Automated Software for Transthoracic Three-Dimensional Left Ventricu-lar Volume and Function Analysis: Comparisons with Two-Dimensional Echocardiography, Three-Dimensional Trans-thoracic Manual Method, and Cardiac Magnetic Resonance Imaging. Journal of the American Society of Echocardiog-raphy: Official Publication of the American Society of Echocardiography, 30, 1049-1058.
https://doi.org/10.1016/j.echo.2017.06.026
[31] Heidenreich, P.A., Schnittger, I., Strauss, H.W., et al. (2007) Screening for Coronary Artery Disease after Mediastinal Irradiation for Hodgkin’s Disease. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 25, 43-49.
https://doi.org/10.1200/JCO.2006.07.0805
[32] Desai, M.Y., Jellis, C.L., Kotecha, R., et al. (2018) Radia-tion-Associated Cardiac Disease: A Practical Approach to Diagnosis and Management. JACC. Cardiovascular Imaging, 11, 1132-1149.
https://doi.org/10.1016/j.jcmg.2018.04.028
[33] Ar Van, R., et al. (2017) Different Manifestation of Irradiation Induced Coronary Artery Disease Detected with Coronary Computed Tomography Compared with Matched Non-Irradiated Controls. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radi-ology and Oncology, 125, 55-61.
https://doi.org/10.1016/j.radonc.2017.09.008
[34] Gal, R., Van Velzen, S.G.M., Hooning, M.J., et al. (2021) Iden-tification of Risk of Cardiovascular Disease by Automatic Quantification of Coronary Artery Calcifications on Radio-therapy Planning CT Scans in Patients with Breast Cancer. JAMA Oncology, 7, 1024-1032.
https://doi.org/10.1001/jamaoncol.2021.1144
[35] Groarke, J.D., Nguyen, P.L., Nohria, A., et al. (2014) Cardio-vascular Complications of Radiation Therapy for Thoracic Malignancies: The Role for Non-Invasive Imaging for Detec-tion of Cardiovascular Disease. European Heart Journal, 35, 612-623.
https://doi.org/10.1093/eurheartj/eht114
[36] Kramer, C.M., Barkhausen, J., Bucciarelli-Ducci, C., et al. (2020) Standardized Cardiovascular Magnetic Resonance Imaging (CMR) Protocols: 2020 Update. Journal of Cardiovascular Magnetic Resonance: Official Journal of the Society for Cardiovascular Magnetic Resonance, 22, 17.
https://doi.org/10.1186/s12968-020-00607-1
[37] Van Der Velde, N., Janus, C.M., Bowen, D.J., et al. (2021) De-tection of Subclinical Cardiovascular Disease by Cardiovascular Magnetic Resonance in Lymphoma Survivors. JACC. CardioOncology, 3, 695-706.
https://doi.org/10.1016/j.jaccao.2021.09.015
[38] Eftekhari, M., Anbiaei, R., Zamani, H., et al. (2015) Radia-tion-Induced Myocardial Perfusion Abnormalities in Breast Cancer Patients Following External Beam Radiation Therapy. Asia Oceania Journal of Nuclear Medicine & Biology, 3, 3-9.
[39] Abraham, A., Sanghera, K.P., Gheisari, F., et al. (2022) Is Radiation-Induced Cardiac Toxicity Reversible? Prospective Evaluation of Patients with Breast Cancer Enrolled in a Phase 3 Randomized Controlled Trial. International Journal of Radiation Oncology, Biology, Physics, 113, 125-134.
https://doi.org/10.1016/j.ijrobp.2022.01.020
[40] Polomski, E.-A.S., Antoni, M.L., Jukema, J.W., et al. (2022) Nuclear Medicine Imaging Methods of Radiation-Induced Cardiotoxicity. Seminars in Nuclear Medicine, 52, 597-610.
https://doi.org/10.1053/j.semnuclmed.2022.02.001
[41] Rasmussen, T., Kjær, A., Lassen, M.L., et al. (2021) No Changes in Myocardial Perfusion Following Radiation Therapy of Left-Sided Breast Cancer: A Positron Emission To-mography Study. Journal of Nuclear Cardiology: Official Publication of the American Society of Nuclear Cardiology, 28, 1923-1932.
https://doi.org/10.1007/s12350-019-01949-9
[42] Sciagrà, R., Lubberink, M., Hyafil, F., et al. (2021) EANM Procedural Guidelines for PET/CT Quantitative Myocardial Perfusion Imaging. European Journal of Nuclear Medicine and Molecular Imaging, 48, 1040-1069.
https://doi.org/10.1007/s00259-020-05046-9
[43] Żyromska, A., Małkowski, B., Wiśniewski, T., et al. (2018) 15O-H2O PET/CT as a Tool for the Quantitative Assessment of Early Post-Radiotherapy Changes of Heart Perfusion in Breast Carcinoma Patients. The British Journal of Radiology, 91, Article ID: 20170653.
https://doi.org/10.1259/bjr.20170653
[44] Song, J., Yan, R., Wu, Z., et al. (2017) 13N-Ammonia PET/CT Detec-tion of Myocardial Perfusion Abnormalities in Beagle Dogs after Local Heart Irradiation. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 58, 605-610.
https://doi.org/10.2967/jnumed.116.179697
[45] 高丽, 张洪明, 李险峰. 放射性心脏损伤诊断方法的研究进展[J]. 国际放射医学核医学杂志, 2020(2): 109-113.
[46] Plana, J.C., Thavendiranathan, P., Bucciarelli-Ducci, C., et al. (2018) Multi-Modality Imaging in the As-sessment of Cardiovascular Toxicity in the Cancer Patient. JACC. Cardiovascular Imaging, 11, 1173-1186.
https://doi.org/10.1016/j.jcmg.2018.06.003
[47] Yan, R., Song, J., Wu, Z., et al. (2015) Detection of Myocardial Metabolic Abnormalities by 18f-fdg PET/CT and Corresponding Pathological Changes in Beagles with Local Heart Irra-diation. Korean Journal of Radiology, 16, 919-928.
https://doi.org/10.3348/kjr.2015.16.4.919
[48] El-Sherif, O., Xhaferllari, I., Sykes, J., et al. (2019) [18F]fdg Car-diac PET Imaging in a Canine Model of Radiation- Induced Cardiovascular Disease Associated with Breast Cancer Radi-otherapy. American Journal of Physiology. Heart and Circulatory Physiology, 316, H586-H595.
https://doi.org/10.1152/ajpheart.00273.2018
[49] Manabe, O., Oyama-Manabe, N. and Tamaki, N. (2020) Positron Emission Tomography/MRI for Cardiac Diseases Assessment. The British Journal of Radiology, 93, Article ID: 20190836.
https://doi.org/10.1259/bjr.20190836