FGF23、Klotho在慢性阻塞性肺疾病中的研究进展
The Research Progress of FGF23 and Klotho in Chronic Obstructive Pulmonary Disease
DOI: 10.12677/ACM.2023.131112, PDF, HTML, XML, 下载: 383  浏览: 513 
作者: 张妮妮:延安大学医学院,陕西 延安;李 莉*, 何 达, 张 莉:榆林市第一医院呼吸与危重症医学科,陕西 榆林
关键词: 慢性阻塞性肺疾病成纤维细胞生长因子23KlothoChronic Obstructive Pulmonary Disease Fibroblast Growth Factor 23 Klotho
摘要: 慢性阻塞性肺疾病(Chronic Obstructive Pulmonary Disease, COPD)是全球高发病率和死亡率的重要原因,造成了巨大的经济和社会负担。近年来研究发现,成纤维细胞生长因子23 (Fibroblast Growth Factor 23, FGF23)、Klotho除了参与体内的钙磷代谢调节外,同时与COPD发病机制密切相关。FGF23、Klotho的深入研究有望为临床治疗COPD带来新的突破。
Abstract: Chronic obstructive pulmonary disease (COPD) is an important cause of high morbidity and mortal-ity in the world which results in a huge economic and social burden. In recent years, it has been found that fibroblast growth factor 23 (FGF23) and Klotho are not only involved in the regulation of calcium and phosphorus metabolism in vivo, but also related to the pathogenesis of COPD. The fur-ther study of FGF23 and Klotho may bring a new breakthrough in the clinical treatment of COPD.
文章引用:张妮妮, 李莉, 何达, 张莉. FGF23、Klotho在慢性阻塞性肺疾病中的研究进展[J]. 临床医学进展, 2023, 13(1): 772-778. https://doi.org/10.12677/ACM.2023.131112

1. 引言

慢性阻塞性肺疾病(Chronic Obstructive Pulmonary Disease, COPD)简称慢阻肺,是一种与年龄相关的慢性气道炎性疾病,主要特征是持续存在的呼吸道症状和不可逆的气流受限,大多数病例与接触香烟烟雾有关 [1]。成纤维细胞生长因子23 (Fibroblast Growth Factor 23, FGF23)是一种与全身炎症和代谢改变相关的激素,参与磷酸盐代谢平衡,还与炎性因子(白介素IL-6、IL-1β、C反应蛋白)产生、铁–红细胞生成、诱导心肌细胞肥大致左心室肥厚、胰岛素抵抗及游离脂肪酸代谢有关 [2] [3]。Klotho作为FGF23的辅助受体,提高FGF23与成纤维细胞生长因子受体(FGFR)的亲和力 [4]。近年来研究发现,FGF23、Klotho与COPD发病机制密切相关,本文即对该领域相关研究进展进行综述,有可能为临床中寻找COPD新型生物标志物及药物开发提供新思路。

2. FGF23、Klotho简介

2.1. FGF23简介

FGF23属于成纤维细胞生长因子家族(Fibroblast Growth Factors, FGFs)中的一员,主要由骨细胞和成骨细胞合成和分泌,维持体内磷酸盐代谢平衡 [5] [6]。FGF23分子结构中除了包含FGFs家族同源N端,是其受体(Fibroblast Growth Factor Receptor, FGFR)结合域,还包含与Klotho结合的特异性C端 [4] [7]。在肾脏组织中,FGF23通过FGFR1和辅助受体(Klotho)发挥作用,减少肾小管对磷酸盐的重吸收及维生素D依赖的肠道摄取磷酸盐方式 [4]。目前FGF23作为磷酸盐调节激素的作用已得到充分确立,研究还发现FGF23参与铁代谢、炎症、胰岛素抵抗、急性肾损伤等过程 [3]。

2.2. Klotho简介

Klotho基因表达缺陷的小鼠会出现寿命缩短、动脉硬化、皮肤萎缩、骨质疏松症、肺气肿、性腺功能减退等过早衰老的表型特征 [8],因此Klotho最初被定义为抗衰老基因,主要在人体肾小管、大脑脉络丛、甲状旁腺表达,其编码的Klotho蛋白为单次跨膜蛋白,该蛋白与FGFR结合,作为FGF23的联合受体发挥作用,维持机体磷酸盐、钙、维生素D稳态 [9];Klotho蛋白的胞外区脱落和分泌后,作为分泌型形式,可以调节胰岛素/胰岛素样生长因子-1 (IGF-1)和Wnt等信号通路,还可以通过抑制细胞凋亡、氧化应激及衰老路径发挥抗衰老、抗氧化作用 [10] [11] [12]。故Klotho在调节钙磷平衡、抗氧化应激及抗衰老等方面有关键作用。

在经典的靶器官肾脏和甲状旁腺中,FGF23通过与FGFR1-Klotho结合后激活Ras/丝裂原活化蛋白激酶(MAPK)信号通路介导其生物学活性 [13] [14]。然而,一些研究发现FGF23还可以靶向缺乏Klotho的细胞,FGF23可以直接激活FGFR4并诱导随后的磷脂酶Cγ (PLCγ)/活化的T细胞核因子(NFAT)信号传导通路。这种机制介导的病理生理作用表现在FGF23诱导心肌细胞肥大和促进肝细胞中炎性细胞因子的产生 [15] [16] [17]。

3. FGF23、Klotho与COPD发病机制

3.1. FGF23与COPD发病机制

炎症是慢性阻塞性肺疾病发病的关键机制,FGF23参与COPD的炎症信号传导通路。COPD患者血浆FGF23水平升高,和血浆白细胞介素6 (IL-6)水平存在显着的正相关 [18]。肺部表达四种FGFR [19],有研究发现FGFR4在COPD支气管上皮细胞暴露于香烟烟雾后表达水平升高 [20],FGF23可直接激活FGFR4/磷脂酶Cγ (PLCγ)/钙调神经磷酸酶/活化的T细胞核因子(NFAT)信号通路诱导气道炎症,合成和释放大量白细胞介素1β (IL-1β),此过程并不依赖Klotho [18]。此外,给予可溶性Klotho抑制FGF23介导的炎症信号,减少IL-1β分泌而减弱炎症反应。Klotho基因缺陷的小鼠气道上皮细胞和血浆中FGF23表达增加,激活己糖胺生物合成途径(HBP)及O-β-N-乙酰氨基葡萄糖(O-GlcNAc)所介导的氧化应激、炎症反应,参与肺气肿的发病过程 [21]。相似的研究发现,FGF23刺激人支气管上皮细胞同样通过己糖胺生物合成途径,产生O-GlcNAc修饰蛋白质,导致NFAT信号通路的下游激活后分泌IL-6,参与气道炎症 [22]。还有研究发现,FGF23介导肺血管平滑肌细胞中促炎细胞因子IL-1β表达,参与COPD香烟烟雾相关全身血管炎症途径 [20]。然而,Ishii等 [23] 却发现FGF23非同义编码核苷酸多态序列(rs7955866)中的A等位基因通过降低血清FGF23蛋白浓度,促进肺气肿的形成。因此,FGF23在COPD的炎症机制和肺气肿形成过程起重要作用。

3.2. Klotho与COPD发病机制

3.2.1. Klotho与氧化应激

氧化应激启动炎症反应,诱导细胞凋亡或导致肺损伤,这同样是COPD的关键发病机制 [24]。研究发现Klotho主要沿人气道上皮细胞表达,其水平在健康吸烟者的肺部有所减少,在COPD患者的肺部中进一步降低 [25]。相似的研究发现,COPD患者肺泡巨噬细胞和外周血单核细胞中的Klotho蛋白水平也降低 [26]。巨噬细胞被认为是COPD慢性炎症反应的主要协调者 [27]。COPD患者的巨噬细胞释放出更高水平的促炎细胞因子如肿瘤坏死因子α (TNF-α)、白细胞介素6 (IL-6)及基质金属蛋白酶9 (MMP-9) [28]。气道上皮细胞内Klotho缺乏导致其对香烟烟雾诱导炎症的敏感性增加,研究观察到细胞内增强的MAPK磷酸化和p65/核因子κB(NF-κB)核转位,促炎细胞因子IL-8、IL-6和单核细胞趋化蛋白1 (MCP-1)表达增加 [25]。Klotho表达水平降低与氧化应激、炎症导致细胞凋亡增加相关,且进一步加重了肺部慢性炎症和氧化损伤,加剧COPD的进展,这些过程是由NF-κB介导的。NF-κB是一种重要的转录因子,控制细胞增殖、氧化应激、免疫和炎症反应等过程 [29] [30]。在小鼠肺泡巨噬细胞中,Klotho负性调节NF-κB通路减少促炎因子的转导,抑制炎症介质(MMP-9、TNF-α和IL-6)的表达 [26]。研究还发现Notch信号通路介导的Klotho高甲基化抑制了肺泡巨噬细胞和气道上皮细胞中Klotho的表达,从而促进与COPD发展相关的炎症反应和细胞凋亡 [31]。香烟烟雾通过产生增加的活性氧(ROS)水平诱导肺组织的氧化应激,导致肺部炎症和细胞凋亡 [32],Klotho可降低肺泡上皮细胞ROS水平发挥抗氧化作用 [33]。Klotho还可以增加核因子红细胞衍生的2相关因子(Nrf2)转录活性,防止氧化应激 [12]。综上,Klotho蛋白作为一种抗氧化剂,参与肺部促炎细胞因子释放、应激抵抗调节,COPD中Klotho低水平表达与氧化应激机制密切相关。

3.2.2. Klotho与细胞衰老

细胞衰老会导致肺部细胞增殖减少、肺泡结构破坏和肺气肿,COPD发病与肺部细胞衰老相关 [34]。香烟烟雾通过增加细胞周期抑制剂p21的表达水平来阻止细胞周期向S期发展,导致肺上皮细胞过早衰老 [35],参与COPD的发病 [36]。p21被认为是衰老的生物标志物,香烟烟雾在体内和体外均可诱导p21表达显着增加 [37]。使用RNAi敲低Klotho表达对人成纤维细胞进行的研究,观察到p21表达显着增加,导致生长停滞和细胞衰老 [38]。研究发现体外Klotho过表达可抑制p21表达,降低人肺上皮细胞对香烟烟雾诱导的细胞死亡的敏感性 [39]。故Klotho可抑制香烟烟雾诱导的COPD细胞衰老过程。

3.2.3. Klotho与自噬

自噬是肺组织对香烟烟雾暴露后的早期反应,它介导细胞凋亡并最终促进细胞死亡,在COPD发病机制中发挥重要作用。与正常组织相比,COPD患者肺组织中的自噬增加 [40]。在长期吸入香烟烟雾的小鼠肺上皮细胞中发现了类似的自噬体增加。吸烟者的肺泡巨噬细胞显示出自噬体和p65积聚,是由于自噬体和溶酶体的融合受阻及长寿命蛋白的清除减少,最终导致异常自噬、线粒体功能异常和细菌清除缺陷 [41]。研究表明,Klotho预处理的小鼠肺泡巨噬细胞减弱了香烟烟雾诱导的自噬,然而Klotho的敲低则会增强自噬 [42],这项研究将COPD的发病机制与Klotho下调引起的异常自噬联系起来。故Klotho在香烟烟雾诱导的自噬中起着双重调节作用。

4. FGF23与COPD磷酸盐代谢

COPD患者有低磷血症的倾向 [43],FGF23作为磷酸盐代谢调节激素,与COPD患者磷酸盐代谢的关系值得关注。磷是一种重要的电解质,在肌肉收缩、维持细胞的完整性及能量代谢的过程中发挥着重要的作用。COPD患者肌肉和循环中的磷酸盐水平低,可能是其呼吸肌和骨骼肌无力的原因,预示着AECOPD患者的不良预后 [44]。COPD低磷血症有不同诱因,包括:摄入不足、药物使用、肾脏或肠道排泄磷增加及细胞分布异常 [45]。一项研究发现COPD患者肾磷阈(TMP/GFR)明显降低,肾磷酸盐排泄增加,其次COPD中升高的FGF23对肾小管产生磷酸尿化作用,增加磷酸盐的流失,这些均导致血磷降低 [46]。这项研究还观察到COPD患者的甲状旁腺素(PTH)和碱性磷酸酶(ALP)水平显著升高。然而在另一项研究中却发现COPD患者血清磷酸盐、FGF23、PTH水平均低于对照组 [47]。目前关于这方面研究较少,结论并不一致,FGF23在COPD的低磷血症中具体作用机制并不清楚。

5. FGF23与COPD临床相关性

5.1. FGF23与COPD临床

肺功能检查是临床诊断COPD必备条件,可检出早期COPD患者,且有助于评估COPD的进展、预后及评定药物疗效。研究表明COPD患者FGF23血浆水平与第一秒用力呼气容积(FEV1)和肺弥散量(DLCO)存在明显负相关,与残气量/肺总量(RV/TLC)之间存在正相关,显着关系是最强的是DLCO [48],目前认为DLCO与组织学评估的肺气肿严重程度密切相关 [49]。相似的研究发现,COPD患者血浆FGF23与FEV1呈负相关,但是按GOLD分级后FGF23水平并无统计学意义 [46]。还有研究表明COPD患者血浆FGF23的C末端水平与肺总量(TLC)之间存在显着负相关 [47]。Gulati等人 [50] 观察到频繁加重的COPD患者的FGF23水平更高,认为血浆FGF23与COPD频繁加重表型独立相关。综上,FGF23与肺功能下降及频繁加重表型相关,有望成为COPD肺气肿表型和频繁加重表型的新型生物标志物。

5.2. Klotho与COPD临床

COPD患者更好的临床状况与更高的Klotho表达相关,但研究发现康复训练中COPD患者运动能力和临床参数明显改善,但Klotho水平没有发生显著变化,也不与临床参数相关 [51] [52]。也有研究发现,Klotho在骨骼肌中表达,并且其水平在吸烟者中降低,但是已确诊肌肉萎缩的COPD患者Klotho蛋白水平反常地升高 [53]。因此Klotho蛋白的血浆水平可能不能用作COPD稳定的生物标志物。

6. FGF23、Klotho在COPD治疗中应用展望

FGF23通过FGFR4发出的信号与COPD炎症变化有关,Klotho在肺部具有抗氧化、抗炎、抗衰老功能。FGF23/Klotho信号通路有可能成为COPD抗衰老和抗炎治疗的一条可行的靶向途径。目前已开发出一种FGFR4阻断抗体和小分子抑制剂用于治疗肝细胞癌 [54]。抑制FGFR4或Klotho补充剂可能成为COPD的一种新型抗炎策略 [18]。

7. 小结

综上所述,FGF23、Klotho在COPD发病机制中扮演着重要角色,相信随着对其信号通路及调控机制等研究的逐渐深入,FGF23/Klotho信号通路有可能成为COPD抗衰老和抗炎治疗的一条可行的靶向途径,为未来临床治疗提供新思路。

NOTES

*通讯作者。

参考文献

[1] Global Initiative for Chronic Obstructive Lung Disease (2021) Global Strategy for the Diagnosis, Management, and Pre-vention of Chronic Obstructive Pulmonary Disease. Report.
[2] Touchberry, C.D., Green, T.M., Tchikrizov, V., et al. (2013) FGF23 Is a Novel Regulator of Intracellular Calcium and Cardiac Contractility in Addition to Cardiac Hypertro-phy. American Journal of Physiology-Endocrinology and Metabolism, 304, E863-E873.
https://doi.org/10.1152/ajpendo.00596.2012
[3] Kanbay, M., Vervloet, M., Cozzolino, M., et al. (2017) Novel Faces of Fibroblast Growth Factor 23 (FGF23): Iron Deficiency, Inflammation, Insulin Resistance, Left Ventricular Hy-pertrophy, Proteinuria and Acute Kidney Injury. Calcified Tissue International, 100, 217-228.
https://doi.org/10.1007/s00223-016-0206-7
[4] Richter, B. and Faul, C. (2018) FGF23 Actions on Target Tissues with and without Klotho. Frontiers in Endocrinology (Lausanne), 9, 189.
https://doi.org/10.3389/fendo.2018.00189
[5] Mirams, M., Robinson, B.G., Mason, R.S., et al. (2004) Bone as a Source of FGF23: Regulation by Phosphate? Bone, 35, 1192-1199.
https://doi.org/10.1016/j.bone.2004.06.014
[6] Martin, A., David, V. and Quarles, L.D. (2012) Regulation and Function of the FGF23/Klotho Endocrine Pathways. Physiological Reviews, 92, 131-155.
https://doi.org/10.1152/physrev.00002.2011
[7] Chen, G., Liu, Y., Goetz, R., et al. (2018) α-Klotho Is a Non-Enzymatic Molecular Scaffold for FGF23 Hormone Signalling. Nature, 553, 461-466.
https://doi.org/10.1038/nature25451
[8] Kuro, O.M., Matsumura, Y., Aizawa, H., et al. (1997) Mutation of the Mouse Klotho Gene Leads to a Syndrome Resembling Ageing. Nature, 390, 45-51.
https://doi.org/10.1038/36285
[9] Hu, M.C., Shiizaki, K., Kuro, O.M., et al. (2013) Fibroblast Growth Factor 23 and Klotho: Physiology and Pathophysiology of an Endocrine Network of Mineral Metabolism. Annual Review of Physi-ology, 75, 503-533.
https://doi.org/10.1146/annurev-physiol-030212-183727
[10] Yamamoto, M., Clark, J.D., Pastor, J.V., et al. (2005) Regulation of Oxidative Stress by the Anti-Aging Hormone Klotho. Journal of Biological Chemistry, 280, 38029-38034.
https://doi.org/10.1074/jbc.M509039200
[11] Zeng, Y., Wang, P.H., Zhang, M., et al. (2016) Aging-Related Renal Injury and Inflammation Are Associated with Downregulation of Klotho and Induction of RIG-I/NF-κB Signaling Path-way in Senescence-Accelerated Mice. Aging Clinical and Experimental Research, 28, 69-76.
https://doi.org/10.1007/s40520-015-0371-y
[12] Ravikumar, P., Ye, J., Zhang, J., et al. (2014) α-Klotho Protects against Oxidative Damage in Pulmonary Epithelia. The American Journal of Physiology-Lung Cellular and Molecular Physiology, 307, L566-L575.
https://doi.org/10.1152/ajplung.00306.2013
[13] Smith, R.C., O’bryan, L.M., Farrow, E.G., et al. (2012) Circulat-ing α-Klotho Influences Phosphate Handling by Controlling FGF23 Production. Journal of Clinical Investigation, 122, 4710-4715.
https://doi.org/10.1172/JCI64986
[14] Hum, J.M., O’bryan, L., Smith, R.C., et al. (2017) Novel Func-tions of Circulating Klotho. Bone, 100, 36-40.
https://doi.org/10.1016/j.bone.2016.11.025
[15] Grabner, A., Amaral, A.P., Schramm, K., et al. (2015) Activation of Cardiac Fibroblast Growth Factor Receptor 4 Causes Left Ventricular Hypertrophy. Cell Metabolism, 22, 1020-1032.
https://doi.org/10.1016/j.cmet.2015.09.002
[16] Faul, C., Amaral, A.P., Oskouei, B., et al. (2011) FGF23 Induces Left Ventricular Hypertrophy. Journal of Clinical Investigation, 121, 4393-4408.
https://doi.org/10.1172/JCI46122
[17] Singh, S., Grabner, A., Yanucil, C., et al. (2016) Fibroblast Growth Factor 23 Directly Targets Hepatocytes to Promote Inflammation in Chronic Kidney Disease. Kidney International, 90, 985-996.
https://doi.org/10.1016/j.kint.2016.05.019
[18] Krick, S., Grabner, A., Baumlin, N., et al. (2018) Fibroblast Growth Factor 23 and Klotho Contribute to Airway Inflammation. European Respiratory Journal, 52, Article ID: 1800236.
https://doi.org/10.1183/13993003.00236-2018
[19] Weinstein, M., Xu, X., Ohyama, K., et al. (1998) FGFR-3 and FGFR-4 Function Cooperatively to Direct Alveogenesis in the Murine Lung. Development, 125, 3615-3623.
https://doi.org/10.1242/dev.125.18.3615
[20] Krick, S., Garth, J., Helton, S.E., et al. (2019) Cigarette Smoke Can Activate Fibroblast Growth Factor Signaling in Vascular Smooth Muscle Cells in the COPD Lung. American Journal of Respiratory and Critical Care Medicine, 199, A4518.
https://doi.org/10.1164/ajrccm-conference.2019.199.1_MeetingAbstracts.A4518
[21] (2014) In Exacerbations, Timely Consideration of an ICS/LABA Combination. MMW Fortschritte der Medizin, 156, 66.
https://doi.org/10.1007/s15006-014-2982-1
[22] Krick, S., Helton, E.S., Hutcheson, S.B., et al. (2018) FGF23 In-duction of O-Linked N-Acetylglucosamine Regulates IL-6 Secretion in Human Bronchial Epithelial Cells. Frontiers in Endocrinology (Lausanne), 9, 708.
https://doi.org/10.3389/fendo.2018.00708
[23] Ishii, T., Kida, K. and Gemma, A. (2013) The Effect of Senescence on COPD Pathogenesis: Involvement of Telomere and an Antiaging Molecule Fibroblast Growth Factor 23. American Journal of Respiratory and Critical Care Medicine, 187, A2749.
[24] Rahman, I. and Adcock, I.M. (2006) Oxidative Stress and Redox Regulation of Lung Inflammation in COPD. European Respiratory Journal, 28, 219-242.
https://doi.org/10.1183/09031936.06.00053805
[25] Gao, W., Yuan, C., Zhang, J., et al. (2015) Klotho Expression Is Reduced in COPD Airway Epithelial Cells: Effects on Inflammation and Oxidant Injury. Clinical Science (London), 129, 1011-1023.
https://doi.org/10.1042/CS20150273
[26] Li, L., Wang, Y., Gao, W., et al. (2015) Klotho Reduc-tion in Alveolar Macrophages Contributes to Cigarette Smoke Extract-Induced Inflammation in Chronic Obstructive Pulmonary Disease. Journal of Biological Chemistry, 290, 27890-27900.
https://doi.org/10.1074/jbc.M115.655431
[27] Shapiro, S.D. (1999) The Macrophage in Chronic Obstructive Pul-monary Disease. American Journal of Respiratory and Critical Care Medicine, 160, S29-S32.
https://doi.org/10.1164/ajrccm.160.supplement_1.9
[28] Rajendrasozhan, S., Yang, S.R., Kinnula, V.L., et al. (2008) SIRT1, an Antiinflammatory and Antiaging Protein, Is Decreased in Lungs of Patients with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 177, 861-870.
https://doi.org/10.1164/rccm.200708-1269OC
[29] Baeuerle, P.A. and Henkel, T. (1994) Function and Activation of NF-kappaB in the Immune System. Annual Review of Immunology, 12, 141-179.
https://doi.org/10.1146/annurev.iy.12.040194.001041
[30] Huang, T.T. and Miyamoto, S. (2001) Postrepression Activation of NF-kappaB Requires the Amino-Terminal Nuclear Export Signal Specific to IkappaB Alpha. Molecular and Cellular Biology, 21, 4737-4747.
https://doi.org/10.1128/MCB.21.14.4737-4747.2001
[31] Qiu, J., Zhang, Y.N., Zheng, X., et al. (2018) Notch Promotes DNMT-Mediated Hypermethylation of Klotho Leads to COPD-Related Inflammation. Experimental Lung Re-search, 44, 368-377.
https://doi.org/10.1080/01902148.2018.1556749
[32] Summaries for patients. Effect of Treatment with Fluticasone with and without Salmeterol on Airway Inflammation and Lung Function in Patients with Chronic Obstructive Pulmo-nary Disease: A Randomized Trial. Annals of Internal Medicine, 151, I21.
[33] (2018) ISPOR Europe 2018: New Per-spectives for Improving 21st Century Health Systems. Value in Health, 21, S1-S498.
[34] Faner, R., Rojas, M., Macnee, W., et al. (2012) Abnormal Lung Aging in Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 186, 306-313.
https://doi.org/10.1164/rccm.201202-0282PP
[35] Tsuji, T., Aoshiba, K. and Nagai, A. (2004) Cigarette Smoke Induces Senescence in Alveolar Epithelial Cells. The American Journal of Respiratory Cell and Molecular Biology, 31, 643-649.
https://doi.org/10.1165/rcmb.2003-0290OC
[36] Kumar, M., Seeger, W. and Voswinckel, R. (2014) Senes-cence-Associated Secretory Phenotype and Its Possible Role in Chronic Obstructive Pulmonary Disease. The American Journal of Respiratory Cell and Molecular Biology, 51, 323-333.
https://doi.org/10.1165/rcmb.2013-0382PS
[37] Tuder, R.M., Yun, J.H. and Graham, B.B. (2008) Cigarette Smoke Triggers Code Red: p21CIP1/WAF1/SDI1 Switches on Danger Responses in the Lung. The American Journal of Res-piratory Cell and Molecular Biology, 39, 1-6.
https://doi.org/10.1165/rcmb.2008-0117TR
[38] De Oliveira, R.M. (2006) Klotho RNAi Induces Premature Se-nescence of Human Cells via a p53/p21 Dependent Pathway. FEBS Letters, 580, 5753-5758.
https://doi.org/10.1016/j.febslet.2006.09.036
[39] Blake, D.J., Reese, C.M., Garcia, M., et al. (2015) Soluble Ex-tracellular Klotho Decreases Sensitivity to Cigarette Smoke Induced Cell Death in Human Lung Epithelial Cells. Toxicol-ogy in Vitro, 29, 1647-1652.
https://doi.org/10.1016/j.tiv.2015.06.019
[40] Chen, Z.H., Kim, H.P., Sciurba, F.C., et al. (2008) Egr-1 Regulates Autophagy in Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease. PLOS ONE, 3, e3316.
https://doi.org/10.1371/journal.pone.0003316
[41] Monick, M.M., Powers, L.S., Walters, K., et al. (2010) Identi-fication of an Autophagy Defect in Smokers’ Alveolar Macrophages. The Journal of Immunology, 185, 5425-5435.
https://doi.org/10.4049/jimmunol.1001603
[42] Li, L., Zhang, M., Zhang, L., et al. (2017) Klotho Regulates Ciga-rette Smoke-Induced Autophagy: Implication in Pathogenesis of COPD. Lung, 195, 295-301.
https://doi.org/10.1007/s00408-017-9997-1
[43] Fiaccadori, E., Coffrini, E., Ronda, N., et al. (1990) Hypophos-phatemia in Course of Chronic Obstructive Pulmonary Disease. Prevalence, Mechanisms, and Relationships with Skeletal Muscle Phosphorus Content. Chest, 97, 857-868.
https://doi.org/10.1378/chest.97.4.857
[44] Farah, R., Khamisy-Farah, R., Arraf, Z., et al. (2013) Hypophos-phatemia as a Prognostic Value in Acute Exacerbation of COPD. The Clinical Respiratory Journal, 7, 407-415.
https://doi.org/10.1111/crj.12027
[45] Fiaccadori, E., Coffrini, E., Fracchia, C., et al. (1994) Hypophosphatemia and Phosphorus Depletion in Respiratory and Peripheral Muscles of Patients with Respiratory Failure Due to COPD. Chest, 105, 1392-1398.
https://doi.org/10.1378/chest.105.5.1392
[46] Elsammak, M., Attia, A. and Suleman, M. (2012) Fibroblast Growth Factor-23 and Hypophosphatemia in Chronic Obstructive Pulmonary Disease Patients. Journal of Medical Biochemistry, 31, 12-18.
https://doi.org/10.2478/v10011-011-0031-5
[47] Stroda, A., Brandenburg, V., Daher, A., et al. (2018) Serum Phosphate and Phosphate-Regulatory Hormones in COPD Patients. Respiratory Research, 19, 183.
https://doi.org/10.1186/s12931-018-0889-6
[48] Kraen, M., Frantz, S., Nihlen, U., et al. (2021) Fibroblast Growth Factor 23 Is an Independent Marker of COPD and Is Associated with Impairment of Pulmonary Function and Diffusing Capacity. Respiratory Medicine, 182, Article ID: 106404.
https://doi.org/10.1016/j.rmed.2021.106404
[49] Madani, A., Zanen, J., De Maertelaer, V. and Gevenois, P.A. (2006) Pulmonary Emphysema: Objective Quantification at Mul-ti-Detector Row CT—Comparison with Macroscopic and Microscopic Morphometry. Radiology, 238, 1036-1043.
https://doi.org/10.1148/radiol.2382042196
[50] Gulati, S., Wells, J.M., Urdaneta, G.P., et al. (2019) Fibroblast Growth Factor 23 Is Associated with a Frequent Exacerbator Phenotype in COPD: A Cross-Sectional Pilot Study. In-ternational Journal of Molecular Sciences, 20, 2292.
https://doi.org/10.3390/ijms20092292
[51] Pako, J., Barta, I., Balogh, Z., et al. (2017) Assessment of the An-ti-Aging Klotho Protein in Patients with COPD Undergoing Pulmonary Rehabilitation. COPD, 14, 176-180.
https://doi.org/10.1080/15412555.2016.1272563
[52] Boeselt, T., Nell, C., Lütteken, L., et al. (2017) Benefits of High-Intensity Exercise Training to Patients with Chronic Obstructive Pulmonary Disease: A Controlled Study. Respira-tion, 93, 301-310.
https://doi.org/10.1159/000464139
[53] Patel, M.S., Donaldson, A.V., Lewis, A., et al. (2016) Klotho and Smoking—An Interplay Influencing the Skeletal Muscle Function Deficits That Occur in COPD. Respiratory Medicine, 113, 50-56.
https://doi.org/10.1016/j.rmed.2016.02.004
[54] Hagel, M., Miduturu, C., Sheets, M., et al. (2015) First Selective Small Molecule Inhibitor of FGFR4 for the Treatment of Hepatocellular Carcinomas with an Activated FGFR4 Signaling Pathway. Cancer Discovery, 5, 424-437.
https://doi.org/10.1158/2159-8290.CD-14-1029