脂蛋白a在心血管疾病中的研究进展
Research Progress of Lipoprotein a in Cardiovascular Disease
DOI: 10.12677/ACM.2023.131042, PDF, HTML, XML, 下载: 355  浏览: 696  国家自然科学基金支持
作者: 谭兴灵*, 黄 晶#:重庆医科大学附属第二医院心血管内科,重庆
关键词: 脂蛋白a动脉粥样硬化性心血管疾病主动脉瓣狭窄机制治疗Lipoprotein a Atherosclerotic Cardiovascular Disease Aortic Value Stenosis Mechanism Therapy
摘要: 脂蛋白a [Lipoprotein a, Lp(a)]的结构与低密度脂蛋白类似,但其除了含载脂蛋白B-100以外,还含有一种糖蛋白载脂蛋白a与载脂蛋白B-100相连。流行病学、基因组学研究发现脂蛋白a升高与动脉粥样硬化性心血管疾病(atherosclerotic cardiovascular disease, ASCVD)和主动脉瓣钙化发生具有因果关系。强化降脂治疗下,动脉粥样硬化性心血管疾病事件风险得到明显减低,但近年研究发现脂蛋白a升高已成为动脉粥样硬化性心血管事件的残余风险。因此现就脂蛋白a结构和其在心血管疾病发展中作用机制以及相关降低脂蛋白a治疗方法研究进展进行综述。
Abstract: The structure of Lipoprotein a [Lp(a)] is similar to LDL, although it contains a kind of glycoprotein apolipoprotein a, which is attached to the apolipoprotein B-100, despite of apolipoprotein B-100. Epidemiological, genetic data indicate that Lp(a) is the cause for atherosclerotic cardiovascular dis-eases as well as calcification of the aortic valves. Though the risk of atherosclerotic cardiovascular disease (ASCVD) risk has been reduced as the result of intensive lipid-lowering therapy, the high level of Lp(a) has been the residual risk of ASCVD. Thus this review aims to outline the structure of Lp(a), its mechanism of the development of cardiovascular disease and the progress of therapies of lowering Lp(a).
文章引用:谭兴灵, 黄晶. 脂蛋白a在心血管疾病中的研究进展[J]. 临床医学进展, 2023, 13(1): 272-279. https://doi.org/10.12677/ACM.2023.131042

1. 引言

心血管疾病(cardiovascular disease, CVD)患病率和死亡率在全球居于首位,其中冠状动脉动脉粥样硬化引起心肌缺血已成为全球死亡的主要原因 [1]。孟德尔随机队列研究和大型队列研究表明,低密度脂蛋白长期处于高水平已被证实与动脉粥样硬化性心血管疾病(ASCVD)和主动脉瓣钙化发生发展相关,主动脉瓣钙化进一步会引起钙化性主动脉瓣狭窄。然而,研究表明,尽管进行最佳降脂治疗,仍然存在心血管风险 [2]。一项包括七项关于他汀的随机对照试验的结果的荟萃分析显示,尽管低密度脂蛋白胆固醇(LDL-C)通过他汀治疗达标,但确诊为ASCVD合并Lp(a)升高(>50 mg/dl)的患者患心血管疾病的风险增加31%,ASCVD事件发生率为41.5% [2]。另一项涉及8525名研究对象的大型前瞻性队列研究结果显示在调整了传统的心血管危险因素后,脂蛋白a仍然与全因死亡和心血管疾病相关的死亡密切相关 [3]。Lp(a)携带的氧化磷脂不仅可使动脉壁炎症活动增加,还可诱导单核细胞向动脉壁迁移,促使单核细胞吞噬氧化的LDL后形成泡沫细胞,从而促进动脉粥样硬化发生发展 [4]。此外,Lp(a)和其携带的氧化磷脂可通过对瓣膜间质细胞的促成骨作用从而导致瓣膜钙化发生发展 [5] [6]。新的遗传学、机制及成像的方面的研究表明主动脉瓣狭窄的治疗潜力,目前主动脉瓣狭窄可以说是最后一种缺乏药物治疗来减缓疾病的进展的主要的心血管疾病 [7] [8]。Lp(a)升高带来的心血管事件的残余风险及主动脉瓣钙化发生发展风险促使降低Lp(a)的药物临床研究发展,但仍缺乏特定降低Lp(a)有效药物的研究证据。本文在阐述Lp(a)结构及其在心血管疾病中的作用机制同时讨论了相关降低Lp(a)方法研究进展。

2. Lp(a)的结构与代谢

Lp(a)是一种核心结构与低密度脂蛋白类似的球形复合体,由甘油三酯和胆固醇组成,外膜由磷脂和游离胆固醇构成,其蛋白质部分是由载脂蛋白B-100与一个单独的载脂蛋白a通过二硫键相连 [9] [10]。载脂蛋白a是几乎完全由肝脏合成和分泌的一种颗粒大于载脂蛋白B-100的多态性程度很高的糖蛋白,由1个非活性蛋白酶区、类似纤溶酶原的Kringles IV扩展的十个亚基形成的结构域和1个类似纤溶酶原的Kringles V结构组成。Lp(a)的合成是由LPA基因决定,该基因编码载脂蛋白a。LPA基因有2个Kringle结构域(Kringles IV-V [KIV-KV]),且KIV能扩展为10个亚型(KIV1-KIV10) [9],而KV与KIV10和一个失活的蛋白酶结构域相连。KIV2的扩展导致可变的基因内拷贝数变异,导致1到40多个相同重复的拷贝,这导致载脂蛋白a异构体大小不一。载脂蛋白a的蛋白质大小具有异质性,从而引起组装成的Lp(a)大小不一,正是因为KIV亚基的类型和拷贝数的差异 [9]。在大多人群中,Lp(a)浓度与载脂蛋白a亚型大小呈负相关。Lp(a)组装发生在肝细胞表面或Disse间隙,主要通过肝脏代谢,但是还有少部分通过肾脏代谢 [11]。Lp(a)在肝脏的的分解代谢途径尚不完全清楚。目前研究发现,LDL-C受体相关蛋白、极低密度脂蛋白胆固醇受体、B族Ⅰ型清道夫受体等可能参与介导Lp(a)代谢及清除 [12],但是它们各自在体内的详细机制仍不清楚 [12]。LDL-C通过与肝细胞表面的LDL受体结合后被肝细胞以胞吞的形式摄入细胞中,然后受体与LDL-C分离,重新回到细胞膜,而LDL-C在溶酶体的作用下被分解为游离胆固醇 [13]。由于Lp(a)与LDL结构类似,LDL受体被认为可能参与Lp(a)清除的重要受体而获得关注。但LDL受体与Lp(a)的结合和摄取中的作用却是备受争议,尽管一些体外细胞模型已经证明LDR受体在Lp(a)摄取中的作用 [14] [15] [16],但部分研究又得出相反结果 [17] [18],并且人体内研究结果也是好坏参半。在部分或全部丧失LDL受体功能的家族性高胆固醇血症患者经常观察到脂蛋白(a)水平升高 [19],并且在一项针对69名同源性家族性高胆固醇血症患者的临床试验中发现PCSK9抑制剂能够将血浆中的Lp(a)降低28.4% [20]。但专门用于探究PSCK9抑制剂降低Lp(a)水平的机制的研究产生了相互矛盾的结果。在某些情况下,PCSK9抑制剂对Lp(a)水平的影响可归因于Lp(a)产生率的降低 [21]。然而,最近在一个培养的细胞模型中证明,PCSK9刺激载脂蛋白a的分泌是其促进载脂蛋白B分泌的结果 [22]。然而,有趣的是,对引起Lp(a)浓度升高的他汀类药物治疗的患者进行的动力学研究发现,PCSK9抑制剂增加了载脂蛋白a的分解代谢率,但对载脂蛋白a的生成率没有影响 [23]。因此,尽管直接及间接研究证据表明LDL受体在Lp(a)代谢中的作用,但是具体作用机制在未来还需进一步研究探索。B族I型清道夫受体参与Lp(a)分解代谢,与高密度脂蛋白和低密度脂蛋白的情况一致,即从Lp(a)颗粒中选择性地吸收胆固醇 [24]。此外,Lp(a)的载脂蛋白a和载脂蛋白B-100组分可被B族Ⅰ型清道夫受体内化 [24]。去唾液酸糖蛋白受体、Megalin受体等也参与Lp(a)的代谢,且近来发表的研究数据表明,与Lp(a)相关的其他蛋白质(ApoH、ApoCIII、ApoE)也可能在Lp(a)颗粒的清除中发挥作用 [25] [26] [27],但它们在Lp(a)代谢过程中的具体机制仍需进一步研究明确。此外,慢性肾脏病人群的Lp(a)水平比健康人群高,提示肾脏在脂蛋白a清除过程中可能起重要作用 [28]。

3. Lp(a)在心血管疾病中作用机制

研究证明高水平的Lp(a)与冠状动脉粥样硬化、心肌梗死、中风、钙化性主动脉瓣狭窄发展有关 [29] [30] [31] [32] [33]。Lp(a)主要通过促血管炎症、促动脉粥样硬化、促进钙化参与心血管疾病发生发展。Lp(a)通过分子孔进入动脉内膜,在那里经历氧化,导致活性氧物的形成,通过增加内皮通透性、渗出、细胞因子的产生、细胞凋亡和血管壁重塑来诱导炎症。氧化的低密度脂蛋白部分被巨噬细胞摄取,以产生泡沫细胞并促进动脉粥样硬化斑块的形成 [11]。Lp(a)含有的载脂蛋白B携带有氧化磷脂(oxidized phospholipids, OxPL),OxPL通过共价键与载脂蛋白a结合 [11],是先天免疫系统识别的内源性危险相关分子模式 [34],能诱发与ASCVD和钙化性主动脉瓣狭窄发生发展相关的无菌性炎症和钙化 [5] [35] [36]。在体外,Lp(a)通过其OxPL成分上调内皮细胞黏附分子和细胞因子的表达,并促进单核细胞迁移 [37]。此外,Lp(a)对单核细胞具有强烈的趋化作用,并上调单核细胞细胞因子的表达 [4]。当Lp(a)浓度较高时,氧化的磷脂被输送到受损的血管和主动脉瓣叶,并导致内皮功能障碍、脂肪堆积、钙化和炎症。尽管炎症是动脉粥样硬化和早期钙化性主动脉瓣疾病的关键特征,但后者的进展主要依赖于主动脉瓣的矿化和骨化。Lp(a)是否能通过凝血功能增强或纤溶功能受损在人类血栓形成过程中发挥作用尚不确定。载脂蛋白a含有与纤溶酶原相似的蛋白酶样结构域,但没有活性,提示Lp(a)可导致受损的纤溶加重。然而,人体研究未能显示大幅降低Lp(a)对体外纤溶活性的任何影响 [38]。流行病学和遗传学证据也不支持Lp(a)升高在静脉血栓形成中的作用 [39] [40]。但Lp(a)被认为可附着在纤维蛋白上,形成阻止纤溶酶原激活的复合体,从而促进血栓的形成 [9]。因此,Lp(a)可能代表动脉粥样硬化、钙化性主动脉瓣狭窄和血栓形成之间缺失的一环。

4. 降低Lp(a)相关治疗方法研究进展

LP(a)升高尽管与ASCVD以及钙化性主动脉瓣狭窄之间有强烈的独立的因果关系,但降低Lp(a)的方法是有限的,饮食干预和锻炼最终产生了不一致的结果 [41],并且目前尚未有药物被专门用于降低Lp(a)治疗 [2] [42] [43] [44] [45] [46]。

脂蛋白分离是临床上用于降低Lp(a)的最有效的方法,但在单次3至4小时的治疗过程中,Lp(a)浓度能急剧降低50%至85%,同时氧化磷脂也相应减少,除降低Lp(a)外,脂蛋白分离还可将低密度脂蛋白浓度降低60%至85% [47] [48]。脂蛋白分离已被证明可以减少接受Lp(a)升高治疗的个体的心血管事件 [49]。在英格兰进行的一项前瞻性随机、假对照、单盲、交叉研究中,20名Lp(a)大于500 mg/L的顽固性心绞痛患者接受了脂蛋白分离术,其结果是心血管磁共振评估的定量心肌灌注储备变化的主要终点以及动脉粥样硬化负荷、运动能力、症状和生活质量的次要终点显著改善 [50]。然而,由于的侵袭性,缺乏大型随机对照试验,尽管观察和队列研究数据支持脂蛋白分离在Lp(a)升高患者的心血管疾病二级预防中的重要作用,但心血管事件减少的确切程度存在一些不确定性。由于缺乏大型随机对照结果试验,而且大多数可用的脂蛋白分离方法去除了所有含载脂蛋白B的脂蛋白,包括低密度脂蛋白和Lp(a),这使每种脂蛋白的作用变得模糊,因此,通过分离降低Lp(a)以二级预防心血管疾病事件的潜在益处尚不清楚。

他汀和依折麦布不仅不能有效减低Lp(a)浓度,还会使其浓度增高30%,但它们引起的Lp(a)升高却不增加心血管事件发生 [2] [46] [51]。FOURIER研究分析结果显示,PCSK9抑制剂——依洛尤单抗在48周时能将Lp(a)中位数百分比较基线降低26.9%,并且LP(a)高于中位数(37 mmol/L)的患者较安慰剂组相比MACE降低23% [52],并且还能延缓钙化性主动脉瓣狭窄进展 [53]。ODYSSEY-OUTCOMES研究的预先指定分析结果显示,PCSK9抑制剂——阿里尤单抗能在4个月后将Lp(a)降低23%,并且Lp(a)基线水平越高,使用阿里尤单抗后其减低幅度越大,并且更多得减少MACE发生,这与LDC-L水平完全无关 [42]。因此PCSK9抑制剂可在未来降低Lp(a)方面有较好的应用前景。

反义寡核苷酸(ASO)和小干扰RNA(siRNA)是基于核酸,以LPA基因产物——信使RNA为靶点的降低Lp(a)的药物 [54]。Tsimikas等人关于ASO的临床研究结果发现在47名健康成年人中连续增加剂量的使用IONIS-APO(a)Rx能显著降低Lp(a)水平,最高比基线降低78% [55]。Pelacarsen是另一种ASO,是IONIS-APO(a)Rx的类似物,能呈剂量依赖性的降低Lp(a),最高剂量组可使Lp(a)较基线水平降低92% [44]。Tsimikas等人研究发现,在确诊为CVD且基线Lp(a)水平达到或高150 nmol/L (60 mg/dL)的患者中,与安慰剂组相比,pelacarsen在6个月时以剂量依赖的方式显著降低Lp(a),降低水平高达80%,主要的不良反应为肌肉疼痛(12%)、头疼(11%)及流感样症状(11%) [45]。Horizon研究是一项正在进行的3期随机安慰剂对照临床试验,旨在评估ASCVD (既往有心肌梗死、缺血性中风和/或有症状的外周动脉疾病)患者每月皮下注射80毫克的pelacarsen后的临床疗效和安全性以及对远期心血管事件结局的影响。Olpasiran (AMG890; Amgen)是一种专门针对LPA mRNA设计的siRNA。在Lp(a)水平为70 nmol/L或更高的成人中单次给药能呈剂量依赖性的有效地降低Lp(a)水平,并且在第43天和第71天之间,LP(a)最大降幅达到90%以上 [43]。目前关于Olpasiran降低Lp(a)和心血管事件的OCEAN(a)-DOSE研究正在进行中。SLN360也是一种以LPAmRNA为靶点的siRNA。APOLLO研究将32名Lp(a)水平为150 nmol/L (60 mg/dL)或更高的受试者分为单剂量组和对照组,研究结果发现随着SLN360剂量增加,与对照组相比,Lp(a)水平显著降低,并且使用最高剂量时,Lp(a)的最大中位百分比降低超过95%并且耐受性良好 [56]。其他被研究的用于降低Lp(a)的药物包括烟酸、抗坏血酸、米泊美生、贝特类及性激素,因它们的不良反应和缺乏减少心血管事件的证据支持而需要未来进一步研究。

5. 总结与展望

流行病学和遗传学相关研究支持Lp(a)浓度升高与ASCVD风险增加以及主动脉瓣狭窄之间的潜在因果关系,尽管目前已经强化他汀类药物以及依折麦布治疗降低LDL-C,但研究发现Lp(a)水平升高是心血管事件的残余风险。脂蛋白分离能有效降低Lp(a)水平,并且观察研究及队列研究证据表明脂蛋白分离在Lp(a)升高患者预防心血管事件发生的重要作用,但仍缺乏大型随机临床试验进一步证实。目前PCSK9抑制剂在通过降低Lp(a)进一步减少心血管事件发生展示出良好的前景,但尚缺乏更多特定降低Lp(a)水平的药物。尽管目前靶向作用于LPA基因产物的新兴的基因沉默方法,即siRNA和ASO疗法,已经初步证明了能显著降低Lp(a)水平,并可能在不久的将来用于临床,但未来仍需要更多有效降低Lp(a)的药物的临床研究,以进一步为降低心血管风险的临床实践提供指导。

基金项目

国家自然科学基金(82170445)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Roth, G.A., Mensah, G.A., Johnson, C.O., et al. (2020) Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update from the GBD 2019 Study. Journal of the American College of Cardiology, 76, 2982-3021.
https://doi.org/10.1016/j.jacc.2020.11.010
[2] Willeit, P., Ridker, P.M., Nestel, P.J., et al. (2018) Baseline and On-Statin Treatment Lipoprotein(a) Levels for Prediction of Cardiovascular Events: Individual Patient-Data Me-ta-Analysis of Statin Outcome Trials. The Lancet, 392, 1311- 1320.
https://doi.org/10.1016/S0140-6736(18)31652-0
[3] Wang, Z.W., Li, M., Li, J.J., et al. (2022) Association of Lipoprotein(a) with All-Cause and Cause-Specific Mortality: A Prospective Cohort Study. European Journal of Internal Medicine, 106, 63-70.
https://doi.org/10.1016/j.ejim.2022.09.010
[4] van der Valk, F.M., Bekkering, S., Kroon, J., et al. (2016) Oxi-dized Phospholipids on Lipoprotein(a) Elicit Arterial Wall Inflammation and an Inflammatory Monocyte Response in Humans. Circulation, 134, 611-624.
https://doi.org/10.1161/CIRCULATIONAHA.116.020838
[5] Zheng, K.H., Tsimikas, S., Pawade, T., et al. (2019) Lipoprotein(a) and Oxidized Phospholipids Promote Valve Calcification in Patients with Aortic Stenosis. Journal of the American College of Cardiology, 73, 2150-2162.
https://doi.org/10.1016/j.jacc.2019.01.070
[6] Bourgeois, R., Bourgault, J., Despres, A.A., et al. (2021) Lipopro-tein Proteomics and Aortic Valve Transcriptomics Identify Biological Pathways Linking Lipoprotein(a) Levels to Aortic Stenosis. Metabolites, 11, 459.
https://doi.org/10.3390/metabo11070459
[7] Salpeter, S.R., Walsh, J.M.E., Ormiston, T.M., et al. (2006) Me-ta-Analysis: Effect of Hormone-Replacement Therapy on Components of the Metabolic Syndrome in Postmenopausal Women. Diabetes Obesity & Metabolism, 8, 538-554.
https://doi.org/10.1111/j.1463-1326.2005.00545.x
[8] Osnabrugge, R.L.J., Mylotte, D., Head, S.J., et al. (2013) Aortic Stenosis in the Elderly Disease Prevalence and Number of Candidates for Transcatheter Aortic Valve Replacement: A Meta-Analysis and Modeling Study. Journal of the American College of Cardiology, 62, 1002-1012.
https://doi.org/10.1016/j.jacc.2013.05.015
[9] Schmidt, K., Noureen, A., Kronenberg, F., et al. (2016) Thematic Review Series: Lipoprotein(a): Coming of Age at Last Structure, Function, and Genetics of Lipoprotein(a). Journal of Li-pid Research, 57, 1339-1359.
https://doi.org/10.1194/jlr.R067314
[10] Lamina, C. and Kronenberg, F. (2013) The Mysterious Lipoprotein(a) Is Still Good for a Surprise. The Lancet Diabetes & Endocrinology, 1, 170-172.
https://doi.org/10.1016/S2213-8587(13)70085-8
[11] Jawi, M.M., Frohlich, J. and Chan, S.Y. (2020) Lipopro-tein(a) the Insurgent: A New Insight into the Structure, Function, Metabolism, Pathogenicity, and Medications Affecting Lipoprotein(a) Molecule. Journal of Lipids, 2020, Article ID: 3491764.
https://doi.org/10.1155/2020/3491764
[12] McCormick, S.P.A. and Schneider, W.J. (2019) Lipoprotein(a) Catabo-lism: A Case of Multiple Receptors. Pathology, 51, 155-164.
https://doi.org/10.1016/j.pathol.2018.11.003
[13] Brown, M.S. and Goldstein, J.L. (1986) A Receptor-Mediated Pathway for Cholesterol Homeostasis. Science, 232, 34-47.
https://doi.org/10.1126/science.3513311
[14] Romagnuolo, R., Scipione, C.A., Boffa, M.B., et al. (2015) Lipopro-tein(a) Catabolism Is Regulated by Proprotein Convertase Subtilisin/Kexin Type 9 through the Low Density Lipoprotein Receptor. Journal of Biological Chemistry, 290, 11649-11662.
https://doi.org/10.1074/jbc.M114.611988
[15] Tam, S.P., Zhang, X. and Koschinsky, M.L. (1996) Interaction of a Recombinant Form of Apolipoprotein[a] with Human Fi-broblasts and with the Human Hepatoma Cell Line HepG2. Journal of Lipid Research, 37, 518-533.
https://doi.org/10.1016/S0022-2275(20)37595-7
[16] Romagnuolo, R., Scipione, C.A., Marcovina, S.M., et al. (2017) Roles of the Low Density Lipoprotein Receptor and Related Receptors in Inhibition of Lipoprotein(a) Internaliza-tion by Proprotein Convertase Subtilisin/Kexin Type 9. PLOS ONE, 12, e0180869.
https://doi.org/10.1371/journal.pone.0180869
[17] Villard, E.F., Thedrez, A., Blankenstein, J., et al. (2016) PCSK9 Modulates the Secretion but Not the Cellular Uptake of Lipoprotein(a) ex Vivo: An Effect Blunted by Alirocumab. JACC: Basic to Translational Science, 1, 419-427.
https://doi.org/10.1016/j.jacbts.2016.06.006
[18] Chemello, K., Beeske, S., Trang Tran, T.T., et al. (2020) Lipo-protein(a) Cellular Uptake ex Vivo and Hepatic Capture in Vivo Is Insensitive to PCSK9 Inhibition with Alirocumab. JACC: Basic to Translational Science, 5, 549-557.
https://doi.org/10.1016/j.jacbts.2020.03.008
[19] Chemello, K., Garcia-Nafria, J., Gallo, A., et al. (2021) Lipopro-tein Metabolism in Familial Hypercholesterolemia. Journal of Lipid Research, 62, Article ID: 100062.
https://doi.org/10.1016/j.jlr.2021.100062
[20] Blom, D.J., Harada-Shiba, M., Rubba, P., et al. (2020) Efficacy and Safety of Alirocumab in Adults with Homozygous Familial Hypercholesterolemia: The Odyssey HoFH Trial. Journal of the American College of Cardiology, 76, 131-142.
https://doi.org/10.1016/j.jacc.2020.05.027
[21] Croyal, M., Tran, T.T., Blanchard, R.H., et al. (2018) PCSK9 Inhi-bition with Alirocumab Reduces Lipoprotein(a) Levels in Nonhuman Primates by Lowering Apolipoprotein(a) Produc-tion Rate. Clinical Science, 132, 1075-1083.
https://doi.org/10.1042/CS20180040
[22] Youssef, A., Clark, J.R., Marcovina, S.M., et al. (2022) Apo(a) and ApoB Interact Noncovalently within Hepatocytes: Implications for Regulation of Lp(a) Levels by Modulation of ApoB Secretion. Arteriosclerosis, Thrombosis, and Vascular Biology, 42, 289-304.
https://doi.org/10.1161/ATVBAHA.121.317335
[23] Watts, G.F., Chan, D.C., Pang, J., et al. (2020) PCSK9 Inhi-bition with Alirocumab Increases the Catabolism of Lipoprotein(a) Particles in Statin-Treated Patients with Elevated Lip-oprotein(a). Metabolism, 107, Article ID: 154221.
https://doi.org/10.1016/j.metabol.2020.154221
[24] Yang, X.P., Amar, M.J., Vaisman, B., et al. (2013) Scavenger Receptor-BI Is a Receptor for Lipoprotein(a). Journal of Lipid Research, 54, 2450-2457.
https://doi.org/10.1194/jlr.M038877
[25] Hoekstra, M., Chen, H.Y., Rong, J., et al. (2021) Genome-Wide Associ-ation Study Highlights APOH as a Novel Locus for Lipoprotein(a) Levels-Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 41, 458-464.
https://doi.org/10.1161/ATVBAHA.120.314965
[26] Croyal, M., Blanchard, V., Ouguerram, K., et al. (2020) VLDL (Very-Low-Density Lipoprotein)-Apo E (Apolipoprotein E) May Influence Lp(a) (Lipoprotein [a]) Synthesis or Assembly. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 819-829.
https://doi.org/10.1161/ATVBAHA.119.313877
[27] Capoulade, R., Torzewski, M., Mayr, M., et al. (2020) ApoCIII-Lp(a) Complexes in Conjunction with Lp(a)-OxPL Predict Rapid Progression of Aortic Stenosis. Heart, 106, 738-745.
https://doi.org/10.1136/heartjnl-2019-315840
[28] Hopewell, J.C., Haynes, R. and Baigent, C. (2018) The Role of Lipoprotein (a) in Chronic Kidney Disease. Journal of Lipid Research, 59, 577-585.
https://doi.org/10.1194/jlr.R083626
[29] Kamstrup, P.R., Tybjaerg-Hansen, A. and Nordestgaard, B.G. (2013) Ex-treme Lipoprotein(a) Levels and Improved Cardiovascular Risk Prediction. Journal of the American College of Cardiol-ogy, 61, 1146-1156.
https://doi.org/10.1016/j.jacc.2012.12.023
[30] Saeed, A. and Virani, S.S. (2018) Lipoprotein(a) and Cardiovascu-lar Disease: Current State and Future Directions for an Enigmatic Lipoprotein. Frontiers in Bioscience-Landmark, 23, 1099-1112.
https://doi.org/10.2741/4635
[31] Saeed, A., Sun, W.S., Agarwala, A., et al. (2019) Lipoprotein(a) Levels and Risk of Cardiovascular Disease Events in Individuals with Diabetes Mellitus or Prediabetes: The Atheroscle-rosis Risk in Communities Study. Atherosclerosis, 282, 52-56.
https://doi.org/10.1016/j.atherosclerosis.2018.12.022
[32] Erqou, S., Thompson, A., Di Angelantonio, E., et al. (2010) Apolipoprotein(a) Isoforms and the Risk of Vascular Disease Systematic Review of 40 Studies Involving 58,000 Participants. Journal of the American College of Cardiology, 55, 2160-2167.
https://doi.org/10.1016/j.jacc.2009.10.080
[33] Craig, W.Y., Neveux, L.M., Palomaki, G.E., et al. (1998) Lipopro-tein(a) as a Risk Factor for Ischemic Heart Disease: Meta-Analysis of Prospective Studies. Clinical Chemistry, 44, 2301-2306.
https://doi.org/10.1093/clinchem/44.11.2301
[34] Binder, C.J., Papac-Milicevic, N. and Witztum, J.L. (2016) Innate Sensing of Oxidation-Specific Epitopes in Health and Disease. Nature Reviews Immunology, 16, 485-497.
https://doi.org/10.1038/nri.2016.63
[35] Di Fusco, S.A., Arca, M., Scicchitano, P., et al. (2022) Lipoprotein(a): A Risk Factor for Atherosclerosis and an Emerging Therapeutic Target. Heart, 109, 18-25.
https://doi.org/10.1136/heartjnl-2021-320708
[36] Di Gioia, M., Spreafico, R., Springstead, J.R., et al. (2020) En-dogenous Oxidized Phospholipids Reprogram Cellular Metabolism and Boost Hyperinflammation. Nature Immunology, 21, 42-53.
https://doi.org/10.1038/s41590-019-0539-2
[37] Schnitzler, J.G., Hoogeveen, R.M., Ali, L., et al. (2020) Athero-genic Lipoprotein(a) Increases Vascular Glycolysis, Thereby Facilitating Inflammation and Leukocyte Extravasation. Circulation Research, 126, 1346-1359.
https://doi.org/10.1161/CIRCRESAHA.119.316206
[38] Boffa, M.B., Marar, T.T., Yeang, C., et al. (2019) Potent Reduction of Plasma Lipoprotein(a) with an Antisense Oligonucleotide in Human Subjects Does Not Affect ex Vivo Fi-brinolysis. Journal of Lipid Research, 60, 2082-2089.
https://doi.org/10.1194/jlr.P094763
[39] Nordestgaard, B.G. and Langsted, A. (2016) Lipoprotein(a) as a Cause of Cardiovascular Disease: Insights from Epidemiology, Genetics, and Biology. Journal of Lipid Research, 57, 1953-1975.
https://doi.org/10.1194/jlr.R071233
[40] Di Maio, S., Lamina, C., Coassin, S., et al. (2022) Lipoprotein(a) and SARS-CoV-2 Infections: Susceptibility to Infections, Ischemic Heart Disease and Thromboembolic Events. Journal of Internal Medicine, 291, 101-107.
https://doi.org/10.1111/joim.13338
[41] Enkhmaa, B., Petersen, K.S., Kris-Etherton, P.M., et al. (2020) Diet and Lp(a): Does Dietary Change Modify Residual Cardiovascular Risk Conferred by Lp(a)? Nutrients, 12, 2024.
https://doi.org/10.3390/nu12072024
[42] Bittner, V.A., Szarek, M., Aylward, P.E., et al. (2020) Effect of Aliro-cumab on Lipoprotein(a) and Cardiovascular Risk after Acute Coronary Syndrome. Journal of the American College of Cardiology, 75, 133-144.
https://doi.org/10.1016/j.jacc.2019.10.057
[43] Koren, M.J., Moriarty, P.M., Baum, S.J., et al. (2022) Preclinical Development and Phase 1 Trial of a Novel siRNA Targeting Lipoprotein(a). Nature Medicine, 28, 96-103.
https://doi.org/10.1038/s41591-021-01634-w
[44] Viney, N.J., van Capelleveen, J.C., Geary, R.S., et al. (2016) Antisense Oligonucleotides Targeting Apolipoprotein(a) in People with Raised Lipoprotein(a): Two Randomised, Dou-ble-Blind, Placebo-Controlled, Dose-Ranging Trials. The Lancet, 388, 2239-2253.
https://doi.org/10.1016/S0140-6736(16)31009-1
[45] Tsimikas, S., Karwatowska-Prokopczuk, E., Gouni-Berthold, I., et al. (2020) Lipoprotein(a) Reduction in Persons with Cardiovascular Disease. New England Journal of Medicine, 382, 244-255.
https://doi.org/10.1056/NEJMoa1905239
[46] Tsimikas, S., Gordts, P., Nora, C., et al. (2020) Satin Therapy Increases Lipoprotein(a) Levels. European Heart Journal, 41, 2275-2284.
https://doi.org/10.1093/eurheartj/ehz310
[47] Pokrovsky, S.N., Afanasieva, O.I. and Ezhov, M.V. (2020) Thera-peutic Apheresis for Management of Lp(a) Hyperlipoproteinemia. Current Atherosclerosis Reports, 22, 68.
https://doi.org/10.1007/s11883-020-00886-0
[48] Waldmann, E. and Parhofer, K.G. (2016) Lipoprotein Apheresis to Treat Elevated Lipoprotein(a). Journal of Lipid Research, 57, 1751-1757.
https://doi.org/10.1194/jlr.R056549
[49] Moriarty, P.M., Gray, J.V. and Gorby, L.K. (2019) Lipoprotein Apheresis for Lipoprotein(a) and Cardiovascular Disease. Journal of Clinical Lipidology, 13, 894-900.
https://doi.org/10.1016/j.jacl.2019.09.010
[50] Khan, T.Z., Hsu, L.Y., Arai, A.E., et al. (2017) Apheresis as Novel Treatment for Refractory Angina with Raised Lipoprotein(a): A Randomized Controlled Cross-Over Trial. European Heart Journal, 38, 1561-1569.
https://doi.org/10.1093/eurheartj/ehx178
[51] Trinder, M., Paruchuri, K., Haidermota, S., et al. (2022) Repeat Measures of Lipoprotein(a) Molar Concentration and Cardiovascular Risk. Journal of the American College of Cardiol-ogy, 79, 617-628.
https://doi.org/10.1016/j.jacc.2021.11.055
[52] O’Donoghue, M.L., Fazio, S., Giugliano, R.P., et al. (2019) Lipo-protein(a), PCSK9 Inhibition, and Cardiovascular Risk Insights from the FOURIER Trial. Circulation, 139, 1483-1492.
https://doi.org/10.1161/CIRCULATIONAHA.118.037184
[53] Bergmark, B.A., O’Donoghue, M.L., Murphy, S.A., et al. (2020) An Exploratory Analysis of Proprotein Convertase Subtilisin/Kexin Type 9 Inhibition and Aortic Ste-nosis in the Fourier Trial. JAMA Cardiology, 5, 709-713.
https://doi.org/10.1001/jamacardio.2020.0728
[54] Katzmann, J.L., Packard, C.J., Chapman, M.J., et al. (2020) Targeting RNA with Antisense Oligonucleotides and Small Interfering RNA JACC State-of-the-Art Review. Journal of the American College of Cardiology, 76, 563-579.
https://doi.org/10.1016/j.jacc.2020.05.070
[55] Tsimikas, S., Viney, N.J., Hughes, S.G., et al. (2015) Antisense Therapy Targeting Apolipoprotein(a): A Randomised, Double-Blind, Placebo-Controlled Phase 1 Study. The Lancet, 386, 1472-1483.
https://doi.org/10.1016/S0140-6736(15)61252-1
[56] Nissen, S.E., Wolski, K., Balog, C., et al. (2022) Single As-cending Dose Study of a Short Interfering RNA Targeting Lipoprotein(a) Production in Individuals with Elevated Plasma Lipoprotein(a) Levels. Journal of the American Medical Association, 327, 1679-1687.
https://doi.org/10.1001/jama.2022.5050