系统性红斑狼疮中外泌体及其作用的研究进展
Advances in Studies on Exosomes and Their Roles in Systemic Lupus Erythematosus
DOI: 10.12677/ACM.2022.12121725, PDF, HTML, XML, 下载: 214  浏览: 369 
作者: 吕 攀, 刘平丹, 周晓琴, 朱茂灵, 刘剑平*:川北医学院附属医院,四川 南充
关键词: 系统性红斑狼疮外泌体Systemic Lupus Erythematosus (SLE) Exosome
摘要: 外泌体(exosomes)是携带多种蛋白质、脂质和遗传物质的细胞外囊泡,参与局部和系统间信息的交换,在多种自身免疫性疾病中发挥重要的免疫调节作用。外泌体具有稳定性、低免疫原性、生物相容性和克服生物屏障等固有特性,使其可以成为药物载体,特别是用于基因治疗。本文将综述外泌体在SLE中的作用,有助于为研究SLE的病因机制和SLE治疗的靶向提供新的方向。
Abstract: Exosomes are extracellular vesicles that carry a variety of proteins, genetic material and lipids, they are involved in the exchange of local and intersystemic information, and play an important immunomodulatory role in a variety of autoimmune diseases. Exosomes have inherent properties such as stability, low immunogenicity, biocompatibility, and overcoming biological barriers, and has potential for drug vectors, especially for gene therapy. This paper will review the role of exosomes in SLE, which will help to provide a new direction for the study of the etiological mechanism of SLE and the targeting of SLE therapy.
文章引用:吕攀, 刘平丹, 周晓琴, 朱茂灵, 刘剑平. 系统性红斑狼疮中外泌体及其作用的研究进展[J]. 临床医学进展, 2022, 12(12): 11975-11979. https://doi.org/10.12677/ACM.2022.12121725

1. 引言

系统性红斑狼疮(systemic lupus erythematosus, SLE)是一种累及多系统、多器官并有多种自身抗体产生的自身免疫性疾病,其发病机制包括T细胞和B细胞功能亢进、补体系统过度激活、炎性细胞因子过度产生、巨噬细胞功能缺陷等,但其病因尚不完全清楚 [1] [2] [3]。由于SLE患者症状的异质性和治疗方法的有限性,目前仍然缺乏有效的诊断和治疗方法 [4] [5]。近年来,外泌体的来源、组成和功能等逐渐被揭示,是最有前途的纳米载体之一,几乎所有类型的细胞都会释放外泌体,包括干细胞、T和B淋巴细胞、树突状细胞、巨噬细胞、内皮细胞、神经元、脂肪细胞和上皮细胞等 [6] [7],由于它在体内存在的广泛性和获取的便捷性,已经成为了疾病诊断治疗的潜在有效方式,外泌体作为一个新型的研究热点,在SLE中的作用受到越来越多的关注,在本篇综述中,我们将总结外泌体在SLE中的最新研究进展。

2. 外泌体的产生和组成

外泌体于1983年首次在绵羊网织红细胞中被发现,并于1987年被Johnstone命名为“外泌体”。细胞内溶酶体微粒内陷形成囊泡,在体外膜与细胞膜融合后 [8],以30~100 nm的膜结合囊泡的形式释放到细胞外空间。外泌体由鞘磷脂、胆固醇和富含神经酰胺的磷脂双分子层包裹,它包含多种跨膜蛋白和转运蛋白,通常把CD9、CD63、CD81和TSG101等作为外泌体的标记蛋白 [9] [10],其内携带脂质、核酸、蛋白质等重要信息。外泌体广泛存在于外周血、母乳、尿液、脑脊液及其它体液中,并且多种免疫细胞可分泌外泌体,外泌体是正常生理和疾病中细胞间通讯的重要介质,参与了狼疮性肾炎、类风湿性关节炎和干燥综合征等自身免疫性疾病的发病机制 [11]。

3. 外泌体的功能及生物标志物

外泌体来源广泛,成分复杂,不同细胞分泌的外泌体具有不用的组成成分和功能。最初,外泌体被认为是细胞排出废弃物质从而维持细胞内稳态的一种方式。随着研究的深入,外泌体的各种功能逐渐为大众所了解。目前,人们普遍认为外泌体作为载体,通过转运miRNA、lncRNA、tsRNA、蛋白质、脂质和其他物质在调节细胞间信息交换中发挥重要作用 [12],其大致可分为以下3种形式:1) 间接通过不同细胞表面受体与配体之间的连接发挥作用;2) 直接靶向受体细胞的细胞膜上的位点发挥作用;3) 其来源细胞含有脂质双分子层,能与靶细胞融合,将其携带的生物活性物质传递给靶细胞,进而影响靶细胞的功能,由于外泌体具有以上重要的生物学功能,因此被广泛用于临床应用研究。外泌体可以携带β-淀粉样蛋白、朊病毒和α-突触核蛋白,从而在大脑中传播致病蛋白,这可能与阿尔茨海默病的进展有关 [13] [14] [15]。外泌体相关的miRNA和lncRNA在骨关节炎的发病机制中发挥重要作用。目前的众多研究表明,外泌体在免疫调控、神经退行性疾病、组织稳态、癌症等多种生理病理机制中起着重要的作用。

多项研究表明,外泌体可作为可靠的生物标志物。近期徐莹等人通过生物信息分析发现,SLE患者血清外泌体中circRNA存在显著差异和特异性表达,部分基因如snoU13,SNORA3和SCARNA20可被视为SLE的潜在诊断生物标志物 [16]。表观遗传调控、遗传易感性、环境因素和激素水平都可能导致SLE中miRNA的异常表达 [17]。当外泌体与受体细胞发生膜融合、受体–配体特异性结合或被特定细胞胞饮时,其miRNA进入受体细胞,改变受体细胞的遗传信息,诱导异常免疫反应机制,参与SLE的发展 [18]。有趣的是,研究表明同一miRNA在SLE患者的不同体液外泌体中的表达水平可相反,如miR-146a在活动性狼疮性肾炎患者的尿液外泌体中显着增加,与蛋白尿和补体C3和C4激活等慢性炎症参数呈负相关,体外实验发现外泌体中的miR-146a通过抑制TRAF6和IRAK1负向调控炎症反应 [19],而miR-146a在SLE患者的血清外泌体中的表达显着下调,并与抗dsDNA抗体呈负相关 [20]。另外,血清外泌体中miR-21和miR-155的表达上调(两者均为p < 0.0001),与患者尿蛋白水平的严重程度呈显着正相关(分别为R = 0.439,p = 0.006和R = 0.330,p = 0.043),对SLE和LN具有诊断价值 [21],miR-451a的表达下调并与24小时尿蛋白水平和SLEDAI评分呈负相关,在使用羟氯喹或糖皮质激素等常规药物治疗后,血清外泌体中miR-451a的含量显着增加。外泌体数量和含量的变化逐渐成为各种自身免疫性疾病的诊断标准,如系统性红斑狼疮、类风湿关节炎、多发性硬化症和干燥综合征 [9]。目前人们对体液中miRNA的检测受到了广泛关注,通过检测外泌体中的miRNA发现外泌体在不同组织和不同疾病状态下具有一定的特异性,是一种生物标志物检测和疾病监测的新方法。SLE中miRNA失调的确切机制尚未阐明,这给了我们很多启发,也是未来研究的重点。

4. 可行性分析

外泌体作为潜在的药物载体,目前受到广泛的关注。与其他载体相比,外泌体在SLE治疗中具有独特的优势,其半衰期长,在体内存在较长时间,可以在4℃和−20℃下短期储存,或在−80℃长期保存 [22] [23],外泌体可以在细胞之间运输蛋白质和核酸,保护它们在进入细胞时不被降解 [24] [25],它是体内各种细胞分泌产生的膜囊泡,失活后被酶分解,不会长期大量积累,毒副作用小 [26],并且足够小,可以穿过生物膜,甚至有能力穿过血脑屏障(blood-brain barrier, BBB)和血脑脊液屏障(blood-cerebrospinal fluid barrier, BCSFB)等 [27],外泌体可以携带不同的药物来满足治疗需要的 [28],延长药物的半衰期,增加其释放的稳定性 [29],此外,外泌体给药途径多样,可根据病变部位选择合适的给药方式,如皮下注射、静脉注射、腹腔注射、鼻内注射、口服等。外泌体作为药物载体,具有稳定性较长、储存方便、内容物保护良好、避免免疫监测、跨越生物屏障等固有优势。因此,外泌体有可能在SLE治疗中发挥更重要的作用。

5. 总结与展望

目前,多数研究都集中在外泌体与炎症和肿瘤之间的关系上,而对外泌体在自身免疫性疾病中的研究有限,外泌体显示出作为治疗SLE的药物或基因递送载体的巨大前景,使其成为治疗SLE和其他自身免疫性疾病的极好的候选药物,但我们也必须客观地认识到机体是一个复杂的调控系统,外泌体在SLE过程中的确切作用机制,以及实现外泌体的规模化生产和高纯度分离,使外泌体药物具有精准靶向性,值得进一步研究。总之,外泌体作为诊断和治疗工具在临床医学领域的应用将是一种很有前途的工具,可以为众多医学问题提供解决方案。

NOTES

*通讯作者。

参考文献

[1] Dong, G., Yang, Y., Li, X., Yao, X., Zhu, Y., Zhang, H., Wang, H., Ma, Q., Zhang, J., Shi, H., Ning, Z., Yan, F., Zhai, W., Dai, J., Li, Z., Li, C., Ming, J., Xue, Q., Meng, X., Si, C. and Xiong, H. (2020) Granulocytic Myeloid-Derived Suppressor Cells Contribute to IFN-I Signaling Activation of B Cells and Disease Progression through the lncRNA NEAT1-BAFF Axis in Systemiclupus Erythematosus. Biochimica et Biophysica Acta—Molecular Basis of Disease, 1866, Article ID: 165554.
https://doi.org/10.1016/j.bbadis.2019.165554
[2] Tsai, C.Y., Li, K.J., Hsieh, S.C., Liao, H.T. and Yu, C.L. (2019) What’s Wrong with Neutrophils in Lupus? Clinical and Experimental Rheumatology, 37, 684-693.
[3] Tsai, C.Y., Hsieh, S.C., Lu, C.S., Wu, T.H., Liao, H.T., Wu, C.H., Li, K.J., Kuo, Y.M., Lee, H.T., Shen, C.Y. and Yu, C.L. (2019) Cross-Talk between Mitochondrial Dysfunction Provoked Oxidative Stress and Aberrant Noncoding RNA Expression in the Pathogenesis and Pathophysiology of SLE. International Journal of Molecular Sciences, 20, Article 5183.
https://doi.org/10.3390/ijms20205183
[4] Kaul, A., Gordon, C., Crow, M.K., Touma, Z., Urowitz, M.B., van Vollenhoven, R., et al. (2016) Systemic Lupus Erythematosus. Nature Reviews Disease Primers, 2, Article No. 16039.
https://doi.org/10.1038/nrdp.2016.39
[5] Mahieu, M.A., Strand, V., Simon, L.S., Lipsky, P.E. and Ramsey-Goldman, R. (2016) A Critical Review of Clinical Trials in Systemic Lupus Erythematosus. Lupus, 25, 1122-1140.
https://doi.org/10.1177/0961203316652492
[6] Mashouri, L., Yousefifi, H., Aref, A.R., Ahadi, A.M., Molaei, F. and Alahari, S.K. (2019) Exosomes: Composition, Biogenesis, and Mechanisms in Cancer Metastasis and Drug Resistance. Molecular Cancer, 18, Article No. 75.
https://doi.org/10.1186/s12943-019-0991-5
[7] Rayamajhi, S., Nguyen, T.D.T., Marasini, R. and Aryal, S. (2019) Macrophage-Derived Exosome-Mimetic Hybrid Vesicles for Tumor Targeted Drug Delivery. Acta Biomaterialia, 94, 482-494.
https://doi.org/10.1016/j.actbio.2019.05.054
[8] Tan, L., Wu, H., Liu, Y., Zhao, M., Li, D. and Lu, Q. (2016) Recent Advances of Exosomes in Immune Modulation and Autoimmune Diseases. Autoimmunity, 49, 357-365.
https://doi.org/10.1080/08916934.2016.1191477
[9] Pegtel, D.M. and Gould, S.J. (2019) Exosomes. Annual Re-view of Biochemistry, 88, 487-514.
https://doi.org/10.1146/annurev-biochem-013118-111902
[10] Thery, C., Zitvogel, L. and Amigorena, S. (2002) Exosomes: Composition, Biogenesis and Function. Nature Reviews Immunology, 2, 569-579.
https://doi.org/10.1038/nri855
[11] Cosenza, S., Toupet, K., Maumus, M., Luz-Crawford, P., Blanc-Brude, O., Jorgensen, C. and Noël, D. (2018) Mesenchymal Stem Cells-Derived Exosomes Are More Immunosuppressive than Microparticles in Inflammatory Arthritis. Theranostics, 8, 1399-1410.
https://doi.org/10.7150/thno.21072
[12] Mathieu, M., Martin-Jaular, L., Lavieu, G. and Théry, C. (2019) Speci-ficities of Secretion and Uptake of Exosomes and Other Extracellular Vesicles for Cell-to-Cell Communication. Nature Cell Biology, 21, 9-17.
https://doi.org/10.1038/s41556-018-0250-9
[13] Nath, S., Agholme, L., Kurudenkandy, F.R., Granseth, B., Marcusson, J. and Hallbeck, M. (2012) Spreading of Neurodegenerative Pathology via Neuron-to-Neuron Transmission of β-Amyloid. Journal of Neuroscience, 32, 8767-8777.
https://doi.org/10.1523/JNEUROSCI.0615-12.2012
[14] Arellano-Anaya, Z.E., Huor, A., Leblanc, P., Lehmann, S., Provansal, M., Raposo, G., et al. (2015) Prion Strains Are Differentially Released through the Exosomal Pathway. Cellular and Molecular Life Sciences, 72, 1185-1196.
https://doi.org/10.1007/s00018-014-1735-8
[15] Lööv, C., Scherzer, C.R., Hyman, B.T., Breakefifield, X.O. and Ingelsson, M. (2016) α-Synuclein in Extracellular Vesicles: Functional Implications and Diagnostic Opportunities. Cellular and Molecular Neurobiology, 36, 437-448.
https://doi.org/10.1007/s10571-015-0317-0
[16] 徐莹, 周茹, 张欣洲, 等. SLE患者血清外泌体环状RNA的差异表达分析[J]. 湖北科技学院学报(医学版), 2022, 36(2): 129-133, 137.
https://doi.org/10.16751/j.cnki.2095-4646.2022.02.129
[17] Long, H., Wang, X., Chen, Y., Wang, L., Zhao, M. and Lu, Q. (2018) Dysregulation of microRNAs in Autoimmune Diseases: Pathogenesis, Biomarkers and Potential Therapeutic Targets. Cancer Letters, 428, 90-103.
https://doi.org/10.1016/j.canlet.2018.04.016
[18] Perez-Hernandez, J., Redon, J. and Cortes, R. (2017) Extracellular Vesicles as Therapeutic Agents in Systemic Lupus Erythematosus. International Journal of Molecular Sciences, 18, Article 717.
https://doi.org/10.3390/ijms18040717
[19] Perez-Hernandez, J., Martinez-Arroyo, O., Ortega, A., Galera, M., Solis-Salguero, M.A., Chaves, F.J., Redon, J., Forner, M.J. and Cortes, R. (2021) Urinary Exosomal miR-146a as a Marker of Albuminuria, Activity Changes and Disease Flares in Lupus Nephritis. Journal of Nephrology, 34, 1157-1167.
https://doi.org/10.1007/s40620-020-00832-y
[20] Dong, C., Zhou, Q., Fu, T., Zhao, R., Yang, J., Kong, X., Zhang, Z., Sun, C., Bao, Y., Ge, X., Zhang, Z., Lu, Z., Li, J., Zheng, W., Gu, Z. and Ji, J. (2019) Circulating Exosomes Derived-miR-146a from Systemic Lupus Erythematosus Patients Regulates Senescence of Mesenchymal Stem Cells. BioMed Research International, 2019, Article ID: 6071308.
https://doi.org/10.1155/2019/6071308
[21] Li, W., Liu, S., Chen, Y., Weng, R., Zhang, K., He, X. and He, C. (2020) Circulating Exosomal microRNAs as Biomarkers of Systemic Lupus Erythematosus. Clinics (Sao Paulo), 75, e1528.
https://doi.org/10.6061/clinics/2020/e1528
[22] Huang, Y., Li, R., Ye, S., Lin, S., Yin, G. and Xie, Q. (2020) Recent Advances in the Use of Exosomes in Sjögren’s Syndrome. Frontiers in Immunology, 11, Article 1509.
https://doi.org/10.3389/fimmu.2020.01509
[23] Wu, J.Y., Li, Y.J., Hu, X.B., Huang, S. and Xiang, D.X. (2021) Preservation of Small Extracellular Vesicles for Functional Analysis and Therapeutic Applications: A Comparative Evaluation of Storage Conditions. Drug Delivery, 28, 162-170.
https://doi.org/10.1080/10717544.2020.1869866
[24] Yang, D., Zhang, W., Zhang, H., et al. (2020) Progress, Opportunity, and Perspective on Exosome Isolation—Efforts for efficient Exosome-Based Theranostics. Theranostics, 10, 3684-3707.
https://doi.org/10.7150/thno.41580
[25] Duan, L., Xu, L., Xu, X., et al. (2021) Exosome-Mediated Delivery of Gene Vectors for Gene Therapy. Nanoscale, 13, 1387-1397.
https://doi.org/10.1039/D0NR07622H
[26] Peng, H., Ji, W., Zhao, R., Yang, J., Lu, Z., Li, Y. and Zhang, X. (2020) Exosome: A Significant Nanoscale Drug Delivery Carrier. Journal of Materials Chemistry B, 8, 7591-7608.
https://doi.org/10.1039/D0TB01499K
[27] Elliott, R.O. and He, M. (2021) Unlocking the Power of Exosomes for Crossing Biological Barriers in Drug Delivery. Pharmaceutics, 13, Article 122.
https://doi.org/10.3390/pharmaceutics13010122
[28] Gutierrez-Millan, C., Calvo Díaz, C., Lanao, J.M. and Colino, C.I. (2021) Advances in Exosomes-Based Drug Delivery Systems. Macromolecular Bioscience, 21, e2000269.
https://doi.org/10.1002/mabi.202000269
[29] Kim, H., Jang, H., Cho, H., et al. (2021) Recent Advances in Exosome-Based Drug Delivery for Cancer Therapy. Cancers, 13, Article 4435.
https://doi.org/10.3390/cancers13174435