|
[1]
|
Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Strum, W.B. (2016) Colorectal Adenomas. The New England Journal of Medicine, 374, 1065-1075. [Google Scholar] [CrossRef]
|
|
[3]
|
Morson, B.C. (1974) Evolution of Cancer of the Colon and Rectum. Cancer, 34, 845-849. [Google Scholar] [CrossRef]
|
|
[4]
|
De Palma, F.D.E., D’Argenio, V., Pol, J., et al. (2019) The Molecular Hallmarks of the Serrated Pathway in Colorectal Cancer. Cancers (Basel), 11, Article No. 1017. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Gupta, R., Sinha, S. and Paul, R.N. (2018) The Impact of Microsatellite Stability Status in Colorectal Cancer. Current Problems in Cancer, 42, 548-559. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Pino, M.S. and Chung, D.C. (2010) The Chromosomal Instability Pathway in Colon Cancer. Gastroenterology, 138, 2059-2072. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Murcia, O., Juárez, M.M., Hernández-Illán, E., et al. (2016) Ser-rated Colorectal Cancer: Molecular Classification, Prognosis, and Response to Chemotherapy. World Journal of Gastro-enterology, 22, 3516-3530. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Clevers, H. (2006) Wnt/Beta-Catenin Signaling in Development and Disease. Cell, 127, 469-480. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Nusse, R. and Clevers, H. (2017) Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell, 169, 985-999. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ma, W., Liu, F., Yuan, L., et al. (2020) Emodin and AZT Synergistically Inhibit the Proliferation and Induce the Apoptosis of Leukemia K562 Cells through the EGR1 and the Wnt/β-Catenin Pathway. Oncology Reports, 43, 260-269. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Heldin, C.H. (1995) Dimerization of Cell Surface Receptors in Signal Transduction. Cell, 80, 213-223. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Yarden, Y. and Schlessinger, J. (1987) Epidermal Growth Factor Induces Rapid, Reversible Aggregation of the Purified Epidermal Growth Factor Receptor. Biochemistry, 26, 1443-1451. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Sabbah, D.A., Hajjo, R. and Sweidan, K. (2020) Review on Epidermal Growth Factor Receptor (EGFR) Structure, Signaling Pathways, Interactions, and Recent Updates of EGFR Inhibitors. Current Topics in Medicinal Chemistry, 20, 815-834. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Vouri, M. and Hafizi, S. (2017) TAM Receptor Tyro-sine Kinases in Cancer Drug Resistance. Cancer Research, 77, 2775-2778. [Google Scholar] [CrossRef]
|
|
[15]
|
Chen, K., Pitmon, E, and Wang, K. (2017) Microbiome, In-flammation and Colorectal Cancer. Seminars in Immunology, 32, 43-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Anuja, K., Roy, S., Ghosh, C., et al. (2017) Prolonged Inflamma-tory Microenvironment Is Crucial for Pro-Neoplastic Growth and Genome Instability: A Detailed Review. Inflammation Research, 66, 119-128. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Khalyfa, A.A., Punatar, S., Aslam, R., et al. (2021) Exploring the Inflammatory Pathogenesis of Colorectal Cancer. Diseases, 9, Article No. 79. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Kay, J., Thadhani, E., Samson, L., et al. (2019) Inflamma-tion-Induced DNA Damage, Mutations and Cancer. DNA Repair (Amst), 83, Article ID: 102673. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Papagiorgis, P.C., Zizi, A.E., Tseleni, S., et al. (2013) Clinico-pathological Differences of Colorectal Cancers According to Tumor Origin: Identification of Possibly de Novo Lesions. Biomedical Reports, 1, 97-104. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Kaneko, K., Kurahashi, T., Makino, R., et al. (2004) Pathological Features and Genetic Alterations in Colorectal Carcinomas with Characteristics of Nonpolypoid Growth. British Journal of Can-cer, 91, 312-318. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Kashida, H. and Kudo, S.E. (2006) Early Colorectal Cancer: Concept, Diagnosis, and Management. International Journal of Clinical Oncology, 11, 1-8. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Fujimori, T., Satonaka, K., Yamamura-Idei, Y., et al. (1994) Non-Involvement of RAS Mutations in Flat Colorectal Adenomas and Carcinomas. International Journal of Cancer, 57, 51-55. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Vogelstein, B., Fearon, E.R., Hamilton, S.R., et al. (1988) Ge-netic Alterations during Colorectal-Tumor Development. The New England Journal of Medicine, 319, 525-532. [Google Scholar] [CrossRef]
|
|
[24]
|
Hao, Y., Wang, Y., Qi, M., et al. (2020) Risk Factors for Recurrent Colorectal Polyps. Gut and Liver, 14, 399-411. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Øines, M., Helsingen, L.M., Bretthauer, M., et al. (2017) Epidemiology and Risk Factors of Colorectal Polyps. Best Practice & Research Clinical Gastroenterology, 31, 419-424. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wang, T., Goodman, M., Sun, Y.V., et al. (2017) DNA Base Exci-sion Repair Genetic Risk Scores, Oxidative Balance, and Incident, Sporadic Colorectal Adenoma. Molecular Carcino-genesis, 56, 1642-1652. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Lee, K. and Kim, Y.H. (2020) Colorectal Polyp Prevalence According to Alcohol Consumption, Smoking and Obesity. International Journal of Environmental Research and Public Health, 17, Article No. 2387. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Lee, J.Y., Chang, H.S., Kim, T.H., et al. (2019) Association between Cigarette Smoking and Alcohol Consumption and Sessile Serrated Polyps in Subjects 30 to 49 Years Old. Clinical Gas-troenterology and Hepatology, 17, 1551-1560.e1. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wang, F.W., Chuang, H.Y., Tu, M.S., et al. (2015) Prevalence and Risk Factors of Asymptomatic Colorectal Diverticulosis in Taiwan. BMC Gastroenterology, 15, Article No. 40. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Keum, N. and Giovannucci, E. (2019) Global Burden of Colorec-tal Cancer: Emerging Trends, Risk Factors and Prevention Strategies. Nature Reviews Gastroenterology & Hepatology, 16, 713-732. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
He, X., Wu, K., Ogino, S., et al. (2018) Association between Risk Factors for Colorectal Cancer and Risk of Serrated Polyps and Conventional Adenomas. Gastroenterology, 155, 355-373.e18. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Kim, Y., Kim, Y. and Lee, S. (2009) An Associa-tion between Colonic Adenoma and Abdominal Obesity: A Cross- Sectional Study. BMC Gastroenterology, 9, Article No. 4. [Google Scholar] [CrossRef]
|
|
[33]
|
Schlesinger, S., Aleksandrova, K., Abar, L., et al. (2017) Adult Weight Gain and Colorectal Adenomas—A Systematic Review and Meta-Analysis. Annals of Oncology, 28, 1217-1229. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Ben-Shmuel, S., Rostoker, R., Scheinman, E.J., et al. (2016) Meta-bolic Syndrome, Type 2 Diabetes, and Cancer: Epidemiology and Potential Mechanisms. Handbook of Experimental Pharmacology, 233, 355-372. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Centuori, S.M., Gomes, C.J., Trujillo, J., et al. (2016) Deoxycholic Acid Mediates Non-Canonical EGFR-MAPK Activation through the Induction of Calcium Signaling in Colon Cancer Cells. Biochimica et Biophysica Acta, 1861, 663-670. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Chen, H., Li, N., Ren, J., et al. (2019) Participation and Yield of a Population-Based Colorectal Cancer Screening Programme in China. Gut, 68, 1450-1457. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Soltani, G., Poursheikhani, A., Yassi, M., et al. (2019) Obesity, Diabetes and the Risk of Colorectal Adenoma and Cancer. BMC Endocrine Disorders, 19, Article No. 113. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Chen, J.H., Zhai, E.T., Yuan, Y.J., et al. (2017) Systemic Immune-Inflammation Index for Predicting Prognosis of Colorectal Cancer. World Journal of Gastroenterology, 23, 6261-6272. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Yamamoto, T., Kawada, K. and Obama, K. (2021) In-flammation-Related Biomarkers for the Prediction of Prognosis in Colorectal Cancer Patients. International Journal of Molecular Sciences, 22, Article No. 8002. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Tan, D., Fu, Y., Tong, W., et al. (2018) Prognostic Significance of Lymphocyte to Monocyte Ratio in Colorectal Cancer: A Meta-Analysis. International Journal of Surgery, 55, 128-138. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Kim, J. and Bae, J.S. (2016) Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment. Mediators of Inflammation, 2016, Article ID: 6058147. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Cruz-Ramos, M., Del Puerto-Nevado, L., Zheng, B., et al. (2019) Prognostic Significance of Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio in Older Patients with Metastatic Colorectal Cancer. Journal of Geriatric Oncology, 10, 742-748. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Artaç, M., Uysal, M., Karaağaç, M., et al. (2017) Prognostic Impact of Neutrophil/Lymphocyte Ratio, Platelet Count, CRP, and Albumin Levels in Metastatic Colorectal Cancer Patients Treated with FOLFIRI-Bevacizumab. Journal of Gastrointestinal Cancer, 48, 176-180. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Tao, D.L., Tassi Yunga, S., Williams, C.D., et al. (2021) Aspirin and Antiplatelet Treatments in Cancer. Blood, 137, 3201-3211. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Chubak, J., Whitlock, E.P., Williams, S.B., et al. (2016) Aspirin for the Prevention of Cancer Incidence and Mortality: Systematic Evidence Reviews for the U.S. Preventive Services Task Force. Annals of Internal Medicine, 164, 814-825. [Google Scholar] [CrossRef]
|
|
[46]
|
Wu, Y., Li, C., Zhao, J., et al. (2016) Neutrophil-to-Lymphocyte and Plate-let-to-Lymphocyte Ratios Predict Chemotherapy Outcomes and Prognosis in Patients with Colorectal Cancer and Syn-chronous Liver Metastasis. World Journal of Surgical Oncology, 14, Article No. 289. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Wu, C.C., Li, S.H., Lu, H.I., et al. (2018) Inflammation-Based Prognostic Scores Predict the Prognosis of Locally Advanced Cervical Esophageal Squamous Cell Carcinoma Patients Receiving Curative Concurrent Chemoradiotherapy: A Propensity Score-Matched Analysis. PeerJ, 6, e5655. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Shibutani, M., Maeda, K., Nagahara, H., et al. (2015) Prognostic Signifi-cance of the Lymphocyte-to-Monocyte Ratio in Patients with Metastatic Colorectal Cancer. World Journal of Gastroen-terology, 21, 39966-39973. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Luo, S., Li, J.Y, Zhao, L.N., et al. (2016) Diabetes Mellitus In-creases the Risk of Colorectal Neoplasia: An Updated Meta-Analysis. Clinics and Research in Hepatology and Gastro-enterology, 40, 110-123. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Kim, H.J., Kim, J.E., Jung, J.H., et al. (2015) Uric Acid Is a Risk Indicator for Metabolic Syndrome-Related Colorectal Adenoma: Results in a Korean Population Receiving Screening Colonoscopy. The Korean Journal of Gastroenterology, 66, 202-208. [Google Scholar] [CrossRef] [PubMed]
|