TEAD2在恶性肿瘤中的作用及研究进展
The Role of TEAD2 in Malignant Tumors and Research Progress
DOI: 10.12677/ACM.2023.131086, PDF, HTML, XML, 下载: 462  浏览: 799 
作者: 吴若卿, 王 昊, 肖 辉:哈尔滨医科大学附属第二医院,黑龙江 哈尔滨
关键词: TEAD2Hippo信号通路EMT恶性肿瘤TEAD2 Hippo Signaling Pathway EMT Malignancy
摘要: TEAD2是转录因子TEAD家族之一,它参与了许多信号通路,尤以Hippo信号通路最为显著。与转录共激活因子YAP和TAZ结合,及促进EMT的过程,使其在人类恶性肿瘤发生发展的过程中发挥着重要作用。多篇文献报道证实了TEAD2可促进肝癌、肺癌、乳腺癌等恶性肿瘤的进展。本文总结了TEAD2在各种癌症中的研究进展及相关作用,在不同的癌症中观察到的TEAD2的明显致癌作用以及TEAD2促进癌症的机制为癌症治疗的潜在靶向性提供了一定的基础。
Abstract: TEAD2 is one of the transcription factor TEAD family, which is involved in many signaling pathways, especially the Hippo signaling pathway is the most prominent. The combination with transcription-al co-activators YAP and TAZ, and the process of promoting EMT, make it play an important role in the development of human malignant tumors. Several reports in the literature have confirmed that TEAD2 promotes the progression of malignant tumors such as hepatocellular carcinoma, lung can-cer, and breast cancer. In this paper, we summarize the research progress and related roles of TEAD2 in various cancers. The apparent oncogenic effects of TEAD2 observed in different cancers and the mechanisms of TEAD2 promotion in cancer provide some basis for the potential targeting of cancer therapy.
文章引用:吴若卿, 王昊, 肖辉. TEAD2在恶性肿瘤中的作用及研究进展[J]. 临床医学进展, 2023, 13(1): 588-594. https://doi.org/10.12677/ACM.2023.131086

1. 前言

在哺乳动物中,TEA结构域的转录因子(TEAD)家族由四个成员组成。TEAD蛋白是一个高度保守的转录因子家族,其特点是由一个称为TEA结构域的DNA结合域和一个与转录辅助因子结合的蛋白结合域构成 [1]。TEAD蛋白不能单独诱导转录,它们必须与转录辅助因子相互作用才能做到这一点 [1]。一旦TEAD与它们的共同激活因子结合,所形成的不同复合物被认为是可以调节胚胎发育的表达,对器官(心脏、肌肉)的形成也非常重要,以及参与细胞死亡和增殖 [1]。

在TEAD家族中,尽管富含脯氨酸的区域在一级序列上不保守,但所有TEAD家族成员都有一个富含脯氨酸的结构域(16%~25%的保守性) [1]。富脯氨酸结构域也是与转录辅助因子YAP和TAZ完全相互作用的必要条件 [2]。因此,富脯氨酸结构域可能是TEAD蛋白与YAP/TAZ的不同相互作用的原因 [1]。TEAD蛋白之间的高度一致性表明了其在不同生物体中发挥的重要适应性作用 [1]。TEAD1、TEAD3和TEAD4广泛表达于多种包括骨骼肌、胰腺、胎盘、肺和心脏等组织 [3]。相比之下,TEAD2选择性地表达在胚胎组织的一个子集,包括小脑、睾丸和前肢后肢的远端部分以及尾芽 [3]。它们被发现广泛地应用于Hippo信号通路的调控。TEAD家族成员在各种生物过程和人类疾病中发挥着关键作用。

2. TEAD2

作为一个转录因子,TEAD2调控许多基因的表达并参与各种生理过程 [1] [4] [5]。TEAD2的活性取决于与其转录共激活物的物理相互作用 [6],YAP/TAZ和TEAD之间的相互作用牵涉到YAP的N端域和TEAD因子的C端域 [7]。在果蝇和哺乳动物中的一些研究表明TEAD因子在介导Hippo途径对组织生长的影响方面起着重要作用 [1]。当Yap或Taz被介导激活后,TEAD可以发挥多种功能。例如,它们控制上皮细胞和成纤维细胞的增殖 [4] [8]。在癌症的发展过程中。希波信号通路可能被破坏,导致YAP的过度激活 [6],从而YAP/TAZ-TEAD2复合物的过度激活。在小鼠正常细胞和癌细胞中发现,TEAD2的过度表达导致YAP/TAZ的核积聚,可造成转移 [9]。尽管以前的一些研究已经证实了TEAD2在癌症进展中的关键作用。但TEAD2在癌症中的机制仍不清楚 [10]。

TEAD家族无处不在地表达,并在调节各种胚胎组织的发育中发挥着部分冗余的作用 [11] [12]。包括神经嵴在内的各种胚胎组织的发育,而神经嵴的形成取决于EMT [13]。

3. TEAD2在恶性肿瘤中的表达

3.1. 肝细胞癌

肝细胞癌(HCC)是第六大最常见的癌症类型,也是2018年全球癌症死亡的第四大常见原因。从癌症基因组图谱数据门户中检索了50个正常对照和377个HCC样品的Hippo途径基因的mRNA表达数据,然后根据基因表达水平进行基因集富集,基因片段,类邻居和生存分析,与正常对照样品相比,肝癌中TEAD2和VGLL4的mRNA表达显着更高,并且晚期TEAD2的mRNA表达高于早期 [14]。具体地,生存分析显示TEAD2的较高mRNA表达与不太有利的总生存率显著相关(P = 0.0067) [14]。

YAP/TAZ在磷酸化时被大型肿瘤抑制性激酶LATS1/2磷酸化后被定位在细胞质中,不能与TEAD结合,从而使其转录无活性。在去磷酸化后,YAP/TAZ被转移到细胞核,在那里它们与TEAD结合,并导致目标基因的转录,这对细胞的生长、增殖和生存至关重要 [15] [16] [17]。在研究中,也证实了LATS2抑制降低了YAP1的磷酸化 [18]。YAP1的去磷酸化促进YAP1核积累,上调YAP1/TEAD2的关联,在HCC细胞中,起到了促进YAP1/TEAD2的转录激活和细胞侵袭的作用 [18]。

此外,在小鼠中,当YAP在小鼠肝脏中过表达时,可诱导肝细胞肿大并与肝癌的发展有关。然而,出现一种不能与YAP相互作用的隐性形式的小分子,或能抑制TEAD/YAP相互作用的Verteporfin,则抑制了YAP过表达引起的肝癌和肝脏肿大。这种抑制作用可能在哺乳动物中较为保守。另外,根据基因富集分析,TEAD2和VGLL4的mRNA表达较高的患者其上皮–间质转化和血管生成都有强烈的增强,这些都与肿瘤的进展有关 [14]。总而言之,TEAD2的mRNA表达增加与肿瘤的恶化有关,与HCC患者的预后不良有关。TEAD2可能是HCC肝细胞癌的一个预后因素和一个新的治疗目标 [14]。

3.2. 肺癌

TEAD2是一种参与维持细胞存活的转录因子。TEAD2的活性依赖于与YAP的相互作用,促进细胞增殖和抑制细胞死亡 [6]。YAP在NSCLC中表达上调,YAP-tead2复合物活性的增加与NSCLC细胞的增殖能力和化疗耐药性有关 [19]。

3.3. 乳腺癌

在乳腺上皮细胞和乳腺癌细胞的EMT过程中,细胞核中的Tead2水平增加,从而通过形成Tead2-Yap-Taz复合物指导其辅助因子Yap和Taz进行核定位 [9]。研究结果表明,Tead转录因子是Yap和Taz细胞分布的重要调节者,它们共同控制着对EMT和转移至关重要的基因的表达 [9]。在乳腺癌细胞中,YAP/TAZ-TEAD2复合物的活性升高促进癌细胞生长和转移 [20]。综上所述,这些结果表明Tead2促进了肺部Py2T细胞的侵袭和转移生长 [9]。值得注意的是,实验中Tead2转录活性的提高足以诱导EMT和肺转移的建立 [9]。最近的几项研究表明,由Yap或Taz的功能获得介导的升高的Tead活性可以引起恶性表型。事实上,Taz在20%的乳腺癌中高度表达,其中大多数是浸润性导管癌(IDC),这种Tead共激活因子的表达是乳腺癌细胞系迁移和侵袭性的原因 [21]。

3.4. 黑色素瘤

最近,另一项研究表明,Lamar等人认为Hippo信号通路中过量表达的Yap (YapS127A)会促进乳腺癌和黑色素瘤细胞转移 [20]。这种影响取决于Yap与Tead的相互作用域,而且Tead的转录活性与各种癌症细胞系的转移潜力相关 [9]。Yap水平的升高引发了肿瘤生长的增加和促进转移的表型 [20]。尽管这些研究清楚地证明了Tead、Yap和Taz在介导EMT诱导和癌症进展中的关键作用,但是在EMT过程中,参与调节Tead转录活性和直接靶基因的机制仍有待确定 [9]。

3.5. 胰腺导管腺癌

胰腺导管腺癌(PDAC)是最致命的癌症之一,对于目前来说仍然是一种具有挑战性的疾病,预后不佳。5年生存率在4%~8%之间,手术切除仍然是唯一的治愈性选择 [22]。在诊断时,只有15%~20%的患者符合手术条件,高达50%的患者出现肝转移 [23]。最终,70%的患者最终死于转移性疾病。研究结果表明 TEAD2可能是PDAC中TEAD家族中最相关的成员,因为它被揭示为OS和DFS的独立预后因素 [24]。TEAD2在细胞核中显著增加,与邻近的非肿瘤性胰腺组织相比,胰腺癌细胞的TEAD2明显增加 [24]。

3.6. 结直肠癌与胃癌

在结直肠癌中,TEAD激活是由RAR-g通过Hippo途径触发的,这反过来又促进了EMT、侵袭和转移。尽管如此,TEAD的高表达及其在结直肠癌细胞核中的定位通过河马依赖机制诱导EMT和转移 [25]。在骨转移中,是通过Hippo-YAP途径激活TEAD进而诱导ROR1-HER3介导的破骨细胞分化 [26]。

在Hippo途径中,TEA结构域家族成员2 (TEAD-2)是与YAP相互作用形成异源二聚体转录因子,激活增殖性和抗凋亡基因的表达 [27]。我们发现人类TEAD2基因在其编码序列中具有一个单核苷酸重复序列,这可能是具有微卫星不稳定性(MSI)的癌症中移码突变的目标 [24]。含有单核苷酸重复的基因的移码突变是具有MSI的胃癌(GC)和结肠直肠癌(CRC)的一个特征 [28]。

4. TEAD2在恶性肿瘤中的研究进展

TEAD作为多种相互作用途径的功能输出,在器官发育,细胞生长,再生和组织稳态过程中起着重要作用。这是通过它们的转录靶基因实现的,例如结缔组织生长因子(CTGF),富含半胱氨酸的血管生成诱导剂(Cyr61)和Myc [24]。TEAD过度活跃和过度表达已在癌症进展的多个阶段中观察到,众所周知,TEAD有助于肿瘤起始,促进癌症进展,上皮–间质转化(EMT)和转移 [29]。

上皮–间质转化(EMT)是胚胎发育各个阶段所需的细胞生物学程序 [9]。各种研究揭示了通过刺激EMT来驱动细胞转化的TEAD转录输出 [4] [15] [20] [30]。上皮细胞中EMT的激活也会导致细胞–细胞粘附和顶端–基底极性的丧失,并促进转分化为间充质状态,其特征在于迁移和侵袭表型 [31]。在实体瘤进展期间,上皮肿瘤细胞(致癌EMT)中某些特征的重新激活被认为是促进转移扩散的机制之一 [13] [32]。致癌EMT不仅为肿瘤细胞提供了允许从原发肿瘤传播的侵袭性特性,而且还导致获得干细胞样特征,这对癌症治疗有影响,也可能对远处器官的定植很重要 [32] [33] [34] [35]。在EMT期间活跃的许多基因和信号通路中,转录因子是EMT程序的主要协调者 [13] [31] [36]。

Hippo通路是一种进化上保守的激酶级联反应,通过在器官发育和再生过程中调节细胞增殖和凋亡来控制器官大小和接触抑制。这种信号级联的失调有助于肿瘤发生。该通路的核心成分由上游调节因子、核心激酶盒和下游致癌基因组成。一旦其核心激酶被激活,LATS1/2激酶磷酸化下游靶点YAP和TAZ,导致其位于细胞质中保留和失活;否则,YAP和TAZ则易位到细胞核中通过与转录因子TEAD相互作用,激活促增殖和抗凋亡基因。YAP和TAZ已被证明是大多数实体瘤(包括肝癌、乳腺癌、肺癌和胰腺癌)的癌症起始和生长的基础 [27] [37] [38] [39] [40] [41]。

此外,TEAD的靶基因,如CTGF和MRTF,在乳腺癌和结直肠癌中被证实有促进转移的作用 [26] [42] [43]。特别是PDAC,大多数研究集中在YAP-TEAD相互作用作为转移和肿瘤进展的驱动因素,但在现实生活中,每个TEAD在转移过程中的作用仍然难以捉摸 [24]。

参与TEAD调节的另一个有趣的途径是TGF-β途径,它和Hippo途径之间的相互作用集中体现在Smad和TEAD的关系上 [29]。TGF-β诱导TEAD的表达和活性增加 [44] [45] [46]。Wnt途径是一个公认的上游信号转导途径,它通过Hippo依赖性和非依赖性调节TEAD [47] [48]。还有,TEAD也是EGFR-RAS-RAF-MAPK的途径的媒介,该通路是人类恶性肿瘤中最常见的失调途径之一 [29] [49]。

5. 总结与展望

转录增强关联结构域(TEAD)是一个转录因子家族,在胚胎发育过程中起着重要作用,其失调是肿瘤进展的原因。TEAD被认为是各种疾病(即癌症,心血管疾病和神经退行性疾病)中的可药物靶标。然而,迄今为止,尚未开发或提出具有高选择性和功效与TEAD2特异性结合的候选药物。未来的实验研究将更多地来开发针对TEAD的抑制剂,这是一种有说服力的癌症治疗策略。

在YAP/TAZ驱动的癌症中,通过VGLL4模拟肽治疗破坏YAP/TAZ-TEAD相互作用可抑制胃癌在体外和体内的生长,从而在TEAD结合方面胜过YAP [50]。Verteporfin是一种已知可抑制YAP-TEAD相互作用的小分子抑制剂,也可抑制癌细胞生长。这些研究成功地确定了TEAD在癌症发展和进展中的作用,因此表明TEAD是可用于癌症治疗的关键药物靶点。最近的研究已经证明了TEAD和相互作用的共激活因子在各种癌症(如胶质母细胞瘤、肝癌和卵巢癌)的进展中的主要作用。它们通过参与细胞增殖的基因促进癌症进展。因此,在致癌条件下,通过靶向TEAD蛋白来拮抗Hippo信号通路已成为一种有前途的治疗靶点。

由于只有细胞核中的TEAD才能与靶基因相互作用。因此,我们看到了调控细胞核质的活性或控制细胞核质之间穿梭可以作为一种新的治疗方法。使TEADs在细胞质中封存,可能是一种新的非常有希望的治疗方法。这种抑制剂将同时针对TEAD的Hippo/YAP依赖性和独立性调节机制,并且抑制TEAD与其靶基因的相互作用也将有一个很大的优势,即可同时沉默几个途径。因为TEAD是许多致癌信号的交叉点。

每个TEAD主要由结构域组成 [27]。TEAD拮抗剂的开发可能被证明是一个巨大的挑战,因为抑制剂需要获得核通路并以高亲和力和特异性与TEAD结合。选择性靶向TEAD的DNA结合结构域(DBD)尚未报道,到目前为止,还没有可用的抑制剂 [51]。综上所述,针对TEAD的靶向治疗药物在未来还有非常大的探索空间。

NOTES

*通讯作者。

参考文献

[1] Landin-Malt, A., Benhaddou, A., Zider, A. and Flagiello, D. (2016) An Evolutionary, Structural and Functional Over-view of the Mammalian TEAD1 and TEAD2 Transcription Factors. Gene, 591, 292-303.
https://doi.org/10.1016/j.gene.2016.07.028
[2] Mahoney, W., Hong, J.-H., Yaffe, M. and Farrance, I. (2005) The Transcriptional Co-Activator TAZ Interacts Differentially with Transcriptional Enhancer Factor-1 (TEF-1) Family Mem-bers. Biochemical Journal, 388, 217-225.
https://doi.org/10.1042/BJ20041434
[3] Yasunami, M., Suzuki, K., Houtani, T., Sugimoto, T. and Ohkubo, H. (1995) Molecular Characterization of cDNA Encoding a Novel Protein Related to Transcriptional Enhancer Factor-1 from Neural Precursor Cells. Journal of Biological Chemistry, 270, 18649-18654.
https://doi.org/10.1074/jbc.270.31.18649
[4] Zhang, H., Liu, C.Y., Zha, Z.Y., et al. (2009) TEAD Transcription Factors Mediate the Function of TAZ in Cell Growth and Epithelial-Mesenchymal Transition. Journal of Biological Chemistry, 284, 13355-13362.
https://doi.org/10.1074/jbc.M900843200
[5] Sawada, A., Kiyonari, H., Ukita, K., et al. (2008) Redundant Roles of Tead1 and Tead2 in Notochord Development and the Regulation of Cell Proliferation and Survival. Molecular and Cellular Biology, 28, 3177-3189.
https://doi.org/10.1128/MCB.01759-07
[6] Tian, W., Yu, J.Z., Tomchick, D.R., Pan, D.J. and Luo, X.L. (2010) Structural and Functional Analysis of the YAP-Binding Domain of Human TEAD2. Pan African Medical Journal, 107, 7293-7298.
https://doi.org/10.1073/pnas.1000293107
[7] Vassilev, A., Kaneko, K.J., Shu, H.J., Zhao, Y.M. and DePamphilis, M.L. (2001) TEAD/TEF Transcription Factors Utilize the Activation Domain of YAP65, a Src/Yes-Associated Protein Localized in the Cytoplasm. Genes & Development, 15, 1229-1241.
https://doi.org/10.1101/gad.888601
[8] Ota, M. and Sasaki, H. (2008) Mammalian Tead Proteins Regulate Cell Proliferation and Contact Inhibition as Transcriptional Mediators of Hippo Signaling. Development, 135, 4059-4069.
https://doi.org/10.1242/dev.027151
[9] Diepenbruck, M., Waldmeier, L., Ivanek, R., et al. (2014) Tead2 Expres-sion Levels Control the Subcellular Distribution of Yap and Taz, Zyxin Expression and Epithelial-Mesenchymal Transi-tion. Journal of Cell Science, 127, 1523- 1536.
https://doi.org/10.1242/jcs.139865
[10] Wang, Y.L., Li, F.C., Ma, D.D., et al. (2019) MicroRNA608 Sensitizes Nonsmall Cell Lung Cancer Cells to Cisplatin by Targeting TEAD2. Mo-lecular Medicine Reports, 20, 3519-3526.
https://doi.org/10.3892/mmr.2019.10616
[11] Jacquemin, P., Hwang, J.-J., Martial, J.A., Dollá, P. and Davidson, I. (1996) A Novel Family of Developmentally Regulated Mammalian Tran-scription Factors Containing the TEA/ATTS DNA Binding Domain. Journal of Biological Chemistry, 271, 21775-21785.
https://doi.org/10.1074/jbc.271.36.21775
[12] Kaneko, K.J. and DePamphilis, M.L. (2015) Regulation of Gene Expression at the Beginning of Mammalian Development and the TEAD Family of Transcription Factors. Developmental Genetics, 22, 43-55.
https://doi.org/10.1002/(SICI)1520-6408(1998)22:1<43::AID-DVG5>3.0.CO;2-7
[13] Thiery, J.P., Acloque, H., Huang, R. and Angela Nieto, M. (2009) Epithelial-Mesenchymal Transitions in Development and Disease. Cell, 139, 871-890.
https://doi.org/10.1016/j.cell.2009.11.007
[14] Joo, J.S., Cho, S.Y., Rou, W.S., et al. (2020) TEAD2 as a Novel Prognostic Factor for Hepatocellular Carcinoma. Oncology Reports, 43, 1785-1796.
https://doi.org/10.3892/or.2020.7578
[15] Zhao, B., Ye, X., Yu, J.D., et al. (2008) TEAD Mediates YAP-Dependent Gene Induction and Growth Control. Genes & Development, 22, 1962-1971.
https://doi.org/10.1101/gad.1664408
[16] Lai, D., Ho, K.C., Hao, Y. and Yang, X. (2011) Taxol Resistance in Breast Cancer Cells Is Mediated by the Hippo Pathway Component TAZ and Its Downstream Transcriptional Targets Cyr61 and CTGF. Cancer Research, 71, 2728- 2738.
https://doi.org/10.1158/0008-5472.CAN-10-2711
[17] Lei, Q.Y., Zhang, H., Zhao, B., et al. (2008) TAZ Promotes Cell Proliferation and Epithelial-Mesenchymal Transition and Is Inhibited by the Hippo Pathway. Molecular and Cellular Biology, 28, 2426-2436.
https://doi.org/10.1128/MCB.01874-07
[18] Guo, C., Wang, X.T. and Liang, L.F. (2015) LATS2-Mediated YAP1 Phosphorylation Is Involved in HCC Tumorigenesis. International Journal of Clinical & Experimental Pathology, 8, 1690-1697.
[19] Guo, J.W., Yan, W., Yang, L.J., et al. (2016) Repression of YAP by NCTD Disrupts NSCLC Pro-gression. Oncotarget, 8, 2307-2319.
https://doi.org/10.18632/oncotarget.13668
[20] Lamar, J.M., Stern, P., Liu, H., et al. (2012) The Hippo Pathway Target, YAP, Promotes Metastasis through Its TEAD- Interaction Domain. Proceed-ings of the National Academy of Sciences of the United States of America, 109, E2441- E2450.
https://doi.org/10.1073/pnas.1212021109
[21] Chan, S.W., Lim, C.J., Guo, K., et al. (2008) A Role for TAZ in Migration, Invasion, and Tumorigenesis of Breast Cancer Cells. Cancer Research, 68, 2592-2598.
https://doi.org/10.1158/0008-5472.CAN-07-2696
[22] Ferlay, J., Soerjomataram, I., Dikshit, R., et al. (2015) Cancer Incidence and Mortality Worldwide: Sources, Methods and Major Patterns in GLOBOCAN 2012. International Journal of Cancer, 136, E359-E386.
https://doi.org/10.1002/ijc.29210
[23] Vincent, A., Herman, J., Schulick, R., Hruban, R. and Goggins, M. (2011) Pancreatic Cancer. Lancet, 378, 607-620.
https://doi.org/10.1016/S0140-6736(10)62307-0
[24] Drexler, R., Fahy, R., Kuchler, M., et al. (2021) Association of Subcellular Localization of TEAD Transcription Factors with Outcome and Progression in Pancreatic Ductal Adeno-carcinoma. Pancreatology, 21, 170-179.
https://doi.org/10.1016/j.pan.2020.12.003
[25] Liu, Y., Wang, G., Yang, Y., et al. (2016) Increased TEAD4 Ex-pression and Nuclear Localization in Colorectal Cancer Promote Epithelial-Mesenchymal Transition and Metastasis in a YAP-Independent Manner. Oncogene, 35, 2789-2800.
https://doi.org/10.1038/onc.2015.342
[26] Li, C.L., Wang, S.Y., Xing, Z., et al. (2017) A ROR1-HER3-lncRNA Signalling Axis Modulates the Hippo-YAP Pathway to Regulate Bone Metastasis. Nature Cell Biology, 19, 106-119.
https://doi.org/10.1038/ncb3464
[27] Harvey, K.F., Zhang, X. and Thomas, D. (2013) The Hippo Pathway and Human Cancer. Nature Reviews Cancer, 13, 246-257.
https://doi.org/10.1038/nrc3458
[28] Imai, K. and Yamamo-to, H. (2008) Carcinogenesis and Microsatellite Instability: The Interrelationship between Genetics and Epigenetics. Car-cinogenesis, 29, 673-680.
https://doi.org/10.1093/carcin/bgm228
[29] Huh, H.D., Dong, H.K., Jeong, H.-S. and Park, H.W. (2019) Regulation of TEAD Transcription Factors in Cancer Biology. Cells, 8, Article No. 600.
https://doi.org/10.3390/cells8060600
[30] Overholtzer, M., Zhang, J.M., Smolen, G.A., et al. (2006) Transforming Properties of YAP, a Candidate Oncogene on the Chromosome 11q22 Amplicon. Proceedings of the National Academy of Sciences of the United States of America, 103, 12405-12410.
https://doi.org/10.1073/pnas.0605579103
[31] Angela Nieto, M. (2011) The Ins and Outs of the Epithelial to Mesenchymal Transition in Health and Disease. Annual Review of Cell and Developmental Biology, 27, 347-376.
https://doi.org/10.1146/annurev-cellbio-092910-154036
[32] Chaffer, C.L. and Weinberg, R.A. (2011) A Perspec-tive on Cancer Cell Metastasis. Science, 331, 1559-1564.
https://doi.org/10.1126/science.1203543
[33] Magee, J.A., Piskounova, E. and Morrison, S.J. (2012) Cancer Stem Cells: Impact, Heterogeneity, and Uncertainty. Cancer Cell, 21, 283-296.
https://doi.org/10.1016/j.ccr.2012.03.003
[34] Polyak, K. and Weinberg, R.A. (2009) Transitions between Epitheli-al and Mesenchymal States: Acquisition of Malignant and Stem Cell Traits. Nature Reviews Cancer, 9, 265-273.
https://doi.org/10.1038/nrc2620
[35] Scheel, C. and Weinberg, R.A. (2012) Cancer Stem Cells and Epitheli-al-Mesenchymal Transition: Concepts and Molecular Links. Seminars in Cancer Biology, 22, 396-403.
https://doi.org/10.1016/j.semcancer.2012.04.001
[36] Moreno-Bueno, G., Portillo, F. and Cano, A. (2008) Tran-scriptional Regulation of Cell Polarity in EMT and Cancer. Oncogene, 27, 6958-6969.
https://doi.org/10.1038/onc.2008.346
[37] Harvey, K. and Tapon, N. (2007) The Salvador-Warts-Hippo Path-way—An Emerging Tumour-Suppressor Network. Nature Reviews Cancer, 7, 182-191.
https://doi.org/10.1038/nrc2070
[38] Pan, D. (2007) Hippo Signaling in Organ Size Control. Genes & Develop-ment, 21, 886-897.
https://doi.org/10.1101/gad.1536007
[39] Saucedo, L.J. and Edgar, B.A. (2007) Filling out the Hippo Pathway. Nature Reviews Molecular Cell Biology, 8, 613-621.
https://doi.org/10.1038/nrm2221
[40] Yu, F.-X., Zhao, B. and Guan, K.-L. (2015) Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell, 163, 811-828.
https://doi.org/10.1016/j.cell.2015.10.044
[41] Zanconato, F., Cordenonsi, M. and Piccolo, S. (2016) YAP/TAZ at the Roots of Cancer. Cancer Cell, 29, 783-803.
https://doi.org/10.1016/j.ccell.2016.05.005
[42] Chen, D.H., Sun, Y.T., Wei, Y.K., et al. (2012) LIFR Is a Breast Cancer Metastasis Suppressor Upstream of the Hippo-YAP Pathway and a Prognostic Marker. Nature Medicine, 18, 1511-1517.
https://doi.org/10.1038/nm.2940
[43] Kim, T., Hwang, D., Lee, D., et al. (2016) MRTF Potentiates TEAD-YAP Transcriptional Activity Causing Metastasis. The EMBO Journal, 36, 520-535.
https://doi.org/10.15252/embj.201695137
[44] Hiemer, S.E., Szymaniak, A.D. and Varelas, X. (2014) The Tran-scriptional Regulators TAZ and YAP Direct Transforming Growth Factor β-induced Tumorigenic Phenotypes in Breast Cancer Cells. Journal of Biological Chemistry, 289, 13461-13474.
https://doi.org/10.1074/jbc.M113.529115
[45] Pefani, D.-E., Pankova, D., Abraham, A., et al. (2016) TGF-β Tar-gets the Hippo Pathway Scaffold RASSF1A to Facilitate YAP/SMAD2 Nuclear Translocation. Molecular Cell, 63, 156-166.
https://doi.org/10.1016/j.molcel.2016.05.012
[46] Varelas, X., Sakuma, R., Samavarchi-Tehrani, P., et al. (2008) TAZ Controls Smad Nucleocytoplasmic Shuttling and Regulates Human Embryonic Stem-Cell Self-Renewal. Nature Cell Biology, 10, 837-848.
https://doi.org/10.1038/ncb1748
[47] Azzolin, L., Zanconato, F., Bresolin, S., et al. (2012) Role of TAZ as Media-tor of Wnt Signaling. Cell, 151, 1443-1456.
https://doi.org/10.1016/j.cell.2012.11.027
[48] Cai, J., Maitra, A., Anders, R.A., Taketo, M.M. and Pan, D. (2015) β-Catenin Destruction Complex-Independent Regulation of Hippo-YAP Signaling by APC in Intestinal Tumorigenesis. Genes & Development, 29, 1493-1506.
https://doi.org/10.1101/gad.264515.115
[49] Lee, T.-F., Tseng, Y.-C., Chang, W.-C., et al. (2017) YAP1 Is Essen-tial for Tumor Growth and Is a Potential Therapeutic Target for EGFR-Dependent Lung Adenocarcinomas. Oncotarget, 8, 89539-89551.
https://doi.org/10.18632/oncotarget.19647
[50] Jiao, S., Wang, H., Shi, Z., et al. (2014) A Peptide Mimicking VGLL4 Function Acts as a YAP Antagonist Therapy against Gastric Cancer. Cancer cell, 25, 166-180.
https://doi.org/10.1016/j.ccr.2014.01.010
[51] Li, Z., Zhao, B., et al. (2010) Structural Insights into the YAP and TEAD Complex. Genes & Development, 24, 235-240.
https://doi.org/10.1101/gad.1865810