具有恐惧效应和 Beddington - DeAngelis 功能反应的时空共位群内捕食模型的稳定性和分叉分析
Stability and Bifurcation Analysis of a Spatiotemporal Intraguild PredationModel with Fear Effect and Beddington-DeAngelis Functional Response
DOI: 10.12677/PM.2022.1212225, PDF, HTML, 下载: 186  浏览: 1,357  国家自然科学基金支持
作者: 王小宁:西北师范大学数学与统计学院,甘肃 兰州
关键词: 共位群内捕食模型Beddington - DeAngelis 型功能反应恐惧效应稳定性Hopf 分支Intraguild Predation Model Beddington-DeAngelis Functional Response Fear Effect Stability Hopf Bifurcation
摘要: 竞争和捕食是生态学中经常出现的一种现象,当两物种争夺相同的有限资源时,捕食者和食饵的共存是维持捕食者-食饵系统所必需的。研究共位群内捕食者和食饵在争夺同一资源时是否可能共存时非常有意义的。本文研究了具有恐惧效应的时空共位群内捕食模型的稳定性与Hopf 分支,该模型包含了以Beddington-DeAngelis 功能反应为特征的物种相互干扰,导出了共位群内捕食和食饵共存的条件,这是通过讨论平衡点的存在性,局部和全局渐近稳定性以及一致持久性来实现,其中平衡点的稳定性的条件是通过李雅普诺夫和赫尔维兹判据获得的。最后,我们以恐惧因子为分支参数,得到了各平衡点处Hopf 分支存在的条件。
Abstract: Competition and predation are a common phenomenon in ecology. When two species compete for the same limited resources, the coexistence of predator and prey is necessary to sustain the predator-prey system. It is of great significance to study whether predators and prey can coexist in a intraguild predation model when competing for the same resource. In this paper, we study the stability and Hopf bifurcation of a spatiotemporal intraguild predation model with a fear effect, the conditions for the coexistence of predator and prey in a intraguild predation model are derived by discussing the existence of equilibrium points, local and global asymptotic stability and uniform persistence, the condition of stability of equilibrium point is obtained by Lyapunov method and Helvetz criterion. Finally, we take the fear factor as the branching parameter and obtain the conditions for the existence of Hopf bifurcation at each equilibrium point.
文章引用:王小宁. 具有恐惧效应和 Beddington - DeAngelis 功能反应的时空共位群内捕食模型的稳定性和分叉分析[J]. 理论数学, 2022, 12(12): 2081-2105. https://doi.org/10.12677/PM.2022.1212225

参考文献

[1] Polis, G.A. and McCormick, S.J. (1987) Intraguild Predation and Competition among Desert Scorpions. Ecology, 68, 332-343.
https://doi.org/10.2307/1939264
[2] Polis, G.A., Myers, C.A. and Holt, R.D. (1989) The Ecology and Evolution of Intraguild Predation: Potential Competitors That Eat Each Other. Annual Review of Ecology and Systematics, 20, 297-330.
https://doi.org/10.1146/annurev.es.20.110189.001501
[3] Polis, G.A. and Holt, R.D. (1992) Intraguild Predation: The Dynamics of Complex Trophic Interactions. Trends in Ecology and Evolution, 7, 151-154.
https://doi.org/10.1016/0169-5347(92)90208-S
[4] Holt, R.D. and Polis, G.A. (1997) A Theoretical Framework for Intraguild Predation. The American Naturalist, 149, 745-764.
https://doi.org/10.1086/286018
[5] Holling, C.S. (1959) The Components of Predation as Revealed by a Study of Small-Mammal Predation of the European Pine Sawfly. The Canadian Entomologist, 91, 293-320.
https://doi.org/10.4039/Ent91293-5
[6] Holling, C.S. (1959) Some Characteristics of Simple Types of Predation and Parasitism. The Canadian Entomologist, 91, 385-398.
https://doi.org/10.4039/Ent91385-7
[7] Holling, C.S. (1966) The Functional Response of Invertebrate Predators to Prey Density. Memoirs of the Entomological Society of Canada, 98, 5-86.
https://doi.org/10.4039/entm9848fv
[8] Beddington, J.R. (1975) Mutual Interference between Parasites or predators and Its Effect on Searching Efficiency. Journal of Animal Ecology, 44, 331-340.
https://doi.org/10.2307/3866
[9] DeAngelis, D.L., Goldstein, R.A. and Neill, R. (1975) A Model for Trophic Interaction. Ecology, 56, 881-892.
https://doi.org/10.2307/1936298
[10] Kratina, P., Vos, M., Bateman, A. and Anholt, B.R. (2009) Functional Responses Modified by Predator Density. Oecologia, 159, 425-433.
https://doi.org/10.1007/s00442-008-1225-5
[11] Skalski, G.T. and Gilliam, J.F. (2001) Functional Responses with Predator Interference: Viable Alternatives to the Holling Type II Model. Ecology, 82, 3083-3092.
https://doi.org/10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
[12] Hsu, S.-B., Ruan, S. and Yang, T.-H. (2013) On the Dynamics of Two-Consumers-One Resource Competing Systems with Beddington-DeAngelis Functional Response. Discrete and Continuous Dynamical Systems B, 18, 2331-2353.
https://doi.org/10.3934/dcdsb.2013.18.2331
[13] Hsu, S.-B., Ruan, S. and Yang, T.-H. (2015) Analysis of Three Species Lotka-Volterra Food Web Models with Omnivory. Journal of Mathematical Analysis and Applications, 426, 659-687.
https://doi.org/10.1016/j.jmaa.2015.01.035
[14] Lin, G., Ji, J., Wang, L. and Yu, J. (2021) Multitype Bistability and Long Transients in a Delayed Spruce Budworm Population Model. Journal of Differential Equations, 283, 263-289.
https://doi.org/10.1016/j.jde.2021.02.034
[15] Seo, G. and Wolkowicz, G.S.K. (2018) Sensitivity of the Dynamics of the General Rosenzweig MacArthur Model to the Mathematical Form of the Functional Response: A Bifurcation Theory Approach. Journal of Mathematical Biology, 76, 1873-1906.
https://doi.org/10.1007/s00285-017-1201-y
[16] Shu, H., Hu, X., Wang, L. and Watmough, J. (2015) Delay Induced Stability Switch, MultiType Bistability and Chaos in an Intraguild Predation Model. Journal of Mathematical Biology, 71, 1269-1298.
https://doi.org/10.1007/s00285-015-0857-4
[17] Yuan, Y. (2012) A Coupled Plankton System with Instantaneous and Delayed Predation. Journal of Biological Dynamics, 6, 148-165.
https://doi.org/10.1080/17513758.2010.544409
[18] Kang, Y. and Wedekin, L. (2013) Dynamics of a Intraguild Predation Model with Generalist or Specialist Predator. Journal of Mathematical Biology, 67, 1227-1259.
https://doi.org/10.1007/s00285-012-0584-z
[19] Schauber, E.M., Ostfeld, R.S. and Jones, C.G. (2004) Type 3 Functional Response of Mice to Gypsy Moth Pupae: Is It Stabilizing? Oikos, 107, 592-602.
https://doi.org/10.1111/j.0030-1299.2004.13606.x
[20] Han, R. and Dai, B. (2017) Spatiotemporal Dynamics and Spatial Pattern in a Diffusive Intraguild Predation Model with Delay Effect. Applied Mathematics and Computation, 312, 177-201.
https://doi.org/10.1016/j.amc.2017.05.053
[21] Sen, D., Ghorai, S. and Banerjee, M. (2018) Complex Dynamics of a Three Species PreyPredator Model with Intraguild Predation. Ecological Complexity, 34, 9-22.
https://doi.org/10.1016/j.ecocom.2018.02.002
[22] Cantrell, R.S. and Cosner, C. (2001) On the Dynamics of Predator-Prey Models with the Beddington-DeAngelis Functional Response. Journal of Mathematical Analysis and Applications, 257, 206-222.
https://doi.org/10.1006/jmaa.2000.7343
[23] Hwang, T.W. (2003) Global Analysis of the Predator-Prey System with Beddington-DeAngelis Functional Response. Journal of Mathematical Analysis and Applications, 281, 395-401.
https://doi.org/10.1016/S0022-247X(02)00395-5
[24] Hwang, T.W. (2004) Uniqueness of Limit Cycles of the Predator-Prey System with Beddington-DeAngelis Functional Response. Journal of Mathematical Analysis and Applications, 290, 113- 122.
https://doi.org/10.1016/j.jmaa.2003.09.073
[25] Liu, S., Beretta, E. and Breda, D. (2010) Predator-Prey Model of Beddington-DeAngelis Type with Maturation and Gestation Delays. Nonlinear Analysis: Real World Applications, 11, 4072-4091.
https://doi.org/10.1016/j.nonrwa.2010.03.013
[26] Tripathi, J.P., Abbas, S. and Thakur, M. (2015) Dynamical Analysis of a Prey-Predator Model with Beddington-DeAngelis Type Function Response Incorporating a Prey Refuge. Nonlinear Dynamics, 80, 177-196.
https://doi.org/10.1007/s11071-014-1859-2
[27] Cantrell, R.S., Cao, X., Lam, K.Y. and Xiang, T. (2017) A PDE Model of Intraguild Predation with Cross-Diffusion. Discrete and Continuous Dynamical Systems B, 22, 3653-3661.
https://doi.org/10.3934/dcdsb.2017145
[28] Han, R., Dai, B. and Wang, L. (2018) Delay Induced Spatiotemporal Patterns in a Diffusive Intraguild Predation Model with Beddington-DeAngelis Functional Response. Mathematical Biosciences and Engineering, 15, 595-627.
https://doi.org/10.3934/mbe.2018027
[29] Han, R., Dai, B. and Chen, Y. (2019) Pattern Formation in a Diffusive Intraguild Predation Model with Nonlocal Interaction Effects. AIP Advances, 9, Article ID: 035046.
https://doi.org/10.1063/1.5084948
[30] Wei, H. (2019) A Mathematical Model of Intraguild Predation with Prey Switching. Mathematics and Computers in Simulation, 165, 107-118.
https://doi.org/10.1016/j.matcom.2019.03.004
[31] Zhang, G.H. and Wang, X.L. (2018) Extinction and Coexistence of Species for a Diffusive Intraguild Predation Model with B-D Functional Response. Discrete and Continuous Dynamical Systems B, 23, 3755-3786.
https://doi.org/10.3934/dcdsb.2018076
[32] Ji, J.P. and Wang, L. (2022) Competitive Exclusion and Coexistence in an Intraguild Predation Model with Beddington-DeAngelis Functional Response. Communications in Nonlinear Science and Numerical Simulation, 107, Article ID: 106192.
https://doi.org/10.1016/j.cnsns.2021.106192
[33] Raw, S.N. and Tiwari, B. (2022) A Mathematical Model of Intraguild Predation with Prey Refuge and Competitive Predators. International Journal of Applied and Computational Mathematics, 8, Article No. 157.
https://doi.org/10.1007/s40819-022-01366-6
[34] Mendon¸ca, J.P., Iram, G. and Lyra, M.L. (2020) Prey Refuge and Morphological Defense Mechanisms as Nonlinear Triggers in an Intraguild Predation Food Web. Communications in Nonlinear Science and Numerical Simulation, 90, Article ID: 105373.
https://doi.org/10.1016/j.cnsns.2020.105373
[35] Xu, W.J., Wu, D.Y., Gao, J. and Shen, C.S. (2022) Mechanism of Stable Species Coexistence in Food Chain Systems: Strength of Odor Disturbance and Group Defense. Chaos, Solitons and Fractals, 8, Article ID: 100073.
https://doi.org/10.1016/j.csfx.2022.100073
[36] Capone, F., Carfora, M.F., DeLuca, R. Torcicollo, I. (2019) Turing Patterns in a Reaction-Diffusion System Modeling Hunting Cooperation. Mathematics and Computers in Simulation, 165, 172-180.
https://doi.org/10.1016/j.matcom.2019.03.010
[37] He, M.X. and Li, Z. (2022) Stability of a Fear Effect Predator-Prey Model with Mutual Interference or Group Defense. Journal of Biological Dynamics, 16, 1480-1498.
https://doi.org/10.1080/17513758.2022.2091800
[38] Mainul, H., Nikhil, P., Sudip, S. and Joydev, C. (2020) Fear Induced Stabilization in an Intraguild Predation Model. International Journal of Bifurcation and Chaos, 30, Article ID: 2050053.
https://doi.org/10.1142/S0218127420500534
[39] Pijush, P., Nikhil, P., Sudip, S. and Joydev, C. (2019) A Three Species Food Chain Model with Fear Induced Trophic Cascade. International Journal of Applied and Computational Mathematics, 5, Article No. 100.
https://doi.org/10.1007/s40819-019-0688-x
[40] Shi, R.X. and Hu, Z.H. (2022) Dynamics of Three-Species Food Chain Model with Two Delays of Fear. Chinese Journal of Physics, 77, 678-698.
https://doi.org/10.1016/j.cjph.2021.06.020
[41] Birkhoff, G. and Rota, G.C. (1989) Ordinary Differential Equations. John Wiley & Sons Inc., Boston.
[42] Liu, W.M. (1994) Criterion of Hopf Bifurcations without Using Eigenvalues. Journal of Mathematical Analysis and Applications, 182, 250-256.
https://doi.org/10.1006/jmaa.1994.1079
[43] Lasalle, J.P. (1960) Some Extensions of Lyapunov’s Second Method. IRE Transactions on Circuit Theory, 7, 520-527.
https://doi.org/10.1109/TCT.1960.1086720
[44] Sotomayor, J. (1973) Generic Bifurcations of Dynamical Systems, Academic Press, Cambridge, MA.
[45] Wang, M. and Pang, P.Y. (2008) Global Asymptotic Stability of Positive Steady States of a Diffusive Ratio-Dependent Prey-Predator Model. Applied Mathematics Letters, 21, 1215-1220.
https://doi.org/10.1016/j.aml.2007.10.026
[46] Henry, D. (1981) Geometric Theory of Semilinear Parabolic Equations. Springer-Verlag, Berlin.
https://doi.org/10.1007/BFb0089647