细胞间相互作用在血管钙化发病机制中的研究进展
Research Progress of Intercellular Interaction in the Pathogenesis of Vascular Calcification
DOI: 10.12677/ACM.2022.132169, PDF, HTML, XML, 下载: 414  浏览: 865  科研立项经费支持
作者: 付 迪, 神 童:济宁医学院临床医学院,山东 济宁;甘立军*, 申 程, 李传方:济宁医学院附属医院,山东 济宁
关键词: 内皮细胞血管平滑肌细胞钙化外泌体Endothelial Cells Vascular Smooth Muscle Cells Calcification Exosomes
摘要: 血管钙化是目前心血管疾病的重要危险因素。内皮细胞(ECs)和血管平滑肌细胞(VSMCs)在这一过程中发挥着重要的作用。在炎症、剪切应力、高磷、高糖等刺激下,VSMCs会发生成骨样分化,促进钙化的形成,这是血管钙化过程中的关键环节。同时,内皮细胞、巨噬细胞、周细胞等在炎症、高磷、高糖等刺激下发挥促VSMCs钙化的作用。本文主要以血管钙化中VSMCs成骨样分化及ECs、周细胞、巨噬细胞发挥促VSMCs钙化的机制展开概述。
Abstract: Vascular calcification is an important risk factor for cardiovascular diseases. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) play an important role in this process. Under the stimu-lation of inflammation, shear stress, high phosphorus and high glucose, VSMCs will undergo osteo-genic differentiation and promote the formation of calcification, which is a key link in the process of vascular calcification. At the same time, endothelial cells, macrophages and pericytes play a role in promoting the calcification of VSMCs under the stimulation of inflammation, high phosphorus and high glucose. In this paper, the osteogenic differentiation of VSMCs in vascular calcification and the mechanism of ECs, pericytes and macrophages in promoting VSMCs calcification were summarized.
文章引用:付迪, 甘立军, 申程, 李传方, 神童. 细胞间相互作用在血管钙化发病机制中的研究进展[J]. 临床医学进展, 2023, 13(2): 1223-1230. https://doi.org/10.12677/ACM.2022.132169

1. 引言

随着人口老龄化的增长,心血管疾病已经成为老年人最常见的疾病。血管钙化是缺血性血管疾病如冠心病、糖尿病等的危险因素 [1],并与脑血栓、动脉粥样硬化斑块破裂的风险增加相关 [2]。血管钙化主要发生在大、中动脉的血管平滑肌肌层 [3],病理上表现为血管僵硬、顺应性降低、管腔狭窄 [4]。目前在临床中,冠心病的侵入性治疗也面临着钙化的问题。在经皮冠状动脉介入治疗过程中,血管钙化使得高压扩张和支架贴壁困难,极大地增加了剥离、血栓形成和再狭窄等手术并发症发生的风险 [5]。研究表明,减缓钙化可降低患者的死亡率 [6]。因此,阐明血管钙化的发病机制具有重要的临床意义。

2. 概述

血管钙化(vascular calcification, VC)是指动脉壁中羟基磷灰石矿物的沉积。近年研究认为,血管钙化形成是由多种细胞参与的主动的、可调控的复杂病理生理过程 [7] [8],与骨发育和软骨形成的过程相似 [6]。在高糖、高磷、炎症、氧化应激及其它钙化因素刺激下,内皮细胞(endothelial cell, EC)、血管平滑肌细胞(vascular smooth muscle cell, VSMCs)、周细胞、巨噬细胞等对此通过一系列反应相互作用,从而进一步激活骨形成信号来促进血管钙化的发生 [9]。VC,类似于骨重塑,是一个积极调节的过程,其发生的中心环节是VSMCs在某些刺激因素下转化为成骨样细胞,同时伴随着内皮细胞、巨噬细胞、周细胞等的促VSMCs成骨样分化,最终促进血管钙化的形成。

3. 血管平滑肌细胞是血管钙化的关键环节

VSMCs是一种有较高分化潜能的细胞,它能向多种细胞分化。VSMCs已被证明可以分化为成骨样细胞,并通过细胞程序介导骨基质在血管中的沉积,这是平滑肌细胞参与血管钙化的主要方式 [10]。

3.1. VSMCs的成骨样分化是血管钙化的核心

动脉壁中膜主要由VSMCs构成。在生理状态下,成人的血管壁中 VSMCs呈现收缩表型,主要表达大量的收缩蛋白,如α平滑肌肌动蛋白(alpha smooth muscle actin, α-SMA)、平滑肌球蛋白重链(smooth muscle myosin heavy chain, SMM-HC)、平滑肌22α (smooth muscle 22 alpha, SM22α)等,维持其收缩功能 [11]。在高磷血症、炎症、氧化应激等刺激下,VSMCs从收缩表型向骨/软骨表型转化。这一过程的特征是钙化囊泡的发育、钙化抑制因子的下调以及钙化倾向基质的细化。这种成骨样细胞转分化的发生伴随着收缩表型标记物的丢失和骨软骨标记物[Runt相关转录因子2 (Runx2)、SP7、骨桥蛋白、骨钙素和碱性磷酸酶(ALP)、Sox9、II型和X型胶原(Col II和Col X)]的获得 [4]。与骨骼一样,这些成骨细胞会释放基质小泡(matrix vesicles, MVs)。MVs会使钙和磷离子聚集后形成晶核,而MVs中钙和磷酸盐的累积促使磷酸钙晶体的形成。随后,MVs围绕着胶原纤维构建组织。最终,磷酸钙晶体会从MVs中释放,然后进入间质空间,从而形成类似骨质的基质,最终形成血管钙化 [12]。

3.2. 钙化促进因子和抑制因子的失衡

钙化促进因子和抑制因子的表达失衡会导致钙化的形成。在钙化的血管中,平滑肌细胞较高地表达成骨指标,如Sox9、Runx2、锌指结构转录因子(osterix)等,而Runx2能够促进 VSMCs 的钙化 [13]。钙化促进因子如骨形态发生蛋白和炎症介质,以及肿瘤坏死因子-α (TNF-α)可以激活肌节同源框基因2 (Msx2)和Wnt信号,上调转录因子Runx2和osterix的表达。而Runx2通过与LEF-1相互作用,负向调节Runx2在骨钙素等靶基因上的转录活性。同时,Runx2还可以通过转录控制骨形成负调节因子、硬化蛋白和Notch信号修饰Runx2活性间接调节Wnt信号。硬化蛋白是SOST基因的产物,几乎只在骨细胞中表达,是Wnt信号传导的有效抑制剂,充当LRP5/6的配体 [10] [14]。钙化抑制因子如基质GLA蛋白(MGP)等,可通过阻止钙晶体沉积、拮抗BMP-2和BMP-4诱导的VSMC成骨样分化,抑制血管钙化的发生 [15]。

3.3. 钙化VSMC的细胞来源外泌体

钙化VSMC的细胞来源外泌体可以通过诱导细胞信号改变来促进血管钙化中受体VSMC的表型改变。结果表明,在钙化的VSMC衍生外泌体作用下,VSMC标记物的mRNA表达下调,成骨细胞分化基因表达上调,并伴随细胞内钙离子浓度的增加。其相关机制可能与受体VSMC中NADPH氧化酶和丝裂原活化蛋白激酶(MEK1和Erk1/2)信号通路的激活有关 [16]。

4. 内皮细胞参与并促进血管平滑肌细胞的成骨样分化

内皮细胞(ECs)是血管的主要成分,它形成单层细胞包裹血管腔,并直接受到血清刺激(如葡萄糖、炎症因子、磷和血流动力学) [4] [17] [18] [19]。内皮细胞可通过内皮–间充质转化、细胞因子分泌、细胞外囊泡合成等参与血管钙化 [6]。一般认为,内皮细胞不仅本身在受到损伤/刺激后会转化成类成骨细胞参与血管钙化,还会通过影响血管平滑肌的表型和功能参与这一过程 [20] [21]。

4.1. ECs通过成骨细胞转化参与VC

在正常生理稳态失衡,如糖尿病或甲状旁腺激素过高时,ECs可以经历内皮-间充质转化(EndMT),在此期间ECs特异性标记物VE-cadherin/CD31等的表达减少,间充质特异性标记物FSP-1/α-SMA等的表达增加 [22] [23]。此外,ECs失去了粘附的能力,并发生细胞骨架变化,形成长梭形形态的间充质细胞,然后转化成类成骨细胞。然而这一过程发生的确切机制尚未明确阐明清楚。朱等 [20] 通过实验发现在高糖环境中,激活的Notch信号促进EndMT,进而获得多能干细胞表型,并在合适的诱导下转分化为成骨细胞,促进骨样物质形成。此外,Gonzalo等 [1] 通过实验发现,TNF-α和IL-6可通过非经典的SMAD信号通路诱导EndMT在人主动脉ECs中发生,降低BMPR2的表达,促进bmp9刺激的成骨。

4.2. ECs通过自分泌/旁分泌途径参与VC

近年来,研究者特别关注ECs的活性旁分泌/自分泌因子,在VC的发生发展中起着重要的调控作用。

4.2.1. 气体信号

一些不直接参与钙磷代谢调节的血管活性因子,如内皮衍生气体信号分子(硫化氢、NO和CO),也参与了VC的调控 [6]。硫化氢的形成主要是由ECs中的胱硫氨酸-γ-裂解酶(CSE)催化的。H2S已被证明可以减轻动物血管中磷酸盐诱导的钙化和维生素D3和尼古丁联合诱导的钙化 [24]。此外,Zhou等 [25] 指出,硫化氢可以通过抑制Stat3/组织蛋白酶S信号通路来减弱高糖诱导的钙化。Ying等 [26] 观察到,硫化氢可以通过抑制内质网应激抑制EndMT,这可能是硫化氢发挥心脏保护作用的一种新的机制。

4.2.2. 小分子活性肽

血管内皮细胞和血管平滑肌细胞综合合成和分泌的小分子活性肽,如肾上腺髓质素(ADM)、c型利钠肽(CNP)和甲状旁腺激素相关肽(PTHrP)等,都在VC的进展中发挥着重要的作用。ADM、CNP和PTHrP能有效抑制甘油磷酸盐诱导的血管平滑肌细胞钙化,而PTHrP被证明是3种中最有效的。PTHrP可能通过激活BMP-2信号通路参与VC,并作为VC的局部调控因子 [27]。而血管内皮细胞分泌的内皮素,可以通过激活内皮素A型(ETA)来刺激VSMC中Na依赖的磷酸盐转运,从而诱导VSMC分化为成骨细胞样表型 [6]。

4.2.3. EC来源的胞外囊泡(EV)

ECs与血管中的VSMCs相邻,ECs与VSMCs之间的相互作用对血管的生理和病理变化非常重要 [28]。ECs在高磷、高脂、高糖等刺激下可以释放胞外囊泡,如内皮微粒(EMP)、外泌体(Exos)。内皮微粒源于胞吐过程中EC质膜上脱落的片段,而外泌体是多泡性核内体(multivesicular bodies, MVBs)与细胞质膜融合后释放到细胞外的一种膜泡 [29],携带蛋白质、细胞因子、miRNA等转运至靶细胞发挥作用 [30] [31] [32] [33]。

1) 内皮微粒

BMP2是众所周知的骨形成和骨外钙化的因素,可能是内皮微粒(endothelial microparticles, EMP)包裹蛋白之一。目前认为,EMP可以提供BMP2和钙离子(calcium ion, Ca2+),并作为钙化的成核位点来诱导矿化 [6]。由葡萄糖处理的ECs衍生的EV以活性氧依赖的方式激活p38,上调ECs中细胞间黏附分子1 (ICAM1)和血管细胞粘附分子1 (VCAM1)的表达,诱导单核细胞粘附和炎症,从而促进钙化 [34] [35]。Lin等人发现,高糖刺激的脐静脉ECs释放大量含有Notch3的EV,并通过激活mTOR通路促进VC [36]。

2) 外泌体

研究发现,高浓度的无机磷酸盐诱导的ECs衍生外泌体(ECsHPi-Exos)在体内外均可被VSMC吸收,促进动脉钙化。Lin等 [37] 在实验中发现当VSMCs与经3.5 mmol/L β-甘油磷酸钠预处理的ECs共培养时,VSMCs中的Runx2蛋白水平显著升高。然而,当ECs在与VSMCs共培养前与GW4869孵育时,高磷诱导的Runx2表达被显著阻断,这表明在高磷诱导的ECs上清液中,是外泌体而不是其他因素促进了VSMC的体外钙化。

Lom等 [38] 发现ECs外泌体中的miRNAs可以调节VSMCs的基因表达和表型转化。Hergenreider等 [39] 发现,在流体剪切应力作用下,ECs释放富含miRNA-143/145的外泌体,可被VSMC吸收,进而VSMC的表型转化被抑制,从而阻止了VC的发生。

还有一些别的方面,如骨形态发生蛋白(Bone morphogenetic protein, BMP)的来源是被激活的内皮细胞。内皮细胞在振荡剪切应力或活性氧的刺激下,在血管内压力或炎症细胞因子的影响下产生BMP-4或BMP-2。研究发现,BMP-2通过激活Msx-2、Runx/Cbfa等成骨细胞基因调节VC中VSMC分化的骨诱导 [5]。Kristina等 [40] 通过实验发现,体外高血糖增强了血管BMP-2和BMP-4的表达,并与血管钙化相关;其中,葡萄糖处理的HAECs条件培养基增加了BMP-4介导的牛主动脉内皮细胞的血管生成,以及BMP-2介导的钙化血管细胞的成骨;同时,糖尿病小鼠和大鼠的主动脉BMP活性显著增加,如SMAD1/5/8磷酸化所示。

综上所述,高磷、高糖、钙磷代谢紊乱、氧化应激、剪切应力、细胞凋亡、衰老等刺激会驱动钙化的发生 [4] [41]。而当血管钙化被启动后,内皮细胞和血管平滑肌细胞会通过基质囊泡、外泌体、OPG/RANK/RANKL信号通路、Notch信号通路、BMP信号通路、Wnt信号通路等调控血管钙化的发生和进展 [42] [43] [44] [45] [46]。

5. 巨噬细胞与血管平滑肌细胞的相互作用

巨噬细胞(macrophages, M)参与了血管钙化阶段,在这一过程中不同亚型中发挥不同的作用。M1可通过JAK3-STAT3通路直接释放抑素M-STAT3,促进VSMCs向成骨细胞表型分化 [47]。M1引起的慢性炎症的持续状态也可能损害VSMCs向成骨细胞的正常发育,干扰成骨细胞的成熟,最终显示分散和碎片化的钙化 [48]。M2可以分泌抗炎因子,吞噬坏死片段和凋亡细胞,防止钙化成核位点的形成 [49]。Ricardo等 [50] 通过平滑肌细胞和巨噬细胞共培养可以抑制VSMC的成骨转化,避免细胞间直接接触。这种抑制作用与三磷酸腺苷(ATP)分泌增加和M2合成焦磷酸(PPi)有关。当在不同的微环境中被不同的刺激激活时,不同亚群的巨噬细胞会发生极性漂移,即不同亚群的巨噬细胞会相互转化。

许多来源于巨噬细胞的细胞因子参与了血管钙化的过程。在血管钙化过程中,巨噬细胞在受到多种刺激,如干扰素γ (IFN-γ)、脂多糖(LPS)、白介素(IL)-4、氧化修饰低密度脂蛋白(ox-LDL)后会分泌多种细胞因子,如TNF-α、抑瘤素M (OSM)等,促使VSMCs的ALP,BMP2表达升高,促进血管钙化的发生。除了分泌可溶性的细胞因子,巨噬细胞还可以通过与血管平滑肌的直接接触导致血管的钙化 [51]。

因此,巨噬细胞被认为是血管钙化过程中的一把双刃剑。巨噬细胞可以通过释放炎症因子和细胞外囊泡来促进血管钙化,但巨噬细胞也可以通过分泌抗炎因子并向破骨细胞样细胞分化来抑制血管钙化。

6. 周细胞在血管钙化中的作用

周细胞(pericyte, PC)是位于血管壁的一种星形多能细胞,有收缩、支持、调节血管生长等功能。PC在不同的诱导刺激下可分化为成骨细胞、VSMCs、M细胞、脂肪细胞、软骨细胞等 [52] [53] [54]。PC在诱导分化为成骨细胞后会分泌I型胶原、OPN、MGP和OCN等,形成大量钙化结节。Kirton等 [55] 研究表明糖皮质激素地塞米松可通过减少周细胞中血管钙化抑制因子基质Gla蛋白(matrix Glaprotein, MGP)、骨桥蛋白和血管钙化相关因子的表达,致ALP活性增加,从而诱导PC成骨样分化并且加速微血管PC的成骨分化。

7. 总结

血管钙化是一个复杂、活跃、可调节的过程,并且是心血管疾病发病率和死亡率的一个强有力的预测因子,但其机制尚未得到充分证实。而研究VC的治疗靶点也成为了未来的一个重点。本文系统论述了血管钙化中VSMCs的作用以及ECs、巨噬细胞、周细胞发挥的促VSMCs成骨样分化的作用。目前对于ECs和VSMs参与血管钙化进程的研究主要集中在临床前研究阶段,需要进一步研究二者参与血管钙化的相关机制,为血管钙化防治提供更充分的依据,从而在未来停止甚至逆转血管钙化。

基金项目

济宁市重点研发计划项目(2020JKNS006)。

NOTES

*通讯作者。

参考文献

[1] Sánchez-Duffhues, G., García de Vinuesa, A., van de Pol, V., et al. (2019) Inflammation Induces Endothelial-to- Mes-enchymal Transition and Promotes Vascular Calcification through Downregulation of BMPR2. The Journal of Pathology, 247, 333-346.
https://doi.org/10.1002/path.5193
[2] Nicoll, R. and Henein, M.Y. (2014) The Predictive Value of Arterial and Valvular Calcification for Mortality and Cardiovascular Events. IJC Heart & Vessels, 3, 1-5.
https://doi.org/10.1016/j.ijchv.2014.02.001
[3] Andrews, J., Psaltis, P.J., Bartolo, B., Nicholls, S.J. and Puri, R. (2018) Coronary Arterial Calcification: A Review of Mechanisms, Promoters and Imaging. Trends in Cardiovascular Medicine, 28, 491-501.
https://doi.org/10.1016/j.tcm.2018.04.007
[4] Durham, A.L., Speer, M.Y., Scatena, M., Giachelli, C.M. and Sha-nahan, C.M. (2018) Role of Smooth Muscle Cells in Vascular Calcification: Implications in Atherosclerosis and Arterial Stiffness. Cardiovascular Research, 114, 590-600.
https://doi.org/10.1093/cvr/cvy010
[5] Panh, L., Lairez, O., Ruidavets, J.B., Galinier, M., Carrié, D. and Ferrières, J. (2017) Coronary Artery Calcification: From Crystal to Plaque Rupture. Archives of Cardiovascular Diseases, 110, 550-561.
https://doi.org/10.1016/j.acvd.2017.04.003
[6] Yuan, C., Ni, L., Zhang, C., Hu, X. and Wu, X. (2021) Vascular Calcification: New Insights into Endothelial Cells. Microvascular Research, 134, Article ID: 104105.
https://doi.org/10.1016/j.mvr.2020.104105
[7] Hjortnaes, J., New, S.E. and Aikawa, E. (2013) Visualizing Novel Concepts of Cardiovascular Calcification. Trends in Cardiovascular Medicine, 23, 71-79.
https://doi.org/10.1016/j.tcm.2012.09.003
[8] Rocha-Singh, K.J., Zeller, T. and Jaff, M.R. (2014) Peripheral Arte-rial Calcification: Prevalence, Mechanism, Detection, and Clinical Implications. Catheterization and Cardiovascular In-terventions, 83, E212-E220.
https://doi.org/10.1002/ccd.25387
[9] 齐永芬. 关注血管钙化的基础和临床研究[J]. 中国动脉硬化杂志, 2015, 23(5): 433-436.
[10] Leopold, J.A. (2015) Vascular Calcification: Mechanisms of Vascular Smooth Muscle Cell Calci-fication. Trends in Cardiovascular Medicine, 25, 267-274.
https://doi.org/10.1016/j.tcm.2014.10.021
[11] Sinha, S., Iyer, D. and Granata, A. (2014) Embryonic Origins of Human Vascular Smooth Muscle Cells: Implications for in Vitro Modeling and Clinical Application. Cellular and Molecular Life Sciences, 71, 2271-2288.
https://doi.org/10.1007/s00018-013-1554-3
[12] Golub, E.E. (2011) Biomineralization and Matrix Vesicles in Bi-ology and Pathology. Seminars in Immunopathology, 33, 409-417.
https://doi.org/10.1007/s00281-010-0230-z
[13] Byon, C.H. and Chen, Y. (2015) Molecular Mechanisms of Vas-cular Calcification in Chronic Kidney Disease: The Link between Bone and the Vasculature. Current Osteoporosis Re-ports, 13, 206-215.
https://doi.org/10.1007/s11914-015-0270-3
[14] Lian, J.B., Stein, G.S., Javed, A., et al. (2006) Networks and Hubs for the Transcriptional Control of Osteoblastogenesis. Reviews in Endocrine and Metabolic Disorders, 7, 1-16.
https://doi.org/10.1007/s11154-006-9001-5
[15] 凌晓欢, 刘剑. 冠状动脉钙化相关研究进展[J]. 现代医药卫生, 2019, 35(6): 859-861.
[16] Chen, N.X., O’Neill, K.D. and Moe, S.M. (2018) Matrix Vesicles Induce Calcification of Recipient Vascular Smooth Muscle Cells through Multiple Signaling Pathways. Kidney International, 93, 343-354.
https://doi.org/10.1016/j.kint.2017.07.019
[17] Jaminon, A., Reesink, K., Kroon, A. and Schurgers, L. (2019) The Role of Vascular Smooth Muscle Cells in Arterial Remodeling: Focus on Calcification-Related Processes. International Journal of Molecular Sciences, 20, Article No. 5694.
https://doi.org/10.3390/ijms20225694
[18] Chen, W.R., Zhou, Y.J., Yang, J.Q., Liu, F., Zhao, Y.X. and Sha, Y. (2019) Melatonin Attenuates β-Glycerophosphate- Induced Calcifica-tion of Vascular Smooth Muscle Cells via a Wnt1/β-Catenin Signaling Pathway. BioMed Research International, 2019, Article ID: 3139496.
https://doi.org/10.1155/2019/3139496
[19] Cao, J., Chen, L., Zhong, X., et al. (2020) miR32-5p Promoted Vascular Smooth Muscle Cell Calcification by Upregulating TNFα in the Microenvironment. BMC Immunology, 21, Article No. 3.
https://doi.org/10.1186/s12865-019-0324-x
[20] 朱冬冬. 高糖对内皮–成骨细胞转分化的影响及机制探讨[D]: [博士学位论文]. 南京: 东南大学, 2016.
[21] Kostina, A., Semenova, D., Kostina, D., et al. (2019) Human Aortic Endothelial Cells Have Osteogenic Notch- Dependent Properties in Co-Culture with Aortic Smooth Muscle Cells. Bio-chemical and Biophysical Research Communications, 514, 462-468.
https://doi.org/10.1016/j.bbrc.2019.04.177
[22] Hong, L., Du, X., Li, W., Mao, Y., Sun, L. and Li, X. (2018) EndMT: A Promising and Controversial Field. European Journal of Cell Biology, 97, 493-500.
https://doi.org/10.1016/j.ejcb.2018.07.005
[23] Souilhol, C., Harmsen, M.C., Evans, P.C. and Krenning, G. (2018) Endothelial-Mesenchymal Transition in Atherosclerosis. Cardiovascular Research, 114, 565-577.
https://doi.org/10.1093/cvr/cvx253
[24] Yang, G. and Wang, R. (2015) H2S and Blood Vessels: An Overview. In: Moore, P. and Whiteman, M., Eds., Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide. Handbook of Ex-perimental Pharmacology, Vol. 230, Springer, Cham, 85-110.
https://doi.org/10.1007/978-3-319-18144-8_4
[25] Zhou, Y.-B., Zhou, H., Li, L., et al. (2019) Hydrogen Sulfide Prevents Elastin Loss and Attenuates Calcification Induced by High Glucose in Smooth Muscle Cells through Suppres-sion of Stat3/Cathepsin S Signaling Pathway. International Journal of Molecular Sciences, 20, Article No. 4202.
https://doi.org/10.3390/ijms20174202
[26] Ying, R., Wang, X.-Q., Yang, Y., et al. (2016) Hydrogen Sulfide Sup-presses Endoplasmic Reticulum Stress-Induced Endothelial-to-Mesenchymal Transition through Src Pathway. Life Sci-ences, 144, 208-217.
https://doi.org/10.1016/j.lfs.2015.11.025
[27] Liu, F., Fu, P., Fan, W., et al. (2012) Involvement of Parathyroid Hormone-Related Protein in Vascular Calcification of Chronic Haemodialysis Patients. Nephrology, 17, 552-560.
https://doi.org/10.1111/j.1440-1797.2012.01601.x
[28] Sandoo, A., van Zanten, J.J., Metsios, G.S., Carroll, D. and Kitas, G.D. (2010) The Endothelium and Its Role in Regulating Vascular Tone. Open Cardiovascular Medicine Journal, 4, 302-312.
https://doi.org/10.2174/1874192401004010302
[29] van Niel, G., D’Angelo, G. and Raposo, G. (2018) Shedding Light on the Cell Biology of Extracellular Vesicles. Nature Reviews Molecular Cell Biology, 19, 213-228.
https://doi.org/10.1038/nrm.2017.125
[30] Buendía, P., de Oca, A.M., Madueño, J.A., et al. (2015) Endothelial Microparticles Mediate Inflammation-Induced Vascular Calcification. The FASEB Journal, 29, 173-181.
https://doi.org/10.1096/fj.14-249706
[31] Tang, R., Gao, M., Wu, M., Liu, H., Zhang, X. and Liu, B. (2012) High Glucose Mediates Endothelial-to-Chondrocyte Transition in Human Aortic Endothelial Cells. Cardiovascular Diabetolo-gy, 11, Article No. 113.
https://doi.org/10.1186/1475-2840-11-113
[32] Zhang, H., Liu, J., Qu, D., et al. (2018) Serum Exosomes Mediate Delivery of Arginase 1 as a Novel Mechanism for Endothelial Dysfunction in Diabetes. Proceedings of the National Academy of Sciences of the United States of America, 115, E6927-E6936.
https://doi.org/10.1073/pnas.1721521115
[33] Van den Bergh, G., Opdebeeck, B., D’Haese, P.C. and Verhulst, A. (2019) The Vicious Cycle of Arterial Stiffness and Arterial Media Calcification. Trends in Molecular Medicine, 25, 1133-1146.
https://doi.org/10.1016/j.molmed.2019.08.006
[34] Jansen, F., Yang, X., Franklin, B.S., et al. (2013) High Glu-cose Condition Increases NADPH Oxidase Activity in Endothelial Microparticles That Promote Vascular Inflammation. Cardiovascular Research, 98, 94-106.
https://doi.org/10.1093/cvr/cvt013
[35] Kargl, C.K., Nie, Y., Evans, S., et al. (2019) Factors Secreted from High Glucose Treated Endothelial Cells Impair Expansion and Differentiation of Human Skeletal Muscle Satellite Cells. The Journal of Physiology, 597, 5109-5124.
https://doi.org/10.1113/JP278165
[36] Lin, X., Li, S., Wang, Y.J., et al. (2019) Exosomal Notch3 from High Glu-cose-Stimulated Endothelial Cells Regulates Vascular Smooth Muscle Cells Calcification/Aging. Life Sciences, 232, Arti-cle ID: 116582.
https://doi.org/10.1016/j.lfs.2019.116582
[37] Lin, X., Shan, S.-K., Xu, F., et al. (2022) The Crosstalk between Endothelial Cells and Vascular Smooth Muscle Cells Aggravates High Phosphorus-Induced Arterial Calcification. Cell Death & Disease, 13, Article No. 650.
https://doi.org/10.1038/s41419-022-05064-5
[38] Lombardo, G., Dentelli, P., Togliatto, G., et al. (2016) Activated Stat5 Trafficking via Endothelial Cell-Derived Extracellular Vesicles Controls IL-3 Pro-Angiogenic Paracrine Action. Scientific Reports, 6, Article No. 25689.
https://doi.org/10.1038/srep25689
[39] Hergenreider, E., Heydt, S., Tréguer, K., et al. (2012) Atheroprotective Communication between Endothelial Cells and Smooth Muscle Cells through miRNAs. Nature Cell Biology, 14, 249-256.
https://doi.org/10.1038/ncb2441
[40] Boström, K.I., Jumabay, M., Matveyenko, A., Nicholas, S.B. and Yao, Y. (2011) Activation of Vascular Bone Morphogenetic Protein Signaling in Diabetes Mellitus. Circulation Research, 108, 446-457.
https://doi.org/10.1161/CIRCRESAHA.110.236596
[41] Pescatore, L.A., Gamarra, L.F. and Liberman, M. (2019) Multifaceted Mechanisms of Vascular Calcification in Aging. Arteriosclerosis, Thrombosis, and Vascular Biology, 39, 1307-1316.
https://doi.org/10.1161/ATVBAHA.118.311576
[42] Zhang, C., Zhang, K., Huang, F., et al. (2018) Exosomes, the Message Transporters in Vascular Calcification. Journal of Cellular and Molecular Medicine, 22, 4024-4033.
https://doi.org/10.1111/jcmm.13692
[43] Boström, K.I. (2016) Where Do We Stand on Vascular Calci-fication. Vascular Pharmacology, 84, 8-14.
https://doi.org/10.1016/j.vph.2016.05.014
[44] Wu, M., Rementer, C. and Giachelli, C.M. (2013) Vascular Calcifi-cation: An Update on Mechanisms and Challenges in Treatment. Calcified Tissue International, 93, 365-373.
https://doi.org/10.1007/s00223-013-9712-z
[45] Chen, B., Zhao, Y., Han, D., et al. (2019) Wnt1 Inhibits Vascular Smooth Muscle Cell Calcification by Promoting ANKH Expression. Journal of Molecular and Cellular Cardiology, 135, 10-21.
https://doi.org/10.1016/j.yjmcc.2019.07.008
[46] Dai, X.-Y., Zhao, M.-M., Cai, Y., et al. (2013) Phos-phate-Induced Autophagy Counteracts Vascular Calcification by Reducing Matrix Vesicle Release. Kidney International, 83, 1042-1051.
https://doi.org/10.1038/ki.2012.482
[47] Zhang, X., Li, J., Qin, J.J., et al. (2017) Oncostatin M Receptor β Deficiency Attenuates Atherogenesis by Inhibiting JAK2/STAT3 Signaling in Macrophages. Journal of Lipid Research, 58, 895-906.
https://doi.org/10.1194/jlr.M074112
[48] Kraft, C.T., Agarwal, S., Ranganathan, K., et al. (2016) Trauma-Induced Heterotopic Bone Formation and the Role of the Immune System: A Review. Journal of Trauma and Acute Care Surgery, 80, 156-165.
https://doi.org/10.1097/TA.0000000000000883
[49] Braga, T.T., Agudelo, J.S. and Camara, N.O. (2015) Macro-phages during the Fibrotic Process: M2 as Friend and Foe. Frontiers in Immunology, 6, Article No. 602.
https://doi.org/10.3389/fimmu.2015.00602
[50] Villa-Bellosta, R., Hamczyk, M.R. and Andrés, V. (2016) Alterna-tively Activated Macrophages Exhibit an Anticalcifying Activity Dependent on Extracellular ATP/Pyrophosphate Metab-olism. American Journal of Physiology-Cell Physiology, 310, C788-C799.
https://doi.org/10.1152/ajpcell.00370.2015
[51] 周子皓, 李春坚, 王芳. 血管钙化中多种细胞的作用[J]. 心血管康复医学杂志, 2020, 29(5): 611-615.
[52] Avolio, E., Rodriguez-Arabaolaza, I., Spencer, H.L., et al. (2015) Expan-sion and Characterization of Neonatal Cardiac Pericytes Provides a Novel Cellular Option for Tissue Engineering in Congenital Heart Disease. Journal of the American Heart Association, 4, e002043.
https://doi.org/10.1161/JAHA.115.002043
[53] 严泽振, 沈玲红, 何奔. 血管钙化中成骨样细胞来源及其转化的研究进展[J]. 中国动脉硬化杂志, 2017, 25(11): 1169-1173.
[54] 董谦谦, 颜建云. 血管钙化参与细胞相关研究的新进展[J]. 中国动脉硬化杂志, 2018, 26(11): 1111-1115.
[55] Kirton, J.P., Wilkinson, F.L., Canfield, A.E. and Alexander, M.Y. (2006) Dexamethasone Downregulates Calcification-Inhibitor Molecules and Accelerates Osteogenic Differentiation of Vascular Pericytes: Implications for Vascular Calcification. Circulation Research, 98, 1264-1272.
https://doi.org/10.1161/01.RES.0000223056.68892.8b