靶向自噬在三阴性乳腺癌中的应用
Application of Targeted Autophagy in Triple Negative Breast Cancer
DOI: 10.12677/ACM.2023.131010, PDF, HTML, XML, 下载: 244  浏览: 425 
作者: 吕 敏:济宁医学院临床医学院,山东 济宁;山长平*:济宁医学院附属医院肿瘤科,山东 济宁
关键词: 自噬三阴性乳腺癌靶向治疗抗肿瘤耐药性Autophagy Triple Negative Breast Cancer Targeted Therapy Anti-Tumor Drug Resistance
摘要: 自噬是一种降解功能失调蛋白质和细胞器的分解代谢过程,与癌症细胞在治疗、代谢应激、缺氧、饥饿和生长因子缺乏下的生存密切相关,在癌症进展的背景下,值得注意的是自噬被认为是一把“双刃剑”。三阴性乳腺癌(TNBC)是人类乳腺癌的一种亚型,是预后最差的亚型之一,TNBC的主要治疗方案包括手术、放疗、化疗和全身治疗。尽管最近在化疗方面取得了进展,但仍有40%的TNBC患者发生了转移性复发和复发。因此,探究TNBC的分子特征对于确定可选择的靶点以开发新的有效的治疗方法是必要的。近年来,自噬在TNBC进展中的关键作用逐渐显现。本篇自噬将关注中点关注自噬对TNBC关键靶点的作用以及探讨将自噬作为新的治疗模式的治疗方法。
Abstract: Autophagy is a catabolic process that degrades dysfunctional proteins and organelle, which is closely related to the survival of cancer cells under treatment, metabolic stress, hypoxia, starvation and growth factor deficiency. In the context of cancer progression, it is worth noting that autophagy is considered a “double-edged sword”. Triple negative breast cancer (TNBC) is a subtype of human breast cancer with one of the worst prognosis. The main treatment options for TNBC include sur-gery, radiotherapy, chemotherapy and systemic therapy. Despite recent advances in chemotherapy, 40% of TNBC patients develop metastatic relapses and relapses. Therefore, it is necessary to ex-plore the molecular characteristics of TNBC to identify alternative targets for the development of new and effective therapies. In recent years, autophagy has gradually emerged as a key role in the development of TNBC. In this paper, autophagy will focus on the midpoint, the role of autophagy on the key targets of TNBC, and explore the therapeutic method of using autophagy as a new therapeu-tic mode.
文章引用:吕敏, 山长平. 靶向自噬在三阴性乳腺癌中的应用[J]. 临床医学进展, 2023, 13(1): 62-67. https://doi.org/10.12677/ACM.2023.131010

1. 引言

自噬是一种自我消化的分解代谢过程,在细胞死亡和存活、发育和肿瘤发生等各种生理病理过程中起关键作用 [1]。既往研究表明,自噬在癌症中扮演着双重而矛盾的角色,在不同条件下可发挥抑瘤或促瘤作用,抗癌治疗通常可以通过移除受损的细胞器,而在抗癌治疗后恢复营养,从而诱导自噬来延长癌细胞的存活时间,简单来说它抑制了肿瘤的启动,并支持了已建立的肿瘤的生存。自噬在癌症中的作用取决于营养可用性、微环境压力和免疫系统的存在。一方面,自噬通过溶酶体介导的自我消化,抑制慢性组织损伤,在肿瘤发生早期充当肿瘤抑制因子,有利于肿瘤促进免疫反应 [2]。另一方面,一旦肿瘤进展到晚期,自噬通过维持功能性线粒体,减少DNA损伤,增强癌细胞的存活和抵抗压力,进而维持肿瘤持肿瘤代谢、生长和存活,然后介导肿瘤的促进和发展,并且引起对对治疗药物的耐药性 [3] [4]。一系列靶向自噬相关蛋白或自噬过程的小分子化合物在癌细胞中表现出明显的作用,最终导致抑制细胞增殖,诱导自噬细胞死亡或凋亡的发生。

乳腺癌是全世界女性中最常见的恶性疾病之一。在中国,乳腺癌发病率和死亡率在女性恶性疾病中排名第一 [5]。尽管目前乳腺癌的治疗方式多样,但乳腺癌的发病率和死亡率仍然很高。由于分子分型的不同,其中三阴性乳腺癌(TNBC)的治疗更具有挑战性,因为由于细胞分化差、分子异质性和快速转移,常常导致药物耐药和疾病复发,一般预后较差 [6]。新的技术和工具使人们得以深入了解该病的分子机制,并且最近的很多研究都将自噬途径与TNBC的进展联系起来。

2. 自噬的概述

自噬由比利时科学家克里斯蒂安·德·杜夫(Christian de Duve)于1963年在溶酶体国际会议上首次提出用来描述单膜或双膜细胞内囊泡的存在,自噬指的是将错误折叠的蛋白质、受损或老化的细胞器和突变的蛋白质隔离在称为自噬小体的双膜囊泡中,最终与溶酶体融合,导致隔离成分的降解 [7]。这种溶酶体介导的自我消化不仅可以维持细胞在饥饿和应激期间的代谢和存活,同时通过消除受损蛋白质和细胞器以维持细胞内物质的数量平衡 [8]。自噬在生理和病理生理环境中调节细胞的动态平衡。自噬功能失调与许多疾病有关,包括癌症 [9]、神经病变 [10]、炎症性疾病 [11] 和衰老 [12] 等。

到目前为止,已经描述了巨自噬、微自噬、伴侣介导的自噬三种主要的自噬形式 [13]。巨自噬通过双膜结合的小泡(称为自噬小体)的中介将细胞质的货物运送到溶酶体,该小泡与溶酶体融合形成自溶酶小体,在饥饿状态下,细胞可以利用巨自噬来降解多余或者受损细胞器来维持细胞存活 [14]。在微自噬中,胞浆成分通过内陷溶酶体膜被溶酶体本身直接吸收 [15]。在伴侣介导的自噬(Chaperone-mediated autophagy, CMA)中,靶蛋白与溶酶体膜受体溶酶体相关膜蛋白2A (LAMP-2A)识别的伴侣蛋白(如HSC-70)形成复合体,跨溶酶体膜转运,导致其展开和降解 [16]。自噬的另一种分类是非选择性自噬和选择性自噬。宏观和微观自噬都能够通过选择性和非选择性机制吞噬大型结构。一方面,当细胞大量降解细胞质时,就会发生非选择性自噬。另一方面,对选择性自噬如何针对特定细胞器或蛋白质的研究已经产生了诸如有丝分裂吞噬、附着性吞噬和异源吞噬等 [13]。

从生理学上讲,自噬是细胞内进化保守、自降解的正常生理过程,由诱导自噬、自噬体组装形成、自噬体与溶酶体膜对接融合、自噬体内自噬体内容物降解再循环等几个密切相关的步骤组成 [15]。

自噬最初被认为是一种肿瘤抑制机制,因为据报道,在40%~75%的人类乳腺癌、卵巢癌和前列腺癌中,基本自噬基因BECN1(ATG6)的等位基因丢失 [17]。这些报道被BECN1的位置混淆了,BECN1位于染色体17q21上,与已知的抑癌基因乳腺癌1,早发性乳腺癌(BRCA1)非常接近。有研究证明BECN1在人类癌症中没有突变或特异性缺失,表明它不是一个肿瘤抑制基因 [18]。

3. 靶向自噬在三阴性乳腺癌中研究与应用

乳腺癌是异质性很强的疾病,临床上按激素受体(ER和PR)和HER2 (ERBB2)状态分为三种主要亚型:激素受体ER阳性和PR阳性,再细分为luminalA型和luminal B型;her2阳性;三阴性乳腺癌(TNBC) [19]。三阴性乳腺癌是乳腺肿瘤中最具侵袭性的分子亚型,内分泌和靶向治疗对TNBC无效 [20]。尽管在潜在的肿瘤生物学方面取得了进展,但不幸的是,TNBC的临床结果仍然很差。肿瘤异质性和缺乏生物标志物被认为是导致治疗耐药性和复发的一些最困难的挑战 [21]。

近年来关于自噬和TNBC的研究逐渐增多。自噬基因靶向治疗可能是乳腺癌TNBC的潜在治疗策略。相比较乳腺癌其他亚型,在TNBC细胞中发现自噬蛋白(如Beclin-1和LC3A/B)过度表达 [22],LC3B高表达与较短生存期 [23]、淋巴结和远处转移相关 [24]。下调LC3和Beclin-1基因从而抑制自噬,显著抑制TNBC模型的细胞增殖 [25]、集落形成、迁移和侵袭 [26],并诱导细胞凋亡增加 [27]。这些数据强烈表明自噬在TNBC肿瘤中具有促进生存的作用。

从表观遗传学上看DNA甲基化是一种证据充分的促进肿瘤发生的表观遗传机制,它对肿瘤抑制基因的CpG岛启动子进行高甲基化,使其表达沉默。大量证据表明,包括DNA低甲基化或高甲基化在内的表观遗传修饰参与了乳腺癌的发生 [28] [29]。DNA甲基转移酶1 (DNMT1)引起的DNA高甲基化在内的表观遗传学调控被认为是TNBC肿瘤发生的原因之一。DNMT1表达与乳腺癌生存率差相关,且在TNBC亚型中过表达,诱导了TNBC的侵袭和转移 [30]。已经证实NMT1在TNBC中的致癌功能包括ER启动子高甲基化、促进上皮间质转化EMT、细胞自噬和癌症干细胞(CSCs)生长 [31]。也有研究证实FOXM1是TNBC中最重要的致癌基因之一,有助于肿瘤的发生、进展和耐药。研究发现与FOXM1与编码主要自噬蛋白Beclin-1和LC3的基因启动子结合,在转录上调控LC3和Beclin-1的表达 [32]。

基于紫杉醇(PTX)的联合化疗仍然是三阴性乳腺癌的关键。然而,较高比例的化疗耐药性使得联合化疗效果欠佳,导致预后不良 [33]。基因组不稳定性(GIN)在调节肿瘤耐药方面起着关键作用,它阻碍了三阴性乳腺癌(TNBC)的治疗。已经证实自噬-GIN相关的microRNA (mi-26a-5p)与乳腺癌预后相关,研究证实OTUD6B-AS1/miR-26a-5p/MTDH通过介导自噬和基因组不稳定性来促进是TNBC中紫杉醇耐药 [34]。

对TNBC化学耐药性的研究表明非编码RNA (ncRNA),特别是microRNA (miRNA),长非编码RNA (lncRNA)和环状RNA (CircRNA)参与大多数TNBC耐药性 [33]。CircRNA在肿瘤发生和癌症进展中的作用引起了广泛关注。由于细胞/组织特异性和阶段特异性表达以及独特的分子结构,circRNA在许多生物过程中可能具有调节功能,并且是比线性转录更好的癌症诊断标志物或治疗靶点。研究发现circSEPT9可能海绵miR-637调节LIF表达并激活LIF/Stat3信号通路,通过凋亡和自噬导致TNBC的肿瘤发生和进展 [35]。

4. 自噬抑制剂与药物联合治疗TNBC相关

相关药物结合经典的自噬/自噬抑制剂可能是治疗TNBC的一种新的治疗策略。自噬是一个多步骤的过程,可以在不同的阶段被抑制。自噬抑制成为许多研究的热点,并被认为是癌症治疗的新途径。

氯喹(CQ)被用作晚期的自噬抑制剂,通过中和溶酶体pH值,从而干扰自噬体和溶酶体的融合。它是目前在临床试验中使用的唯一的自噬抑制剂 [36]。胡金娇等人通过氯喹(CQ)和异鼠李素(IH)联合治疗TNBC细胞和异种移植小鼠,首次证实CQ通过抑制自噬选择性的增强了HI诱导的TNBC细胞的线粒体裂变和凋亡 [37]。对MDA-MB-231细胞的研究表明,奥希替尼与氯喹的组合具有协同作用,二者联合使用LC3B-II的表达水平高于任何一种药物 [38]。也有研究证实自噬抑制剂如3-MA和Baf.可通过激活TNBC细胞的线粒体凋亡促进吉非替尼的增殖抑制作用 [39]。鉴于传统自噬抑制剂的不耐受性以及单一疗效不明显,对于自噬抑制剂的研发同样热门,自噬抑制剂SBP-7455对TNBC细胞具有细胞毒性,如果联合PARP抑制剂奥拉帕尼可协同杀灭TNBC细胞,提高疗效 [40]。有研究表明自噬抑制剂与相关药物在一定比例下具有协同作用,开发了谷胱甘肽响应的自组装组合纳米颗粒,实验证实复合NP在转移性TNBC模型中获得了更好的治疗效益 [41]。这些初步的临床前研究证明了这些下一代自噬抑制剂的潜力,可能随着技术的发展产生效果更好,耐受性更好的自噬抑制剂来抗肿瘤治疗。同时像工程纳米系统这类技术强调了一种基于纳米前体药物的化学增敏方法,用于提高疗效,解决了当前联合治疗的主要挑战。

一些植物提取物以及相关其他药物治疗TNBC的研究也看到了一些成果。研究发现植物提取物OSW-1具有抗TNBC作用,通过PI3K-Akt-mTOR-Beclin1通路诱导细胞保护性自噬,阻断自噬通量。同时OSW-1和阿霉素(DOX)联合表现出良好的抗转移能力 [42]。氟苯达唑可以上调EVA1A的表达来调节自噬和凋亡,进一步影响TNBC细胞增殖和迁移,当与3-MA或ATG5耗竭(已知抑制自噬活性)联合使用时,氟苯达唑的治疗效果可能会降低 [43]。SANT是一种新型中草药提取活性成分组合,通过调节肝素酶过表达三阴性乳腺癌的自噬来抑制肿瘤生长和血管生成 [44]。自噬在提高治疗效率、克服乳腺癌化疗耐药性方面具有巨大潜力。具有生物活性的天然化合物已经成为潜在的抗癌药物来源之一。

5. 结语

总之,由于TNBC的复杂性使其有较高的复发转移机会,开发新的、有效的治疗模式是目前研究的重点。有越来越多的证据强调自噬在癌症进展中的关键作用,未来有可能在TNBC的治疗中为患者提供新的治疗方案。

NOTES

*通讯作者。

参考文献

[1] Mizushima, N., et al. (2008) Autophagy Fights Disease through Cellular Self-Digestion. Nature, 451, 1069-1075.
https://doi.org/10.1038/nature06639
[2] Levine, B. and Kroemer, G. (2008) Autophagy in the Pathogenesis of Disease. Cell, 132, 27-42.
https://doi.org/10.1016/j.cell.2007.12.018
[3] Janji, B., et al. (2016) The Multifaceted Role of Autophagy in Tu-mor Evasion from Immune Surveillance. Oncotarget, 7, 17591-17607.
https://doi.org/10.18632/oncotarget.7540
[4] Amaravadi, R., Kimmelman, A.C. and White, E. (2016) Recent In-sights into the Function of Autophagy in Cancer. Genes & Development, 30, 1913-1930.
https://doi.org/10.1101/gad.287524.116
[5] Wang, X., et al. (2021) Progress of Breast Cancer Basic Research in China. International Journal of Biological Sciences, 17, 2069-2079.
https://doi.org/10.7150/ijbs.60631
[6] Manjunath, M. and Choudhary, B. (2021) Triple-Negative Breast Cancer: A Run-Through of Features, Classification and Current Therapies. Oncology Letters, 22, 512.
https://doi.org/10.3892/ol.2021.12773
[7] Behrends, C., et al. (2010) Network Organization of the Human Au-tophagy System. Nature, 466, 68-76.
https://doi.org/10.1038/nature09204
[8] Rabinowitz, J.D. and White, E. (2010) Autophagy and Metabolism. Sci-ence, 330, 1344-1348.
https://doi.org/10.1126/science.1193497
[9] Bai, Y., et al. (2019) PDIA6 Modulates Apoptosis and Autophagy of Non-Small Cell Lung Cancer Cells via the MAP4K1/JNK Signaling Pathway. EbioMedicine, 42, 311-325.
https://doi.org/10.1016/j.ebiom.2019.03.045
[10] Martini-Stoica, H., et al. (2016) The Autophagy-Lysosomal Pathway in Neurodegeneration: A TFEB Perspective. Trends in Neurosciences, 39, 221-234.
https://doi.org/10.1016/j.tins.2016.02.002
[11] Matsuzawa-Ishimoto, Y., Hwang, S. and Cadwell, K. (2018) Au-tophagy and Inflammation. Annual Review of Immunology, 36, 73-101.
https://doi.org/10.1146/annurev-immunol-042617-053253
[12] Kaushik, S., et al. (2021) Autophagy and the Hall-marks of Aging. Ageing Research Reviews, 72, Article ID: 101468.
https://doi.org/10.1016/j.arr.2021.101468
[13] Galluzzi, L., et al. (2017) Molecular Definitions of Autophagy and Related Processes. The EMBO Journal, 36, 1811- 1836.
https://doi.org/10.15252/embj.201796697
[14] Yorimitsu, T. and Klionsky, D.J. (2005) Autophagy: Molecular Machinery for Self-Eating. Cell Death & Differentiation, 12, 1542-1552.
https://doi.org/10.1038/sj.cdd.4401765
[15] Glick, D., Barth, S. and Macleod, K.F. (2010) Autophagy: Cellular and Molecular Mechanisms. The Journal of Pathology, 221, 3-12.
https://doi.org/10.1002/path.2697
[16] Saftig, P., Beertsen, W. and Eskelinen, E.L. (2008) LAMP-2: A Control Step for Phagosome and Autophagosome Maturation. Autophagy, 4, 510-512.
https://doi.org/10.4161/auto.5724
[17] Liang, X.H., et al. (1999) Induction of Autophagy and Inhibition of Tumor-igenesis by Beclin 1. Nature, 402, 672-676.
https://doi.org/10.1038/45257
[18] Laddha, S.V., et al. (2014) Mutational Landscape of the Essential Autophagy Gene BECN1 in Human Cancers. Molecular Cancer Research, 12, 485-490.
https://doi.org/10.1158/1541-7786.MCR-13-0614
[19] Loibl, S., et al. (2021) Breast Cancer. The Lancet, 397, 1750-1769.
https://doi.org/10.1016/S0140-6736(20)32381-3
[20] Singh, D.D. and Yadav, D.K. (2021) TNBC: Potential Targeting of Multiple Receptors for a Therapeutic Breakthrough, Nanomedicine, and Immunotherapy. Biomedi-cines, 9, Article No. 876.
https://doi.org/10.3390/biomedicines9080876
[21] So, J.Y., et al. (2022) Triple Negative Breast Cancer (TNBC): Non-Genetic Tumor Heterogeneity and Immune Microenvironment: Emerging Treatment Op-tions. Pharmacology & Therapeutics, 237, Article ID: 108253.
https://doi.org/10.1016/j.pharmthera.2022.108253
[22] Overgaard, J., et al. (2000) TP53 Mutation Is an Independ-ent Prognostic Marker for Poor Outcome in Both Node- Negative and Node-Positive Breast Cancer. Acta Oncologica, 39, 327-333.
https://doi.org/10.1080/028418600750013096
[23] Chang, S.J., et al. (2016) Decreased Expression of Autophagy Protein LC3 and Stemness (CD44+/CD24-/Low) Indicate Poor Prognosis in Triple-Negative Breast Cancer. Human Pa-thology, 48, 48-55.
https://doi.org/10.1016/j.humpath.2015.09.034
[24] Zhao, H., et al. (2013) High Expression of LC3B Is Associat-ed with Progression and Poor Outcome in Triple-Negative Breast Cancer. Medical Oncologist, 30, 475.
https://doi.org/10.1007/s12032-013-0475-1
[25] Ünal, T.D., et al. (2021) Thymoquinone Inhibits Proliferation and Migration of MDA-MB-231 Triple Negative Breast Cancer Cells by Suppressing Autophagy, Beclin-1 and LC3. An-ti-Cancer Agents in Medicinal Chemistry, 21, 355-364.
https://doi.org/10.2174/1871520620666200807221047
[26] Lu, H.Y., et al. (2019) Hydroxytyrosol and Oleuro-pein Inhibit Migration and Invasion of MDA-MB-231 Triple-Negative Breast Cancer Cell via Induction of Autophagy. Anti-Cancer Agents in Medicinal Chemistry, 19, 1983-1990.
https://doi.org/10.2174/1871520619666190722101207
[27] Hamurcu, Z., et al. (2018) Targeting LC3 and Beclin-1 Autophagy Genes Suppresses Proliferation, Survival, Migration and Invasion by Inhibition of Cyclin-D1 and uPAR/Integrin β1/Src Signaling in Triple Negative Breast Cancer Cells. Journal of Cancer Research and Clinical On-cology, 144, 415-430.
https://doi.org/10.1007/s00432-017-2557-5
[28] Pasculli, B., Barbano, R. and Parrella, P. (2018) Epigenetics of Breast Cancer: Biology and Clinical Implication in the Era of Precision Medicine. Seminars in Cancer Biology, 51, 22-35.
https://doi.org/10.1016/j.semcancer.2018.01.007
[29] Jovanovic, J., et al. (2010) The Epigenetics of Breast Cancer. Molecular Oncology, 4, 242-254.
https://doi.org/10.1016/j.molonc.2010.04.002
[30] Fang, F., et al. (2011) Breast Cancer Methylomes Establish an Epigenomic Foundation for Metastasis. Science Translational Medicine, 3, 75ra25.
https://doi.org/10.1126/scitranslmed.3001875
[31] Wong, K.K. (2021) DNMT1: A Key Drug Target in Tri-ple-Negative Breast Cancer. Seminars in Cancer Biology, 72, 198-213.
https://doi.org/10.1016/j.semcancer.2020.05.010
[32] Hamurcu, Z., et al. (2019) FOXM1 Plays a Role in Autoph-agy by Transcriptionally Regulating Beclin-1 and LC3 Genes in Human Triple-Negative Breast Cancer Cells. Journal of Molecular Medicine (Berlin), 97, 491-508.
https://doi.org/10.1007/s00109-019-01750-8
[33] Xia, M., et al. (2021) Noncoding RNAs in Triple Negative Breast Cancer: Mechanisms for Chemoresistance. Cancer Letters, 523, 100-110.
https://doi.org/10.1016/j.canlet.2021.09.038
[34] Li, P.P., et al. (2021) LncRNA OTUD6B-AS1 Promotes Paclitaxel Resistance in Triple Negative Breast Cancer by Regulation of miR-26a-5p/MTDH Pathway-Mediated Au-tophagy and Genomic Instability. Aging (Albany NY), 13, 24171-24191.
https://doi.org/10.18632/aging.203672
[35] Zheng, X., et al. (2020) The circRNA circSEPT9 Mediated by E2F1 and EIF4A3 Facilitates the Carcinogenesis and Development of Triple-Negative Breast Cancer. Molecular Cancer, 19, 73.
https://doi.org/10.1186/s12943-020-01183-9
[36] Ferreira, P.M.P., et al. (2021) Chloroquine and Hydroxychloro-quine in Antitumor Therapies Based on Autophagy-Related Mechanisms. Pharmacological Research, 168, Article ID: 105582.
https://doi.org/10.1016/j.phrs.2021.105582
[37] Hu, J., et al. (2019) ROS-Mediated Activation and Mito-chondrial Translocation of CaMKII Contributes to Drp1-Depen- dent Mitochondrial Fission and Apoptosis in Tri-ple-Negative Breast Cancer Cells by Isorhamnetin and Chloroquine. Journal of Experimental & Clinical Cancer Re-search, 38, 225.
https://doi.org/10.1186/s13046-019-1201-4
[38] Fleisher, B., et al. (2019) Chloroquine Sensitizes MDA-MB-231 Cells to Osimertinib through Autophagy-Apoptosis Crosstalk Pathway. Breast Cancer (Dove Med Press), 11, 231-241.
https://doi.org/10.2147/BCTT.S211030
[39] Liu, Z., et al. (2017) Autophagy Inhibitor Facili-tates Gefitinib Sensitivity in Vitro and in Vivo by Activating Mitochondrial Apoptosis in Triple Negative Breast Cancer. PLOS ONE, 12, e0177694.
https://doi.org/10.1371/journal.pone.0177694
[40] Ren, H., et al. (2020) Design, Synthesis, and Characterization of an Orally Active Dual-Specific ULK1/2 Autophagy Inhibitor that Synergizes with the PARP Inhibitor Olaparib for the Treatment of Triple-Negative Breast Cancer. Journal of Medicinal Chemistry, 63, 14609-14625.
https://doi.org/10.1021/acs.jmedchem.0c00873
[41] Wang, H., et al. (2022) Nanoprodrug Ratiometrically Integrat-ing Autophagy Inhibitor and Genotoxic Agent for Treatment of Triple-Negative Breast Cancer. Biomaterials, 283, Article ID: 121458.
https://doi.org/10.1016/j.biomaterials.2022.121458
[42] Wu, M., et al. (2022) OSW-1 Induces Apoptosis and Cy-to-Protective Autophagy, and Synergizes with Chemotherapy on Triple Negative Breast Cancer Metastasis. Cellular On-cology (Dordrecht), 45, 1255-1275.
https://doi.org/10.21203/rs.3.rs-910496/v1
[43] Zhen, Y., et al. (2020) Flubendazole Elicits Anti-Cancer Effects via Targeting EVA1A-Modulated Autophagy and Apoptosis in Triple-Negative Breast Cancer. Theranostics, 10, 8080-8097.
https://doi.org/10.7150/thno.43473
[44] Li, Q.W., et al. (2021) SANT, a Novel Chinese Herbal Monomer Combi-nation, Decreasing Tumor Growth and Angiogenesis via Modulating Autophagy in Heparanase Overexpressed Tri-ple-Negative Breast Cancer. Journal of Ethnopharmacology, 266, Article ID: 113430.
https://doi.org/10.1016/j.jep.2020.113430