探讨TyG、SAA在动脉粥样硬化中的预测价值
To Investigate the Predictive Value of TyG and SAA in Atherosclerosis
DOI: 10.12677/ACM.2022.12111445, PDF, HTML, XML, 下载: 256  浏览: 390 
作者: 朱文举:青海大学,青海 西宁;左小芹:青海大学附属医院老年医学科,青海 西宁
关键词: 动脉粥样硬化TyGSAA心血管疾病炎症血管Atherosclerosis TyG SAA Cardiovascular Diseases Inflammation Vascular
摘要: 动脉粥样硬化是一种对人体危害较大的慢性心脑血管疾病;合并高血压、糖尿病除了导致下肢血管缺血跛行、下肢血管闭塞缺血性溃疡和截肢外,更重要的是这些患者心血管事件的风险明显增加,死亡率更高,主要死亡原因是心血管事件。脂代谢异常胰岛素抵抗和炎症反应导致血管内皮受损是动脉粥样硬化发生和发展的核心机制,不良生活习惯、年龄、糖尿病病程、血糖、血压、肥胖(尤其是腹型肥胖)、血脂、尿酸、环境污染物等,这些都加速动脉粥样硬化进展,导致肾功能减退和患者全因死亡风险增加显著,这篇综述阐述了导致动脉粥样硬化发生的影响因素及作用机制, 探讨了TyG、SAA在动脉粥样硬化中的潜在作用。
Abstract: Atherosclerosis is a kind of chronic cardio-cerebrovascular disease which is harmful to human body. In addition to lower extremity ischemic claudication, lower extremity vascular occlusive ischemic ulcers and amputation, these patients with hypertension and diabetes have a significantly in-creased risk of cardiovascular events and a higher mortality rate, and the main cause of death is cardiovascular events. Abnormal lipid metabolism insulin resistance and inflammation leading to vascular endothelial damage is the core mechanism of the occurrence and development of athero-sclerosis, bad living habits, age, diabetes course, blood sugar, blood pressure, obesity (especially abdominal obesity), lipid, uric acid, environmental pollutants, etc. These accelerate the progression of atherosclerosis, leading to renal decline and a significant increase in the risk of all-cause death in patients. This review describes the influencing factors and mechanism of atherosclerosis, and dis-cusses the potential role of TyG and SAA in atherosclerosis.
文章引用:朱文举, 左小芹. 探讨TyG、SAA在动脉粥样硬化中的预测价值[J]. 临床医学进展, 2022, 12(11): 10019-10025. https://doi.org/10.12677/ACM.2022.12111445

1. 引言

随着人民生活水平的提高,动脉粥样硬化已成为我国人口死亡的主要原因。主要表现为心脑肾事件的发生:脑梗死、心肌梗死及糖尿病肾病,视网膜病变以及四肢动脉硬化、狭窄、闭塞坏死等,动脉粥样硬化(atherosclerosis)是动脉部分的脂质沉积伴有平滑肌细胞和纤维基质增殖,逐渐发展成动脉硬化斑块形成的疾病。累及全身大中小动脉,特别发生在心、脑、肾等器官,可引起缺血性改变。目前已被临床公认的导致AS的危险因素有:吸烟、高血糖、高血压、高血脂、慢性肾病和其他因素(年龄、肥胖)。AS的发病机制非常复杂,1990年Ross提出“动脉粥样硬化与炎症反应有相关性”,动脉硬化是一种慢性炎症性过程,多种炎性因子参与了血管内皮的损伤,内皮细胞的流动介导炎症的发生,当内皮细胞被激活时,在一些炎症因子的作用下,促进内皮细胞与单核细胞和淋巴细胞结合,浸润并损伤血管壁,促进炎症的进一步进展,进而导致动脉粥样硬化的形成,而Stern认为胰岛素抵抗是众多代谢综合征的致病基础。胰岛素抵抗是外周组织中胰岛素对葡萄糖利用障碍。胰岛素抵抗导致葡萄糖摄取缺陷、糖原合成恶化和脂质氧化失衡,在这种情况下,胰岛素分泌增加以维持葡萄糖稳态。间接导致氧化应激和炎症反应,内皮细胞受损;动脉粥样硬化发生和发展。动脉粥样硬化的发病机制,主要包括炎症反应、脂质代谢异常、氧化应激、遗传、物理化学损伤,多种复杂因素网络交叉作用于血管壁,这其中炎症反应、脂代谢异常是最关键的作用,最终导致血管壁慢性炎症的发生 [1],从而形成动脉粥样硬化。

2. 脂质代谢异常(胰岛素抵抗)

1862年德国病理学家Rudolf Virchow提出脂质代谢异常在动脉粥样硬化中起关键作用,动脉内膜产生粥样硬化可能是血液中脂质,尤其是胆固醇渗入了动脉壁,引起炎症反应,使细胞增生形成病灶。也有研究表明,血浆胆固醇升高与AS发生有紧密联系,血脂水平与AS发病率成正相关。在老龄化个体中,高血脂症和高血糖症是心血管疾病的危险因素,同时也与慢性炎症和后续的组织损伤有密切的联系。在高脂血症患者血液中,血液循环中存在致敏性的炎症细胞 [2]。在这种情况下,炎症细胞ROS的形成与血浆中甘油三酯和LDL胆固醇水平有密切的联系。最新研究结果发现,超氧化物释放的增长率以及患者体内中性粒细胞CD11b表面表达水平的增强与高脂血症有紧密联系 [3]。总的来说,高血糖症和高血脂症也会引发致敏性、亢奋性的炎症细胞增多,影响脂质代谢,从而引起动脉粥样硬化,期间胰岛素抵抗(IR)发挥着重要作用。动脉粥样硬化性心血管疾病(Atherosclerotic cardiovascular diseases)是全球最常见的主要死因 [4]。胰岛素抵抗(IR)是ASCVD最重要的危险因素之一。胰岛素抵抗导致血糖、血脂代谢紊乱,损伤人体的组织器官。胰岛素抵抗损害胰岛素对葡萄糖处理能力和脂质氧化功能。而β细胞胰岛素分泌减少必然引起有功能的胰岛素的量的减少,继而导致机体对葡萄糖及血脂的处理能力下降。以上两方面都将使机体表现出高血糖、高血脂状态 [5] [6] [7]。这些代谢异常都与动脉粥样硬化发生密切相关。此外,IR通过引起炎症、血管收缩和血栓形成来加速动脉粥样硬化 [8]。先前的研究表明,甘油三酯葡萄糖(TyG)指数与IR相关,例如通过胰岛素抵抗的稳态模型(HOMA-IR)和高胰岛素–正常血糖钳夹试验 [9] [10] 评估确定。因此,甘油三酯葡萄糖(TyG)指数与IR具有相关性,可替代IR的一种简单可靠的生物标志物 [9] [10]。根据这些发现,一些研究人员认为TyG指数与ASCVD相关,即TyG指数水平升高,胰岛素抵抗增强,心血管事件发生风险增加 [8] [11]。高水平的甘油三酯(TG)和空腹血糖(FBG)是心血管疾病(CVD)最关键的危险因素 [12]。另一方面,先前的研究表明,糖尿病患者与非糖尿病患者相比,动脉粥样硬化的病理生理学有所不同。在糖尿病患者中,IR与颈动脉内膜中层增厚和ASCVD事件有关 [13] [14]。在非糖尿病患者中,IR与冠状动脉疾病的存在和ASCVD事件有关 [8]。然而,关于两者之间关系的数据非糖尿病患者的TyG指数和亚临床动脉粥样硬化是有限的 [4] [15]。TG升高和HDL-C水平降低已知与T2DM的发展有关。这些动脉粥样硬化性脂质异常往往先于T2DM数年,表明脂蛋白代谢改变是β细胞功能障碍发展的早期事件 [16],有研究表明,作为AS的预测指标TYG指数,脉搏波速度 (pwv)与其存在显著关系。通过脉搏波速度(PWV)测量的动脉硬度(AS)已被定义为心血管事件和心血管死亡率的独立预测因子 [18]。一些研究观察到,IR有助于糖尿病和非糖尿病患者发生ASCVD [17] [18] [19]。IR的促凝和炎症作用也可能导致加速动脉粥样硬化 [8] [18] [19]。众所周知,IR与高血压、血脂异常和高血糖等ASCVD危险因素有关。胰岛素抵抗(IR)被认为是促进动脉粥样硬化的重要机制,它与代谢异常有关,例如高血糖、血脂异常、高胰岛素血症和高血压。甘油三酯–葡萄糖指数(TyG-Index)是空腹血糖和甘油三酯的乘积,与胰岛素抵抗程度密切相关 [20]。较高的TyG-Index与IR相关的亚临床动脉粥样硬化标志物以及发生心血管疾病(CVD)的风险增加 [21]。在胰岛素抵抗中,由于脂肪细胞释放的游离脂肪酸增加,肝脏也会过量产生非常低密度的脂蛋白,导致甘油三酯水平升高 [22] [23]。有几个因素可能导致动脉僵硬,包括弹性蛋白减少和动脉壁中胶原蛋白含量增加,动脉平滑肌调节异常调和高级糖基化终产物(AGE) [24] [25],并且在胰岛素抵抗状态下AGE的积累会加速 [26]。此外,胰岛素抵抗与内皮功能障碍有关 [25] [26] [27],高胰岛素抵抗水平会刺激动脉平滑肌细胞的增殖。因此,胰岛素抵抗与动脉僵硬度有关。胰岛素抵抗已被证明会促进动脉粥样硬化。稳态模型评估(HOMA)是一种经过验证且广泛使用的方法来测量流行病学研究中的。HOMA-IR估计的胰岛素抵抗可预测冠心病患者的动脉粥样硬化和斑块进展,无论是否患有糖尿病,但在临床实践中使用HOMA受到需要测量胰岛素水平的限制。TyG指数作为评估IR的替代标志物。作为心血管风险预测指标的效用已在各种研究中得到报道。国内一项全国性的研究报道,TYG比其他IR替代标记物更适合识别代谢不健康的个体以及心脏代谢疾病风险较高的人群,具有较高的敏感性和特异性 [28]。在另一项实验中,Lee等人表明,高TyG指数与早期2型糖尿病患者发生冠状动脉狭窄有关,发病率高于血糖正常患者,尤其是当他们有ASCVD的危险因素时,发病率更高,在日常实践中常规测量甘油三酯和葡萄糖值,可以计算TyG指数。由于这一优势,我们认为TyG指数可以用作IR的标志物,并可能有助于识别亚临床血管疾病高风险的患者。

3. 炎症反应

Ross提出“动脉粥样硬化是炎症作用机制” [29],且得到了大多数学者的认可。其通过观察发现,AS病变的发展方向主要受内皮细胞、平滑肌细胞、巨噬细胞以及T淋巴细胞所构成的网络关系受到影响,因巨噬细胞的合成可分泌出许多生长刺激因子,继而改变血管平滑肌的细胞表型,从原始的正常收缩型转变成幼稚合成型,继而实现增殖,向内膜迁移后合成,分泌与生长出刺激因子,最后对巨噬细胞造成刺激,导致其不断增生与复制,致使内皮细胞受损,内皮细胞一旦损伤或过度凋亡,血管的通透性就会增强,低密度脂蛋白(LDL)随即渗入并积聚在内皮下,被脂氧合酶及反应性氧集团氧化成氧化的高密度脂蛋白(OX-LDL),由于LDL的氧化修饰触发内皮细胞释放细胞间粘附分子、巨噬细胞趋化因子,使单核细胞穿过血管内膜募集到被修饰的LDL,分化为巨噬细胞,利用清道夫受体SR-A1和CD36,巨噬细胞吞噬更多的LDL,进而发育成泡沫细胞,泡沫细胞发生程序性死亡或坏死,吸引更多的巨噬细胞前来吞噬清除,从而形成更大的斑块,与此同时,坏死的泡沫细胞释放大量的IL-1β、TNF-α等炎性因子 [30]。大量的炎性因子增强临近细胞对凋亡小体的吞饮,进而达到激活临近细胞的目的,LDL的氧化产物本身就是潜在的促炎症因子,OX-LDL还可以进一步刺激产生许多促炎症细胞因子,以上反应可以产生级联放大的效应,进而引发动脉粥样硬化。近年来发现SAA增加会导致动脉粥样硬化,而SAA的缺乏/抑制会减轻小鼠的动脉粥样硬化。SAA激活NLRP3炎性体,这可能是其作用范围的基础。最近的几项动物研究表明,SAA与动脉粥样硬化有因果关系,而不仅仅是该疾病的标志。在鼠和人类的动脉粥样硬化病变血管中检测到SAA和蛋白质 [31] [32] [33]。Dong等人通过慢病毒载体在apoE/小鼠中过表达鼠SAA1,并证明SAA适度但持续升高会通过增加炎症细胞浸润导致动脉粥样硬化增加 [34]。我们在免疫缺陷的apoE/小鼠(重组激活基因1缺陷的小鼠)中重复注射表达人SAA1的腺病毒载体,并证明在SAA适度但持续升高的小鼠中动脉粥样硬化增加 [35]。我们提出动脉粥样硬化的增加是由于SAA介导的转化生长因子(TGF) b的诱导,这增加了血管双糖链蛋白聚糖的表达并导致LDL滞留增加 [35] [36]。蛋白聚糖介导的脂蛋白滞留被认为是动脉粥样硬化发展的关键步骤 [37]。此外,我们发现即使是单次注射编码SAA1的腺病毒载体也会导致动脉粥样硬化增加。Krishack等人使用LDLR-/-小鼠动脉粥样硬化模型 [38] 表明,巨噬细胞中SAA1和SAA2的缺乏会减少升主动脉的动脉粥样硬化病变区域,尽管仅在病变发展的早期。令人惊讶的是,我们发现在喂食标准食物或西方饮食的apoE-/-小鼠中,在缺乏内源性SAA1.1和2.1的情况下,动脉粥样硬化没有减少 [39]。然而,我们随后在缺乏SAA1.1和2.1的apoE-/-小鼠中使用SAA3抑制(通过反义寡核苷酸[ASO])的研究表明,与野生型小鼠相比,动脉粥样硬化显着减少 [40],这意味着所有急性SAA相亚型具有促动脉粥样硬化特性,当所有三种急性期亚型的缺乏或抑制对于观察动脉粥样硬化保护是必要的(在老鼠身上)。在血液中,SAA与HDL复合,形成SAA-HDL,和从而改变HDL的结构和功能。由于反向胆固醇转运不足,SAA-HDL复合物促进巨噬细胞形成泡沫细胞,而未修饰的HDL (Apo-A1-HDL)实际上可能通过促进胆固醇流出来抑制泡沫细胞形成 [41]。SAA在颗粒诱导的动脉粥样硬化中起关键作用。能迅速将胆固醇转运到巨噬细胞,减少胆固醇流出,增加斑块脂质池中游离胆固醇和胆固醇的表达,从而增加易损斑块的体积。同时,血清SAA可刺激平滑肌细胞胶原酶和巨噬细胞基质金属蛋白酶的分泌,加速基质和基质蛋白的降解,使斑块纤维帽变薄,进一步加速动脉粥样硬化的发生。整体而言,SAA主要通过释放诱导炎性因子的方式来加重人体的炎性反应,同时对于HDL的逆向转运能力以及抗炎、抗氧化能力也有一定的减弱作用,且能够通过增加蛋白多糖对脂蛋白在血管壁的保留、与LDL相结合并形成复合物参与AS形成的方式,加速动脉粥样硬化病情进展,同时不断加重患者体内的炎症反应、提高并发症发生概率 [42]。大量报告表明SAA具有促炎特性 [43]。NLRP3炎性体在动脉粥样硬化的发展中起着核心作用 [44]。在最近的一项研究中,我们证明SAA可激活巨噬细胞中的NLRP3炎性体,并且在小鼠腹主动脉瘤实验模型中,SAA的缺乏会显着抑制IL-1b的产生。注入血管紧张素II [45]。我们之前已经证明SAA缺乏保护小鼠免受血管紧张素II诱导的主动脉瘤 [46]。因此,急性或慢性炎症可能导致动脉粥样硬化和其他血管疾病的发展和/或进展,部分通过诱导SAA。通过快速增加冠状动脉炎症,急性感染可能引发不稳定和易损斑块的可能破裂 [47]。临床数据表明,急性感染会促进急性冠状动脉综合征的发展 [48]。凯纳尔等人 [49] 证明盲肠结扎和穿刺(腹腔内脓毒症的一种模型)导致动脉粥样硬化发展增加,他们假设这是由于长期全身、内皮和内膜炎症,尽管没有持续感染的证据。总之,急性期血清淀粉样蛋白A (SAA)在慢性炎症状态下持续升高,升高的水平预示着人类的心血管风险。而SAA的缺乏/抑制会减轻动脉粥样硬化。因此,除了作为一种生物标志物之外,SAA似乎在动脉粥样硬化形成中起因果作用。最近发现许多促炎和促动脉粥样硬化活动都归因于SAA,清楚地证明会影响动脉粥样硬化的发展,并且可能是心血管疾病临床试验的候选目标。

4. 总结

综上所述,本文以炎症反应、血脂代谢异常(胰岛素抵抗)为切入点阐述动脉粥样硬化的发病机制,其中TYG指数,SAA综合评估预测动脉硬化的发生,仍不能明确揭示AS的发病机制。故临床研究还应不断对其进行探讨,AS将逐渐被人们所了解,继而为其预防与治疗提供有效的帮助,本文对动脉粥样硬化的形成机制进行综述,血清SAA、TyG指数单独或联合检测在早期动脉粥样硬化诊断中都具有一定应用价值,为动脉粥样硬化的治疗提供新思路。

参考文献

[1] 褚现明, 李冰, 安毅, 等. 炎症与动脉粥样硬化关系研究进展[J]. 中国分子心脏病学杂志, 2010, 11(3): 184-188.
[2] Araujo, F. B., et al. (1995) Evaluation of Oxidative Stress in Patients with Hyperlipidemia. Atherosclero-sis, 117, 61-71.
https://doi.org/10.1016/0021-9150(94)05558-Z
[3] Farah, R., Shurtz-Swirski, R. and Dorlechter, F. (2010) Primed Polymorphonuclear Leukocytes Constitute a Possible Link between Inflammation and Oxidative Stress in Hyper-lipidemic Patients: Effect of Statins. Minerva Cardioangiologica, 58, 175-181.
[4] Lee, S.B., Ahn, C.W., Lee, B.K., et al. (2018) Association between Triglyceride Glucose Index and Arterial Stiffness in Korean Adults. Cardiovascular Di-abetology, 17, Article No. 41.
https://doi.org/10.1186/s12933-018-0692-1
[5] Wang, F., Han, L. and Hu, D. (2017) Fasting Insulin, Insulin Resistance and Risk of Hypertension in the General Population: A Meta-Analysis. Clinica Chimica Acta, 464, 57-63.
https://doi.org/10.1016/j.cca.2016.11.009
[6] Lillioja, S., Mott, D.M., Spraul, M., et al. (1993) Insulin Resistance and Insulin Secretory Dysfunction as Precursors of Non-Insulin-Dependent Diabetes Mellitus: Prospective Studies of Pima Indians. The New England Journal of Medicine, 329, 1988-1992.
https://doi.org/10.1056/NEJM199312303292703
[7] Salonen, J.T., Lakka, T.A., Lakka, H.-M., Valkonen, V.-P., Everson, S.A. and Kaplan, G.A. (1998) Hyperinsulinemia Is Associated with the Incidence of Hypertension and Dyslipidemia in Middle-Aged Men. Diabetes, 47, 270-275.
https://doi.org/10.2337/diab.47.2.270
[8] Lee, E.Y., Yang, H.K., Lee, J., et al. (2016) Triglyceride Glucose Index, a Marker of Insulin Resistance, Is Associated with Coronary Artery Stenosis in Asymptomatic Subjects with Type 2 Di-abetes. Lipids in Health and Disease, 15, Article No. 155.
https://doi.org/10.1186/s12944-016-0324-2
[9] Mohd Nor, N.S., Lee, S., Bacha, F., Tfayli, H. and Arslanian, S. (2016) Triglyceride Glucose Index as a Surrogate Measure of Insulin Sensitivity in Obese Adolescents with Normoglycemia, Prediabetes, and Type 2 Diabetes Mellitus: Comparison with the Hyperinsulinemic-Euglycemic Clamp. Pediatric Diabetes, 17, 458-465.
https://doi.org/10.1111/pedi.12303
[10] Song, D.K., Lee, H., Sung, Y.-A. and Oh, J.-Y. (2016) Triglycerides to High-Density Lipoprotein Cholesterol Ratio Can Predict Impaired Glucose Tolerance in Young Women with Polycystic Ovary Syndrome. Yonsei Medical Journal, 57, 1404-1411.
https://doi.org/10.3349/ymj.2016.57.6.1404
[11] Sanchez-Inigo, L., Navarro-Gonzalez, D., Fernandez-Montero, A., Pastrana-Delgado, J. and Martinez, J.A. (2016) The TyG Index May Predict the Development of Cardiovascular Events. European Journal of Clinical Investigation, 46, 189-197.
https://doi.org/10.1111/eci.12583
[12] Eckel, R.H., Grundy, S.M. and Zimmet, P.Z. (2005) The Metabolic Syndrome. The Lancet, 365, 1415-1428.
https://doi.org/10.1016/S0140-6736(05)66378-7
[13] Bonora, E., Formentini, G., Calcaterra, F., et al. (2002) HOMA-Estimated Insulin Resistance Is an Independent Predictor of Cardiovascular Disease in Type 2 Diabetic Subjects: Prospective Data from the Verona Diabetes Complications Study. Diabetes Care, 25, 1135-1141.
https://doi.org/10.2337/diacare.25.7.1135
[14] Bressler, P., Bailey, S.R., Matsuda, M. and DeFronzo, R.A. (1996) Insulin Resistance and Coronary Artery Disease. Diabetologia, 39, 1345-1350.
https://doi.org/10.1007/s001250050581
[15] Kim, M.K., Ahn, C.W., Kang, S., Nam, J.S., Kim, K.R. and Park, J.S. (2017) Relationship between the Triglyceride Glucose Index and Coronary Artery Calcification in Korean Adults. Cardi-ovascular Diabetology, 16, Article No. 108.
https://doi.org/10.1186/s12933-017-0589-4
[16] Simental-Mendia, L.E., Rodriguez-Moran, M. and Guerre-ro-Romero, F. (2008) The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metabolic Syndrome and Related Disorders, 6, 299-304.
https://doi.org/10.1089/met.2008.0034
[17] 张家庆. HOMA2-IR是一个较好的胰岛素抵抗指数[J]. 中华内分泌代谢杂志, 2005, 21(4): 304-305.
[18] De Fronzo, R.A. (2009) From the Triumvirate to the “Ominous Octet”: A New Paradigm for the Treatment of Type 2 Diabetes Mellitus. Clinical Diabetology, 10, 101-128.
https://doi.org/10.2337/db09-9028
[19] Mills, J.D. and Grant, P.J. (2002) Insulin Resistance, Haemostatic Factors and Cardiovascular Risk. The British Journal of Diabetes & Vascular Disease, 2, 19-26.
https://doi.org/10.1177/14746514020020011301
[20] Guerrero-Romero, F., Simental-Mendia, L.E., Gonza-lez-Ortiz, M., Martinez-Abundis, E., Ramos-Zavala, M.G., Hernandez-Gonzalez, S.O., et al. (2010) The Product of Tri-glycerides and Glucose, a Simple Measure of Insulin Sensitivity. Comparison with the Euglycemic-Hyperinsulinemic Clamp. The Journal of Clinical Endocrinology and Metabolism, 95, 3347-3351.
https://doi.org/10.1210/jc.2010-0288
[21] Sanchez-Inigo, L., Navarro-Gonzalez, D., Fernandez-Montero, A., Pas-trana-Delgado, J. and Martinez, J.A. (2016) The TyG Index May Predict the Development of Cardiovascular Events. European Journal of Clinical Investigation, 46, 189-197.
https://doi.org/10.1111/eci.12583
[22] Ginsberg, H.N., Zhang, Y.L. and Hernandez-Ono, A. (2005) Regulation of Plasma Triglycerides in Insulin Resistance and Diabetes. Ar-chives of Medical Research, 36, 232-240.
https://doi.org/10.1016/j.arcmed.2005.01.005
[23] Ma, M., Liu, H., Yu, J., He, S., Li, P., Ma, C., Zhang, H., Xu, L., Ping, F., Li, W., et al. (2020) Triglyceride Is Independently Correlated with Insulin Resistance and Islet Beta Cell Function: A Study in Population with Different Glucose and Lipid Metabolism States. Lipids in Health and Disease, 19, Article No. 121.
https://doi.org/10.1186/s12944-020-01303-w
[24] Lakatta, E.G. and Levy, D. (2003) Arterial and Cardiac Aging: Major Shareholders in Cardiovascular Disease Enterprises: Part I: Aging Arteries: A “Set Up” for Vascular Disease. Circulation, 107, 139-146.
https://doi.org/10.1161/01.CIR.0000048892.83521.58
[25] Sengstock, D.M., Vaitkevicius, P.V. and Supiano, M.A. (2005) Arterial Stiffness Is Related to Insulin Resistance in Nondiabetic Hypertensive Older Adults. The Journal of Clinical Endocrinology & Metabolism, 90, 2823-2827.
https://doi.org/10.1210/jc.2004-1686
[26] Singh, R., Barden, A., Mori, T. and Beilin, L. (2001) Advanced Gly-cation End-Products: A Review. Diabetologia, 44, 129-146.
https://doi.org/10.1007/s001250051591
[27] Arcaro, G., Cretti, A., Balzano, S., Lechi, A., Muggeo, M., Bonora, E. and Bonadonna, R.C. (2002) Insulin Causes Endothelial Dysfunction in Humans: Sites and Mechanisms. Circulation, 105, 576-582.
https://doi.org/10.1161/hc0502.103333
[28] Yu, X., Wang, L., Zhang, W., Ming, J., Jia, A., Xu, S., et al. (2019) Fasting Tri-Glycerides and Glucose Index Is More Suitable for the Identification of Metabolically Unhealthy Individuals in the Chinese Adult Population: A Nationwide Study. Journal of Diabetes Investigation, 10, 1050e8.
[29] Maeda, M., Yamamoto, I., Fujio, Y., et al. (2003) Homocysteine Induces Vascular Endothelial Growth Factor Expression in Differ-entiated THP-1 Macrophages. Biochimica et Biophysica Acta, 1623, 41-46.
https://doi.org/10.1016/S0304-4165(03)00161-2
[30] 王则能, 颜彦. 肠道微生物与动脉粥样硬化[J]. 生命科学, 2017, 29(7): 682-686.
[31] Meek, R.L., Urieli-Shoval, S. and Benditt, E.P. (1994) Expression of Apolipoprotein Serum Amyloid A mRNA in Human Atherosclerotic Lesions and Cultured Vascular Cells: Implications for Serum Am-yloid A Function. Proceedings of the National Academy of Sciences of the United States of America, 91, 3186-3190.
https://doi.org/10.1073/pnas.91.8.3186
[32] O’Brien, K.D., McDonald, T.O., Kunjathoor, V., et al. (2005) Serum Amyloid A and Lipoprotein Retention in Murine Models of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 785-790.
https://doi.org/10.1161/01.ATV.0000158383.65277.2b
[33] Yamada, T., Kakihara, T., Kamishima, T., et al. (1996) Bothacutephase and Constitutive Serum Amyloid A Are Present in Atherosclerotic Lesions. Pathology International, 46, 797-800.
https://doi.org/10.1111/j.1440-1827.1996.tb03552.x
[34] Dong, Z., Wu, T., Qin, W., et al. (2011) Serum Amyloid A Directly Accelerates the Progression of Atherosclerosis in Apolipoprotein E-Deficient Mice. Molecular Medicine, 17, 1357-1364.
https://doi.org/10.2119/molmed.2011.00186
[35] Thompson, J.C., Jayne, C., Thompson, J., et al. (2015) A Brief Elevation of Serum Amyloid A Is Sufficient to Increase Atherosclerosis. Journal of Lipid Research, 56, 286-293.
https://doi.org/10.1194/jlr.M054015
[36] Wilson, P.G., Thompson, J.C., Webb, N.R., et al. (2008) SAA, but Not CRP, Stimulates Vascular Proteoglycan Synthesis in a Pro-Atherogenic Manner. The American Journal of Pa-thology, 173, 1902-1910.
https://doi.org/10.2353/ajpath.2008.080201
[37] Boren, J. and Williams, K.J. (2016) The Central Role of Arterial Retention of Cholesterol-Rich Apolipoprotein-B-Containing Lipoproteins in the Pathogenesis of Atherosclerosis: A Tri-umph of Simplicity. Current Opinion in Lipidology, 27, 473-483.
https://doi.org/10.1097/MOL.0000000000000330
[38] Krishack, P.A., Bhanvadia, C.V., Lukens, J., et al. (2015) Serum Amyloid A Facilitates Early Lesion Development in Ldlr-/-mice. Journal of the American Heart Association, 4, e001858.
https://doi.org/10.1161/JAHA.115.001858
[39] De Beer, M.C., Wroblewski, J.M., Noffsinger, V.P., et al. (2014) Deficiency of Endogenous Acute Phase Serum Amyloid A Does Not Affect Atherosclerotic Lesions in Apolipoprotein E-Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 255-261.
https://doi.org/10.1161/ATVBAHA.113.302247
[40] Thompson, J.C., Wilson, P.G., Shridas, P., et al. (2018) Se-rum Amyloid A3 Is Pro-Atherogenic. Atherosclerosis, 268, 32-35.
https://doi.org/10.1016/j.atherosclerosis.2017.11.011
[41] Lee, H.Y., Kim, S.D., Baek, S.H., et al. (2013) Serum Amyloid A Stimulates Macrophage Foam Cell Formation via Lectin-Like Oxidized Low-Density Lipoprotein Receptor 1 Upregulation. Biochemical and Biophysical Research Communications, 433, 18-23.
https://doi.org/10.1016/j.bbrc.2013.02.077
[42] 李骞. 瑞舒伐他汀对动脉粥样硬化大鼠SAA、hs-CRP的影响[D]: [硕士学位论文]. 福州: 福建医科大学, 2012.
[43] Sack, G.H. (2018) Serum Amyloid A—A Review. Molecu-lar Medicine, 24, Article No. 46.
https://doi.org/10.1186/s10020-018-0047-0
[44] Hoseini, Z., Sepahvand, F., Rashidi, B., et al. (2018) NLRP3 Inflammasome: Its Regulation and Involvement in Atherosclerosis. Journal of Cellular Physiology, 233, 2116-2132.
https://doi.org/10.1002/jcp.25930
[45] Shridas, P., De Beer, M.C. and Webb, N.R. (2018) High-Density Lipopro-tein Inhibits Serum Amyloid A-Mediated Reactive Oxygen Species Generation and NLRP3 Inflammasome Activation. Journal of Biological Chemistry, 293, 13257-13269.
https://doi.org/10.1074/jbc.RA118.002428
[46] Webb, N.R., De Beer, M.C., Wroblewski, J.M., et al. (2015) Deficiency of Endogenous Acute-Phase Serum Amyloid A Protects ap-oE-/-mice from Angiotensin II-Induced Abdominal Aortic Aneurysm Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 35, 1156-1165.
https://doi.org/10.1161/ATVBAHA.114.304776
[47] Madjid, M., Naghavi, M., Litovsky, S. and Casscells, S.W. (2003) Influenza and Cardiovascular Disease: A New Opportunity for Prevention and the Need for Further Studies. Circulation, 108, 2730-2736.
https://doi.org/10.1161/01.CIR.0000102380.47012.92
[48] Corrales-Medina, V.F., Madjid, M. and Musher, D.M. (2010) Role of Acute Infection in Triggering Acute Coronary Syndromes. The Lancet Infectious Diseases, 10, 83-92.
https://doi.org/10.1016/S1473-3099(09)70331-7
[49] Kaynar, A.M., Yende, S., Zhu, L., et al. (2014) Effects of Intra-Abdominal Sepsis on Atherosclerosis in Mice. Critical Care, 18, Article No. 469.
https://doi.org/10.1186/s13054-014-0469-1