基于网络药理学探究桃仁–红花调控动脉粥样硬化斑块稳定性的潜在机制
Exploring the Potential Mechanism of Peach Kernel-Safflower in Regulating the Stability of Atherosclerotic Plaque Based on Network Pharmacology
DOI: 10.12677/PI.2023.121006, PDF, HTML, XML, 下载: 311  浏览: 892  国家自然科学基金支持
作者: 刘 婷*, 俞 琦#:贵州中医药大学,贵州 贵阳
关键词: 桃仁红花中医药动脉粥样硬化斑块稳定性网络药理学Peach Kernel Safflower Traditional Chinese Medicine Atherosclerosis Plaque StabilityNetwork Pharmacology
摘要: 目的:探究桃仁–红花调控动脉粥样硬化斑块稳定性的潜在机制。方法:对GEO数据库中的动脉斑块相关数据集进行差异分析,得到动脉粥样硬化斑块稳定性相关基因。从TCMSP数据库获取桃仁–红花的有效成分和潜在靶点。对两者取交集后找出发挥作用的化合成分和潜在靶点。对潜在靶点进行PPI、GO、KEGG分析,探究桃仁–红花调控动脉粥样硬化斑块稳定性的作用机制。结果:对稳定斑块组和破裂斑块组差异分析后,共找出1577个差异基因。通过TCMSP共找出桃仁–红花中的16个化学成分,193个靶点。两者取交集后得到28个桃仁–红花调控动脉粥样硬化斑块稳定性的潜在靶点。PPI结果显示,MMP2、CCND1、CXCL8、CAV1、HMOX1、AR、VCAM1、PGR、ABCG2等28个交集基因之间有较强的相互作用关系。且DPP4、HMOX1、Cav-1和VCAM-1处于PPI网络的枢纽位置。GO结果表明,BP与对抗生素的反应、腺体发育、对营养物质的反应有关。CC与膜筏、膜微域、膜区等细胞区域有关。MF与核受体活性、配体激活的转录因子活性、甾体荷尔蒙受体活性有关。KEGG结果与流体剪切应力与动脉粥样硬化、脂肪细胞中脂肪分解的调节、雌激素信号传导途径、内分泌抵抗、NF-kappa B信号传导途径、脂质和动脉硬化、血小板激活传导有关。结论:桃仁–红花内的药物成分可能通过调节MMP2、CCND1、CXCL8、CAV1、HMOX1、AR、VCAM1等靶点影响相关信号传导途径,进而干预斑块稳定性。
Abstract: Objective: To explore the potential mechanism of peach kernel-safflower regulating the stability of atherosclerotic plaque. Methods: The genes related to the stability of atherosclerotic plaques were obtained by differential analysis of the arterial place-related data sets in the GEO database. The effective components and potential targets of peach kernel-safflower were obtained from the TCMSP database. After the intersection of the two compounds, the active compounds and potential targets were found. PPI, GO and KEGG analyses were performed on potential targets to explore the mechanism of peach kernel-safflower regulating the stability of atherosclerotic plaque. Results: A total of 1577 differential genes were identified by the difference analysis between the stable plaque group and the ruptured plaque group. A total of 16 chemical components and 193 targets in peach kernel-safflower were identified by TCMSP. Twenty-eight potential targets of peach kernel-safflower regulating the stability of atherosclerotic plaque were obtained by the intersection of the two. PPI results showed that there were strong interactions among 28 intergenes, such as MMP2, CCND1, CXCL8, CAV1, HMOX1, AR, VCAM1, PGR, ABCG2 and so on. DPP4, HMOX1, Cav-1 and VCAM-1 are at the hub of the PPI network. GO results showed that BP was related to the response to antibiotics, glandular development and the response to nutrients. CC is related to membrane raft, membrane microdomain, membrane region and other cellular regions. MF was related to nuclear receptor activity, ligand-activated transcription factor activity and steroid hormone receptor activity. KEGG results were related to fluid shear stress and atherosclerosis, regulation of lipolysis in adipocytes, estrogen signaling pathway, endocrine resistance, NF-kappa B signaling pathway, lipid and arteriosclerosis and platelet activation pathway. Conclusions: The drug components in peach kernel-safflower may affect the signal transduction pathway by regulating MMP2, CCND1, CXCL8, CAV1, HMOX1, AR, VCAM1 and other targets, so as to interfere with plaque stability.
文章引用:刘婷, 俞琦. 基于网络药理学探究桃仁–红花调控动脉粥样硬化斑块稳定性的潜在机制[J]. 药物资讯, 2023, 12(1): 35-43. https://doi.org/10.12677/PI.2023.121006

1. 引言

动脉粥样硬化(Atherosclerosis, AS)是一种以大中动脉的血管壁内逐渐形成斑块为特征的慢性炎症性疾病。在疾病晚期,大量巨噬细胞等炎性细胞因子浸润血管壁,分泌基质金属蛋白酶,降解斑块细胞外基质中的胶原纤维,导致斑块破裂、出血、血栓形成 [1] [2]。这些促炎细胞也会释放大量介质和酶,影响斑块稳定性和动脉粥样硬化患者的预后 [3]。因此,斑块的不稳定性是影响疾病发展的重要因素 [4] [5]。临床实践中,AS的治疗策略多侧重于介入或手术血运重建或使用他汀类药物降低患者血脂水平。但由于介入手术价格较为昂贵,且他汀类药物有较高的毒副作用,而中医药对改善AS患者预后和斑块的稳定性具有独到的优势,因此,患者多倾向于中医保守治疗。

中国传统医学治疗AS有独到的见解和优势,中医理论将AS归于“胸痹”的范畴。胸痹在古籍中有“愊愊如满”、“蕴蕴而痛”、“令人心中坚满痞急痛,肌中苦痹绞急如刺”的论述。在治疗上,张锡纯、王清任等众多医家多重视痰瘀所致胸痹而痛,反复强调活血之品的使用。桃仁–红花是临床中治疗AS的常见药对,多用于治疗由瘀血内阻所致的胸痹患者,取得了较好的疗效 [6]。有研究表明,桃仁–红花可明显改善AS模型中主动脉的窦斑块面积 [7],但相关分子机制改变并未进一步证实 [7]。

网络药理学作为一种新的研究方法,在中医药领域得到了广泛的应用。一些研究利用网络药理学方法,利用现有的数据库信息,初步探索药物与疾病之间的靶点和通路关系,并在此基础上阐明分子机制。这说明,网络药理学是研究中药分子机制的一种相对有效且易于实施的方法。因此,本文采用网络药理分析方法 [8] 探索桃仁–红花作用于AS患者动脉斑块稳定性的靶分子,为临床治疗和药物研究提供新思路。

2. 方法

2.1. 活性成分的药代动力学评价

通过中药系统药理学分析平台TCMS (https://www.tcmsp-e.com/)检索并收集桃仁–红花中各个药物所含有的化学成分,根据毒药物动力学(ADME)原理,以TCMSP最新筛选标准:口服利用度(OB) ≥ 30%、类药性(DL) ≥ 0.18为筛选条件,筛选组方中所含有的有效化学成分 [9]。基于TCMSP将筛选得到的有效成分进行靶点蛋白获取,去重后借助Uniprot数据库(https://www.uniprot.org/)对靶点蛋白标准化处理。

2.2. 不同状态斑块中的基因表达差异

GEO数据库(http://www.ncbi.nlm.nih.gov/geo/)的GSE41571数据集的表达谱含有5个稳定斑块组织和6个破裂斑块组织。通过“limma”包,找出两组样本的差异基因。并绘制火山图和热图。对药物靶点及差异基因取交集找出桃仁–红花的潜在治疗靶点。

2.3. 绘制成分–靶点网络图

将交集基因与所对应的化合成分导入Cytoscape 3.8.1进行可视化。

2.4. 蛋白质–蛋白质相互作用(PPI)网络

通过STRING数据库(STRING, https://www.string-db.org/)对交集基因进行蛋白互作分析,物种限定为“homo sapiens”,设置最低相互作用分值为highest confidence ≥ 0.4,找出不同蛋白间的相互作用。

2.5. GO和KEGG通路富集分析

桃仁–红花的潜在作用靶点通过“org.Hs.eg.db”包进行ID转换后,使用“clusterProfiler”包进行GO分析与KEGG富集分析。其中,GO分类富集分析包括生物学过程(Biological Process, BP)、分子功能(Molecular Function, MF)、细胞组成(Cellular Component, CC)。按照P-value < 0.05为标准,根据P-value大小进行降序排列,筛选具有显著性差异的富集结果,选取BP、MF、CC排名前20的条目进行可视化,KEGG通路富集根据富集在通路上基因数目以及与疾病的相关性,用“ggplot2”包进行可视化。

3. 结果

3.1. 桃仁–红花成分和靶点的提取及GEO芯片差异分析

通过TCMSP共找出桃仁–红花中的含有16个化学成分,193个靶点。其中槲皮素、山奈酚、木犀草素、黄芩素、豆甾醇、β-谷甾醇等成分的作用靶点较多,具备较强的药物活性。通过“limma”包对稳定斑块组和破裂斑块组差异分析,我们共找到1577个差异基因。其中,上调基因724个,下调基因853个。分别提取上调基因和下调基因的前20个基因绘制热图(见图1(a)),对所有差异的基因绘制火山图(见图1(b))。

(a) 差异基因 (b) 差异基因火山图

Figure 1. Difference analysis of GEO data set

图1. GEO数据集的差异分析

3.2. 韦恩图的绘制

通过对药物靶点和不同状态斑块间的差异基因取交集后,得到28个桃仁–红花调控斑块稳定性的潜在靶点(见图2)。

Figure 2. Venn diagram of drug targets and disease targets

图2. 药物靶点与疾病靶点的韦恩图

3.3. 绘制成分–靶点网络图绘制

绘制成分–靶点网络图后发现,桃仁–红花调控斑块稳定性的潜在成分主要为山奈酚、6-羟基山奈酚、木犀草素、β-胡萝卜素、新隐丹参酮、六羟基黄酮、醌式红花甙、黄芩素、槲皮素、豆甾醇、β-谷甾醇。这些化合物可通过调节PGR、PTGS1、AR、DPP4、FOSL2、MMP2、HMOX1、CAV1、GJA1、TNFAIP6、VCAM1、GSTP1、RXRA、MAOB、CCND1、IL6ST、ADCY2、MET、POR、RUNX1T1、PTGER3、CXCL8、ABCG2、NQO1、COL3A1、CXCL2、CTSD、PCOLCE影响AS患者体内斑块的稳定性(见图3)。

Figure 3. Network diagram of active component-target

图3. 有效成分–靶点网络图

3.4. PPI绘制

PPI结果显示,MMP2、CCND1、CXCL8、CAV1、HMOX1、AR、VCAM1、PGR、ABCG2之间有较强的相互作用关系(见图4)。

Figure 4. Construction and analysis of PPI protein interaction network

图4. PPI蛋白互作网络的构建与分析

3.5. 富集分析

GO结果表明,BP与对抗生素的反应、腺体发育、对营养物质的反应、对酒精的反应、对乙醇的反应、对酮体的反应、对酸性化学物质的反应有关(见图5(a))。CC与膜筏、膜微域、膜区、线粒体外膜、含胶原蛋白的细胞外基质、三级颗粒腔体、细胞器外膜、外膜有关(见图5(b))。MF与核受体活性、配体激活的转录因子活性、体荷尔蒙受体活性、氧化还原酶活性、抗氧化活性、氧化还原酶活性、电子传递活性有关(见图5(c))。KEGG结果与流体剪切应力与动脉粥样硬化、脂肪细胞中脂肪分解的调节、雌激素信号传导途径、内分泌抵抗、NF-kappa B信号传导途径、脂质和动脉硬化、血小板激活传导有关(见图5(d))。

(a) GO-BP条形图 (b) GO-CC条形图(c) GO-MF条形图 (d) KEGG分析气泡图

Figure 5. (a)~(c) GO analysis bar charts; (d) KEGG analysis bubble chart

图5. (a)~(c) GO分析条形图;(d) KEGG分析气泡图

4. 讨论

斑块在中医理论中属痰瘀的范畴。内经写道:“中焦受气取汁,变化而赤,是谓血”,故瘀为血运行不利,停于脉管所致,属有形之邪。《景岳全书》指出:“痰为水谷之气所化,若运化失常则成痰涎”。痰为水谷津液布散失常,聚水成饮,火炼成痰所成。因人体之气血津液的运行输布与肺脾有关,故痰瘀的生成多责之肺脾二脏。朱丹溪认为,痰瘀均为阴邪,久留脉中则瘀结愈深,并留下“痰挟瘀血,遂成窼巢”的论述。中医从活血化瘀论治血管疾病,通过使用活血类药物荡涤痰瘀,还脉管之通利。桃仁–红花均为中医理论中具有较强活血化瘀功能的药物,是临床治疗泛血管疾病的常用药对。桃仁为蔷薇科植物,有活血化痰、润肠通便之功,可使痰瘀随大肠而泻。红花为菊科植物,有活血逐瘀、行气止痛之效,能使痰瘀随气而消。两者共用可濡润行散,消融瘀血。

现代医学认为斑块多由免疫细胞、间充质细胞、脂质和细胞外基质组成 [10]。随着病情的发展,体内的脂质代谢功能紊乱会导致斑块逐渐变大,并破坏血管的内部弹性层、中膜、外部弹性层和外膜,甚至破裂,引发心血管疾病患者猝死 [11]。本研究表明,桃仁–红花干预斑块稳定性的成分主要为槲皮素、山奈酚、木犀草素、黄芩素、豆甾醇、β-谷甾醇。槲皮素是一种黄酮类化合物,已被证明具有心血管保护作用和抗动脉粥样硬化作用 [12]。研究表明,槲皮素可明显改善高脂肪饮食的APOE-/-小鼠的动脉粥样硬化斑块的面积、脂质积累水平,并增加了动脉粥样硬化斑块中的胶原纤维 [13]。此外,槲皮素还可调节MST1介导的RAW264.7细胞自噬,抑制ox-LDL诱导的泡沫细胞形成 [14]。山奈酚具有抗氧化、抗炎、抗癌、抗菌、神经保护、抗糖尿病、镇痛和抗过敏等多种药理活性 [15]。研究表明,山柰酚可通过下调TNF-α、IL-1β、ICAM-1、VCAM-1和MCP-1的表达抑制炎症细胞的粘附、迁移并阻断炎症反应的起始过程 [16]。木犀草素可在体外和体内保护免受TNF-α诱导的血管炎症和单核细胞与内皮细胞的粘附,改善动脉粥样硬化斑块的发展,并减少主动脉中的脂质积累 [17] [18]。黄芩素也可通过激活PPARγ/LXRα信号通路减轻巨噬细胞脂质积累和炎症反应,减缓斑块的生成 [19]。这些证据表明,桃仁–红花内部的药物活性成分不仅能减缓斑块的生成,还能显著改善炎症损伤。

PPI显示,MMP2、CCND1、CXCL8、CAV1、HMOX1、AR、VCAM1是桃仁–红花调节斑块稳定性的核心基因。基质金属蛋白酶(MMP)是由斑块中巨噬细胞产生的细胞外基质依赖性调节剂 [20]。这些酶能够降解各种基质蛋白,切割完整的纤维状胶原蛋白、非纤维状或碎片化的间质胶原蛋白。MMP-2被凝血酶激活后,可增加局部基质降解活性,以应对复杂的动脉粥样硬化斑块 [21]。HMOX1在动脉粥样硬化中的高表达与铁死亡的发生有关,并导致MMP释放和M0巨噬细胞浸润 [22]。小窝蛋白-1 (Cav-1)是小窝细胞器的标记蛋白,可直接结合胆固醇 [23],在小窝功能中起着复杂的作用 [24]。Cav-1具有肿瘤生长和迁移、脂质转运和炎症调节等多种生物学功能 [25]。先前的研究确定,Cav-1是脂肪细胞中主要的质膜脂肪酸结合蛋白,与AS动脉斑块的形成有关 [26]。VCAM-1是参与嗜酸性粒细胞、基底细胞、单核细胞和淋巴细胞的黏附的细胞黏附分子。VCAM-1使单核细胞与内皮细胞黏合,单核细胞进入内皮下。它不仅能加重体内的炎症损伤,还能影响斑块的状态,促进AS的发生和发展 [27]。AR是人体内雄激素受体,可通过调节葡萄糖和脂质代谢等生物学过程参与斑块的形成 [28]。这些证据表明,PPI中的基因均通过自身具备的生物学作用干预AS患者的病程进展。这些基因的综合作用可能是导致斑块破裂的重要因素。

KEGG结果与流体剪切应力与动脉粥样硬化、脂肪细胞中脂肪分解的调节、雌激素信号传导途径、内分泌抵抗、NF-kappa B信号传导途径、脂质和动脉硬化、血小板激活传导有关。易损斑块的稳定性多在颈动脉或冠状动脉的分叉处等剪应力不均匀的狭窄区域发生变化,这可能与流体剪切应力会对已经生成的斑块直接施加生物应力有关 [29] [30]。NF-κB主要通过调节胆固醇的逆向转运(RCT)参与胆固醇稳态和斑块的炎症反应 [31]。雌激素与雌激素受体结合后可改变类固醇激素的水平,进而影响机体内部的脂质代谢与炎症反应等生物学过程 [32]。故这些通路均通过自身所介导的联级反应干预斑块稳定性。

5. 结论

综上所述,本研究运用网络药理学和生物信息学的方法在一定程度上揭示了AS患者斑块稳定性的相关基因,以及桃仁–红花发挥延缓或抑制斑块破裂这一生物学过程的功效作用机制。未来本课题组将持续关注这一学术领域,开展相关体内体外实验,对这一结果进行验证。总之,桃仁–红花内部的化合成分可能通过调节MMP2、CCND1、CXCL8、CAV1、HMOX1、AR、VCAM1等靶点调控斑块稳定性的信号传导途径,进而干预斑块稳定性。

基金项目

国家自然科学基金地区基金项目(NO. 81860776)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Liu, Y., Yu, H. and Zhang, Y. (2008) TLRs Are Important Inflammatory Factors in Atherosclerosis and May Be a Therapeutic Target. Medical Hypotheses, 70, 314-316.
https://doi.org/10.1016/j.mehy.2007.05.030
[2] Libby, P. (2001) Current Concepts of the Pathogenesis of the Acute Coronary Syndromes. Circulation, 104, 365-372.
https://doi.org/10.1161/01.CIR.104.3.365
[3] Kaartinen, M., Penttilä, A. and Kovanen, P.T. (1994) Mast Cells of Two Types Differing in Neutral Protease Composition in the Human Aortic Intima. Demonstration of Tryptase- and Tryptase/Chymase-Containing Mast Cells in Normal Intimas, Fatty Streaks, and the Shoulder Region of Atheromas. Ar-teriosclerosis and Thrombosis, 14, 966-972.
https://doi.org/10.1161/01.ATV.14.6.966
[4] Hansson, G.K., Libby, P. and Tabas, I. (2015) Inflammation and Plaque Vulnerability. Journal of Internal Medicine, 278, 483-493.
https://doi.org/10.1111/joim.12406
[5] Chistiakov, D.A., Melnichenko, A.A. and Grechko, A.V. (2018) Potential of Anti-Inflammatory Agents for Treatment of Atherosclerosis. Experimental and Molecular Pathology, 104, 114-124.
https://doi.org/10.1016/j.yexmp.2018.01.008
[6] 狄培琰, 康乐, 孟驿佳, 柴彬, 苗明三, 苗晋鑫. 基于数据挖掘和网络药理学的中医药治疗动脉粥样硬化用药规律及特点分析[EB/OL]. 中药药理与临床: 1-22.
https://doi.org/10.13412/j.cnki.zyyl.20211015.004, 2022-09-23.
[7] 王怡茹, 张一凡, 韦婧. 桃仁红花煎通过抑制淋巴管增生改善ApoE-/-小鼠动脉粥样硬化的炎症反应[J]. 暨南大学学报(自然科学与医学版), 2021, 42(1): 62-70.
[8] Hopkins, A.L. (2019) Network Pharmacology. Nature Biotechnology, 25, 1110-1111.
https://doi.org/10.1038/nbt1007-1110
[9] Ru, J.L., Li, P., Wang, J.N., et al. (2014) TCMSP: A Database of Sys-tems Harmacology for Drug Discovery from Herbal Medicines. Journal of Cheminformatics, 6, Article No. 13.
https://doi.org/10.1186/1758-2946-6-13
[10] Rognoni, A., Cavallino, C., Veia, A., et al. (2015) Pathophysiology of Atherosclerotic Plaque Development. Cardiovascular & Hematological Agents in Medicinal Chemistry, 13, 10-13.
https://doi.org/10.2174/1871525713666141218163425
[11] Yuan, C., Ni, L., Zhang, C., et al. (2021) Vascular Calcification: New Insights into Endothelial Cells. Microvascular Research, 134, Article ID: 104105.
https://doi.org/10.1016/j.mvr.2020.104105
[12] Lara-Guzman, O.J., Tabares-Guevara, J.H., Leon-Varela, Y.M., et al. (2012) Proatherogenic Macrophage Activities Are Targeted by the Flavonoid Quercetin. Journal of Pharmacology and Experimental Therapeutics, 343, 296-306.
https://doi.org/10.1124/jpet.112.196147
[13] Jia, Q., Cao, H., Shen, D., et al. (2019) Quercetin Protects against Atherosclerosis by Regulating the Expression of PCSK9, CD36, PPARγ, LXRα and ABCA1. International Journal of Molecular Medicine, 44, 893-902.
https://doi.org/10.3892/ijmm.2019.4263
[14] Cao, H., Jia, Q., Yan, L., Chen, C., et al. (2019) Quercetin Suppress-es the Progression of Atherosclerosis by Regulating MST1-Mediated Autophagy in ox-LDL-Induced RAW264.7 Mac-rophage Foam Cells. International Journal of Molecular Sciences, 20, Article 6093.
https://doi.org/10.3390/ijms20236093
[15] Calderón-Montaño, J.M., Burgos-Morón, E. and Pérez-Guerrero, C. (2011) A Review on the Dietary Flavonoid Kaempferol. Mini-Reviews in Medicinal Chemistry, 11, 298-344.
https://doi.org/10.2174/138955711795305335
[16] Kong, L., Luo, C., Li, X., Zhou, Y. and He, H. (2013) The An-ti-Inflammatory Effect of Kaempferol on Early Atherosclerosis in High Cholesterol Fed Rabbits. Lipids in Health and Disease, 12, Article No. 115.
https://doi.org/10.1186/1476-511X-12-115
[17] Zhang, B.C., Zhang, C.W., Wang, C., et al. (2016) Luteolin At-tenuates foam Cell Formation and Apoptosis in Ox-LDL-Stimulated Macrophages by Enhancing Autophagy. Cellular Physiology and Biochemistry, 39, 2065-2076.
https://doi.org/10.1159/000447902
[18] Li, J., Dong, J.Z., Ren, Y.L., et al. (2018) Luteolin Decreases Atheroscle-rosis in LDL Receptor-Deficient Mice via a Mechanism Including Decreasing AMPK-SIRT1 Signaling in Macrophages. Experimental and Therapeutic Medicine, 16, 2593-2599.
https://doi.org/10.3892/etm.2018.6499
[19] Zhang, Z.Z., Yu, X.H. and Tan, W.H. (2022) Baicalein Inhibits Macrophage Lipid Accumulation and Inflammatory Response by Ac-tivating the PPARγ/LXRα Pathway. Clinical and Experimental Immunology, 209, 316-325.
https://doi.org/10.1093/cei/uxac062
[20] Galis, Z.S., Sukhova, G.K., Lark, M.W. and Libby, P. (1994) Increased Expression of Matrix Metalloproteinases and Matrix Degrading Activity in Vulnerable Regions of Human Atheroscle-rotic Plaques. Journal of Clinical Investigation, 94, 2493-2503.
https://doi.org/10.1172/JCI117619
[21] Galis, Z.S., Kranzhöfer, R., Fenton, J.W. and Libby, P. (1997) Thrombin Promotes Activation of Matrix Metalloproteinase-2 Pro-duced by Cultured Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 17, 483-489.
https://doi.org/10.1161/01.ATV.17.3.483
[22] Wu, D., Hu, Q., Wang, Y., et al. (2022) Ientification of HMOX1 as a Critical Ferroptosis-Related Gene in Atherosclerosis. Frontiers in Cardiovascular Medicine, 9, Article ID: 833642.
https://doi.org/10.3389/fcvm.2022.833642
[23] Hu, Q., et al. (2010) PPARg1-Induced Caveolin-1 Enhances Cho-lesterol Efflux and Attenuates Atherosclerosis in Apolipoprotein E-Deficient Mice. Journal of Vascular Research, 47, 69-79.
https://doi.org/10.1159/000235927
[24] Jin, Y., Lee, S.J., Minshall, R.D., et al. (2011) Caveolin-1: A Criti-cal Regulator of Lung Injury. The American Journal of Physiology-Lung Cellular and Molecular Physiology, 300, L151-L160.
https://doi.org/10.1152/ajplung.00170.2010
[25] Martinez-Outschoorn, U.E., et al. (2015) Caveolae and Signalling in Cancer. Nature Reviews Cancer, 15, 225-237.
https://doi.org/10.1038/nrc3915
[26] Wang, D.X., Pan, Y.Q., Liu, B., et al. (2018) Cav-1 Promotes Atherosclero-sis by Activating JNK-Associated Signaling. Biochemical and Biophysical Research Communications, 503, 513-520.
https://doi.org/10.1016/j.bbrc.2018.05.036
[27] Broisat, A., Hernot, S., Toczek, J., et al. (2012) Nanobodies Tar-geting Mouse/Human VCAM1 for the Nuclear Imaging of Atherosclerotic Lesions. Circulation Research, 110, 927-937.
https://doi.org/10.1161/CIRCRESAHA.112.265140
[28] Kirlangic, O.F., Yilmaz-Oral, D., Kaya-Sezginer, E., et al. (2020) The Effects of Androgens on Cardiometabolic Syndrome: Current Therapeutic Concepts. Sexual Medicine, 8, 132-155.
https://doi.org/10.1016/j.esxm.2020.02.006
[29] Mangge, H. (2016) Beyond Cholesterol—New Cardio-vascular Biomarkers. Nestlé Nutrition Institute Workshop Series, 84, 81-88.
https://doi.org/10.1159/000436990
[30] Bryniarski, K.L., Wang, Z., Fracassi, F., et al. (2019) Three-Dimensional Fibrous Cap Structure of Coronary Lipid Plaque-ST-Elevation Myocardial Infarction vs. Stable Angina. Circulation Journal, 83, 1214-1219.
https://doi.org/10.1253/circj.CJ-19-0007
[31] Yu, X.H., Zheng, X.L. and Tang, C.K. (2015) Nuclear Factor-κB Activation as a Pathological Mechanism of Lipid Metabolism and Atherosclerosis. Advances in Clinical Chemistry, 70, 1-30.
https://doi.org/10.1016/bs.acc.2015.03.004
[32] Boese, A.C., Kim, S.C., Yin, K.J., et al. (2017) Sex Differ-ences in Vascular Physiology and Pathophysiology: Estrogen and Androgen Signaling in Health and Disease. The American Journal of Physiology-Heart and Circulatory Physiology, 313, H524-H545.
https://doi.org/10.1152/ajpheart.00217.2016