不同细胞因子对诱导间充质干细胞在肌腱损伤修复中的研究进展
Research Progress of Different Cytokines on the Induction of Mesenchymal Stem Cells in Tendon Injury Repair
DOI: 10.12677/ACM.2022.12111432, PDF, HTML, XML, 下载: 300  浏览: 658 
作者: 李万祥, 苑 龙, 李 森, 延易泽:济宁医学院临床医学院,山东 济宁;卞继超, 王国栋*:济宁医学院附属医院,山东 济宁
关键词: 细胞因子间充质干细胞肌腱损伤修复Cytokines Mesenchymal Stem Cells Tendon Injury Repair
摘要: 肌腱的损伤在运动和工作场所很常见,它与体育活动、反复微创伤、抑制机制功能障碍、退行性改变以及全身或局部皮质类固醇治疗有关,每年全世界数千万人受到影响,外科手术是肌腱损伤的主要治疗方法。不幸的是,超过90%的患者手术修复后肌腱愈合失败,因此,提高肌腱愈合的方法具有很强的临床意义。利用不同谱系的细胞因子的特性,与间充质干细胞共同作用,促进肌腱损伤的修复,是近年来国内外的研究热点。
Abstract: Tendon injuries are common in sports and the workplace. It is related to physical activity, repeated microtrauma, dysfunction of inhibitory mechanisms, degenerative changes, and systemic or local corticosteroid treatment. Tens of millions of people are affected worldwide every year. Surgery is the main treatment for tendon injury. Unfortunately, tendon healing fails after surgical repair in more than 90% of patients; therefore, methods to improve tendon healing are of strong clinical in-terest. In recent years, the characteristics of cytokines of different lineages and mesenchymal stem cells are used to promote the repair of tendon injury, which is a research hotspot at home and abroad.
文章引用:李万祥, 苑龙, 李森, 延易泽, 卞继超, 王国栋. 不同细胞因子对诱导间充质干细胞在肌腱损伤修复中的研究进展[J]. 临床医学进展, 2022, 12(11): 9929-9938. https://doi.org/10.12677/ACM.2022.12111432

1. 前言

肌腱、韧带损伤修复一直是临床的一大难点,无论是膝关节交叉韧带,还是肩袖韧带修复等,腱–骨愈合程度均直接影响术后康复进程及手术效果 [1]。目前对于肌腱损伤的修复主要有端端吻合、自体肌腱移植、同种异体肌腱或人工肌腱移植等 [2],但它们均有一定的缺点。例如肌腱修复后长时间制动常常造成粘连从而影响滑动功能,进而需行二期松解术改善症状;若采取自体肌腱移植,取材有限,且对供区的功能有一定的影响;此外同种异体肌腱移植以及人工肌腱移植等方案,虽然近期生物力学强度好,但不可避免地出现免疫、炎症反应影响愈合 [3]。骨髓间充质干细胞作为组织损伤修复的经典种子细胞,广泛应用于各个领域 [4]。近些年,来自骨髓和脂肪组织的间充质干细胞(mesenchymal stem cells, MSCs)在肌腱损伤修复方面的研究逐渐开展 [5],有研究表明其可促进生长因子和细胞分裂因子等旁分泌因子的产生和释放,进而促进肌腱的愈合 [6] [7],也有研究表明使用不同的方法可以促进间充质干细胞成肌腱分化加速肌腱损伤的修复 [8]。

研究肌腱组织学、力学时,有三大核心要素:细胞,支架,生长信息,而细胞因子则是包含在生长信息中最重要的元素之一,所以对细胞因子的研究探索对于肌腱组织工程的发展极为重要 [9]。由于有关生长因子的基础研究方面取得了巨大进步,因此肌腱损伤修复在传统的手术缝合、局部GF和血小板注射 [10] 外又有了新的治疗方法,明显拓宽了对组织修复方面的认知。

2. 不同细胞因子的作用

2.1. 转化生长因子(TGFβ)

转化生长因子β是研究最广泛的生长因子之一,能够有效的诱导肌腱分化 [11],在大多数细胞中表达,主要在内皮细胞、造血细胞和结缔组织细胞中表达,能够刺激间充质干细胞增殖,是一种强有力的上皮细胞和内皮细胞增殖抑制因子、免疫抑制剂 [12],此外还能调节细胞的迁移和增殖以及纤维连接蛋白的结合 [13]。转化生长因子β在体内通过TGFβR-II结合,激活TGFβR-I受体,然后激活Smad2和Smad3通路 [14],导致他们的直接羧基末端磷酸化,与共Smads形成复合物移位到细胞核内,与其他共调节因子一起诱导基因转录 [15]。TGF-β1在体外正向调节间充质干细胞中的肌腱标记基因scleraxis (Scx)和肌腱调节蛋白(Tnmd),Hitoshi Arimura,Chisa Shukunami等人对接受了单侧冈上肌腱损伤手术修复的大鼠的实验发现TGF-β1通过抑制MMP-9和MMP-13的表达来促进愈合部位坚韧纤维组织的形成,从而增加胶原蛋白的积累,这表明TGF-β1可用于增强肌腱损伤手术修复后肌腱的生物力学强度 [16]。此外通过探索使用转化生长因子(TGF)β2诱导间充质干细胞(MSCs)的肌腱分化中蛋白质标志物的表达水平,发现TGFβ2是MSCs中肌腱标记蛋白(巩膜和腱调节蛋白)的诱导剂,并且改变了N-cadherin、cadherin-11和connexin-43的蛋白质水平 [17]。TGF-β3是巩膜硬化的主要诱导剂,是一种早期表达的肌腱标志物,同时抑制通常后期表达的肌腱标志物,如核心蛋白聚糖 [18]。Michaela Melzer等学者通过对马的肌腱损伤模型进行相关实验同样印证了这一观点 [19]。

2.2. 骨形态蛋白(BMP)

细胞外基质(ECM)相关的骨形态发生蛋白(BMPs)控制大量生物过程 [20],BMP是转化生长因子-β (TGF-β)蛋白超家族的成员 [21],它们积极参与肾脏发育、手指和肢体的形成、血管生成、组织纤维化和肿瘤的发展 [22]。特别是,这些蛋白在肢芽上皮中表达上调,在肌腱损伤修复中起着至关重要的作用 [23]。肌腱通过纤维化修复愈合,动物肌腱损伤和过度使用模型已确定转化生长因子β (TGF-β)和骨形态发生蛋白(BMP)作为生长因子,通过介导细胞外基质合成和细胞分化,积极参与纤维化的发展从而加强肌腱损伤修复 [24]。

BMPs在肌腱损伤修复过程中分泌为具有N末端潜伏期/信号肽的较大前体分子,被胞外蛋白酶裂解释放成熟蛋白,成熟的蛋白质二聚形成生物活性部分 [25]。然后,激活的BMPs二聚体与质膜上特定的I/II Ser/Thr激酶受体结合,通过Smad1/5/8磷酸化和其他非规范的细胞内效应器来传播它的信号 [20]。通过建立PLGA-BMP-2 (骨形态发生蛋白2)系统,并在体外和体内证实了BMP-2的持续释放,并收集了组织样本并分析了血清和受伤部位的BMP-2浓度,测试与受损组织中的炎症、组织修复和骨形成相关的基因的 mRNA表达,发现前交叉韧带重建后同时使用持续BMP-2释放和富血小板纤维蛋白(PRF)对大鼠腱骨愈合具有更好的治疗效果。这种联合疗法有效地提高了有利于血管生成的生长因子的水平,并缓解了受伤部位的炎症反应。值得注意的是,联合疗法有效地促进了与骨形成和肌腱再生相关的信号。L HAN等人发现BMP-2和富血小板纤维蛋白(PRF)的联合治疗显著增强Osterix、Runx2、OCN (骨钙素)、OPN (骨桥蛋白)和Col Iα (胶原蛋白Iα)等有利于骨形成的基因表达,同时显著增强I型胶原、II型胶原、III型胶原、TNMD、SCX、Shc和P-ERK1/2等与肌腱生成相关的蛋白生成,从而对腱骨愈合具有协同作用,在 ACL重建的治疗中具有很大的潜力 [26]。

骨形态发生蛋白-12 (BMP-12),也称为生长和分化因子-7 (GDF-7)和软骨衍生的形态发生蛋白-3 (CDMP-3),具有独特的生物学活性,可诱导肌腱和纤维软骨的形成 [27]。自首次发现以来,BMP12在再生医学和组织工程领域显示出巨大的潜力。BMP12已经在许多临床前和临床研究中进行了测试,探索它与MSCs在几种动物缺陷模型和人类疾病中的肌腱修复潜能 [28]。等人的研究发现,在兔子模型中将骨形态发生蛋白-12高表达的骨髓间充质干细胞载体plga支架植入兔冈上肌腱–骨连接,可显著增加SCX、Tnmd、TNC、I型胶原和III型胶原等有利于骨与肌腱形成的mRNA表达,从而促进腱骨愈合 [29]。在雌性犬模型中将含有和不含BMP-12的自体ASC片材应用于缝合的屈肌腱表面,可使SCs和BMP-12加速肌腱修复增殖期的愈合进程,可能因为自体ASC和rBMP-12被递送到屈肌腱修复部位,ASC片层治疗通过增加再生M2巨噬细胞、炎症抑制剂和参与肌腱形成的蛋白质,减少了单核细胞浸润并将CD146+干细胞或祖细胞引入修复部位。ASCs和rBMP-12的联合给药通过增加IL-4进一步刺激M2巨噬细胞,并导致参与基质重塑的M2效应基质金属蛋白酶12的增加和减少血管生成和细胞迁移的负调节因子 [30]。Pernilla Eliasson等学者通过对跟腱受伤大鼠的愈合研究发现BMP系统似乎参与肌腱的维持和愈合,并且可能对机械负荷作出反应 [31]。近年来,有研究发现BMP家族中还有BMP13、BMP14等也可能在肌腱修复中发挥一定的积极作用 [32] [33],但是具体的作用机制还有待进一步的探索。

2.3. 成纤维生长因子2 (FGF-2)

FGF既是一种强大的血管生成刺激因子,又是一种细胞迁移和增殖的调节因子 [34]。FGF-2基因不像大部分基因一样编码一种蛋白质,而是编码一组复杂的异构体。这种异构体的分子量为18 kg/mol [35],是一种单链非糖基化多肽,含154个氨基酸。在肌腱/韧带、软骨、骨组织中,FGF-2主要通过与成纤维细胞生长因子酪氨酸激酶受体(FGFRs)及其下游信号分子如磷脂酰肌醇3-激酶(PI3K)-Akt和Ras-Raf-MAPK结合介导细胞信号转导 [36],进而激活FGF受体,来调节细胞的增殖、迁移和分化 [37]。FGF2对MSCs的生长和分化的作用机制尚不明确,但有学者研究了FGF-2在兔子肌腱损伤模型中的作用,推测FGF-2可能起到了招募或刺激的作用,激活了额外的重要因子的释放 [38],诱导细胞运动、多种蛋白的表达(如波形蛋白和平滑肌肌动蛋白等)来刺激骨髓间充质干细胞的生长,并且能保持其长期体外培养的分化潜能 [39],从而加速了肌腱到骨骼的愈合。有学者发现FGF-2是损伤组织愈合过程中的重要生长因子,并且在韧带/肌腱损伤后观察到数量增加证实了这一推测 [40]。Jun Zhang,Ziming Liu,Yuwan Li等人的实验通过探讨FGF-2对hAMSCs体外成软骨分化的影响以及FGF-2诱导的hAMSCs联合人无细胞羊膜(HAAM)支架对肌腱-骨的影响,证明了转染FGF-2的hAMSCs联合HAAM支架可加速兔关节外模型的腱-骨愈合 [38]。部分学者使用FGF作为一次性给药蛋白用于大鼠模型的髌腱愈合,仅在7天后才显示出对组织学和免疫组织学修复特征的积极影响 [41]。具体地说,他们发现了更多的III型胶原表达以及更高的细胞增殖率。然而,III型胶原比I型胶原更薄,更具延展性,与I型前胶原一起,是肌腱愈合早期的重要因素。有人认为刚才所提到的研究中所描述的FGF的短期效应,是由于单一蛋白应用的瞬时效应。虽然能够证明FGF在肌腱修复中是非常有效的,但是对于生物力学结果没有明显的长期影响 [42],具体的原理机制尚不清楚。值得一提的是,有学者发现FGF-4在胚胎着床前小鼠囊胚中有表达,促进了scleraxis因子的表达,这一因子是肌腱标志性因子 [43],继而促进其他肌腱标志性蛋白的表达 [44]。因此我们可以猜测,FGF家族还有其他可以促进肌腱/韧带损伤的成员,值得我们进一步探索。

2.4. 血管内皮生长因子(VEGF)

VEGF这是一种生长因子,其主要在血管生成中发挥作用,是肉芽组织发育早期形成初始血管丛所必需的,它还参与组织再生,发挥体内平衡功能 [45],在多项研究中,VEGF能够与MSC作用提高肌腱愈合强度 [46] [47] [48],但是在肌腱损伤的早期VEGF的水平并不会达到峰值,只有在肌腱损伤炎症阶段之后,表达水平才会达到峰值,此时它是一个强大的血管生成刺激因子 [34]。Verteporfin是Yes相关蛋白(YAP)的抑制剂,显着降低胶原蛋白1 (Col1)、胶原蛋白3 (Col3)、血管生成素2、CD31、血管性血友病因子、CTGF和CYR61的表达,用于机械测试和分析肩袖重建后的两组拉伸失效载荷,并检测肌腱中胶原蛋白和血管生成相关标志物的表达,可以通过抑制YAP活性来抑制VEGF诱导的YAP通路激活。肩袖重建后肌腱骨愈合中的血管生成需要VEGF-Hippo信号通路协同作用。使用人脐静脉内皮细胞(HUVECs)可以评估VEGF-Hippo信号通路的相互作用机制。在HUVEC中,VEGF激活VEGF受体并抑制LATS和YAP磷酸化。然后将YAP转移到细胞核以进一步激活下游通路 [49]。Mao等学者建立完全切断长趾深屈肌腱的鸡的模型,证实了VEGF在不加重肌腱损伤后粘连形成的前提下提高肌腱愈合强度的治疗效果 [46];Jean-François Kaux等人建立了手术切除跟腱的大鼠模型,证明了VEGF改善了肌腱愈合过程的早期阶段 [47]。张等人的实验显示局部外源性VEGF注射增加了大鼠跟腱的抗拉强度。他们表明,VEGF通过增加GF的释放从而促进成纤维细胞的增殖来显示这种作用 [50]。Naofumi Okamoto等人发现与单纯骨髓MSC治疗的肌腱相比,骨髓细胞治疗的肌腱拥有更好的生物力学性状,可能的原因是在大鼠模型肌腱损伤修复中,骨髓细胞的VEGF水平会增加,导致I和III型胶原的增加更快,更快地恢复了损伤的肌腱 [51]。Serdar Yuksel等人认为由于MSC的自分泌和旁分泌作用导致血管内皮生长因子和转化生长因子-β1的增加,从而使其迅速转化为成纤维细胞,进而促进了1型胶原的合成,从而获得了生物力学和组织病理学上的阳性Bonar和Movin评分 [52]。为了探讨血管内皮生长因子(VEGF)在跟腱断裂患者中的表达情况及其对临床疗效的预测价值和意义,通过在华南大学第一附属医院接受手术治疗的42例跟腱断裂患者检测RT-qPCR检测患者治疗前后血清TGF-β1、VEGF的表达并根据美国骨科足踝协会(AOFAS)评分系统评价临床疗效,得出结果42例患者治疗后3个月TGF-β1和VEGF表达明显高于治疗前,治疗6个月后表达明显低于治疗前并且随着治疗后疗效的提高,TGF-β1和VEGF的表达降低,疗效显着。可以得出结论VEGF可作为跟腱断裂患者治疗前后临床疗效的观察指标和预测指标 [53]。Qian Qian Yang等人开展的研究通过一种联合治疗的方法将PLGA纳米颗粒作为载体用于将bFGF + VEGFA基因递送到受伤的肌腱组织中,从而在早期肌腱愈合期间产生足够量的这些因子。治疗后,经纳米颗粒/bFGF + VEGFA质粒复合物处理的修复肌腱的极限强度显着提高,联合治疗还可增强屈肌腱滑行功能,在以后通过纳米粒子的联合基因治疗可能是肌腱修复的有效生物学策略 [54]。

2.5. 血小板衍生因子(PDGF)家族

PDGF是一种29-33 kDa的糖蛋白,在人类中一般由A链或B链由二硫键连接。它还有其他几种异构体,但异源二聚体PDGF-AB和同源二聚体PDGF-AA和PDGF-BB研究的比较多 [12]。PDGF及其异构体通过5个胞外免疫球蛋白环与两种受体结合,并与胞内酪氨酸激酶结构域结合 [14]。PDGF在肌腱损伤修复中的作用方式是多种的。在创面血凝块形成后,血小板释放一系列相互作用的生长因子 [55],其中PDGF吸引炎症细胞,如中性粒细胞和巨噬细胞,负责分解和吞噬碎片 [56]。此外,PDGF还吸引肌腱细胞和成纤维细胞迁移到伤口并启动合成细胞外间质成分,包括胶原蛋白 [57]。在肌腱损伤后,短时间内就会出现PDGF升高,并能够刺激包括IGF-I在内的其他生长因子的产生及表达,并在组织重塑中发挥作用 [34]。血小板衍生生长因子-BB (PDGF-BB)与其他生长因子一起由血小板在损伤后分泌。PDGF-BB促进有丝分裂和血管生成,这可以加速肌腱愈合。PDGF-BB应用的剂量和时间是决定特定肌腱撕裂伤应用哪种输送装置的最重要因素 [57]。Gabriella Meier Bürgisser等人发现在跟腱损伤的兔子模型中将PDGF注入创面,与MSCs共同作用增加了蛋白多糖的含量,减少了α-SMA+面积,形成不同大小的簇,主要是血管,最后,PDGF减少了细胞外基质中的I型和III型胶原,使细胞分布更均匀,蛋白多糖含量更高,纤维组织更少,从而加速肌腱伤口愈合 [58]。关于IGF-I在肌腱修复中的实际应用,问题在于IGF-I是独立起作用还是在生长激素的指导下起作用。Xiao Tian Wang从大鼠滑膜内肌腱的外植体培养物中获得的肌腱细胞用含有PDGF互补脱氧核糖核酸(cDNA)的质粒和脂质体处理12小时,然后再培养6天,通过使用逆转录聚合酶链式反应(RT-PCR)来评估基因转移的效率,通过RT-PCR产物的定量分析确定I型胶原基因的表达。得出结论外源性PDGF基因可以有效地转移到滑膜内肌腱细胞中,并且转移显着增加了PDGF和I型胶原基因的表达。PDGF 基因的转移可能提供一种有效促进滑膜内屈肌腱愈合的新方法。这些发现保证了未来的体内研究,以测试基因疗法促进屈肌腱愈合的有效性 [59]。

2.6. 胰岛素样生长因子1 (IGF-1)

胰岛素样生长因子I的作用有多个方面,其中最重要的一个是调节生长激素活性,另一个是刺激动物和人类来源的骨细胞、腱细胞等多种细胞的增殖 [60]。IGF-1在愈合过程的不同阶段都是活跃的,IGF-I已被证明在许多动物肌腱愈合模型的早期炎症阶段高表达,与间充质干细胞共同作用有助于增加胶原的产生,更重要的是似乎有助于成纤维细胞的增殖和迁移 [34]。此外有研究表明在肌腱损伤的早期,MSC参与肌腱修复过程中,IGF-1从属于转化生长因子-β [18],但尚且缺乏明确的实验证据。因为IGF-1是一种外源性的工程生长因子,安全性尚得不到确切的保证,因此尽管已被广泛用于基础科学研究,但它目前还没有被批准用于人体 [61]。Alexander Scott发现在跟腱受损模型的猪模型中,在体外培养的猪跟腱细胞(ATC)施用Igf-1发现IGF-I激活ATC中促生存PKB通路的能力被LY294002抑制,表明PI3K在ATC对IGF-I的反应中的重要性。缺氧诱导的细胞死亡主要是凋亡,并且可以通过促生存的IGF-I信号传导来预防。这种机制可能有助于IGF-I对肌腱的有益作用 [62]。胰岛素样生长因子I与胰岛素保持着密切的关系,二者是从祖先的胰岛素样基因通过复制进化而来的 [63]。因此,可以考虑将胰岛素这种由食品和药物管理局批准的人类使用的内源性激素作为一种替代选择,这种设想目前的实验结果支持比较稀少。

3. 结论

人体肌腱的愈合分为5个阶段:损伤早期、炎症期、增殖期、修复期和重塑期 [34]。影响肌腱愈合的因素可以分为内外两方面,内源性因素主要为成纤维细胞的活动,肌腱和滑膜损伤处的血供 [50];外源性因素主要为外源性成纤维细胞的内生长和外源性血管侵入 [64]。尽管有大量的实验证实MSCs在肌腱损伤修复中发挥重要作用,但MSC的获取受到生产成本高和先进治疗药物产品相关的管理问题的限制 [65]。此外有个问题非常值得思考,既然间充质干细胞和上文所述细胞因子都是促进肌腱愈合所必需的,那么是不是可以将整个骨髓细胞部分移植到切断的肌腱中,从而得到比单独应用间充质干细胞及单独应用上述细胞因子更为有效的治疗手段,但是这种做法的一个很大的缺点是其组成的可变性 [57],由于不同的制备方案和患者的差异,导致了生长因子组成和释放方面的不同影响 [66],因此,临床实验出现了混合结果 [67]。目前这方面的研究还比较少,尚不能得到可靠的结论值得进一步探索。

NOTES

*通讯作者Email: 15106722107@163.com

参考文献

[1] 张承昊, 李棋, 唐新, 李箭. 促进腱-骨愈合方法的研究进展[J]. 中国修复重建外科杂志, 2015, 29(7): 912-916.
[2] Jenkins, D.H. and McKibbin, B. (1980) The Role of Flexible Carbon-Fibre Implants as Tendon and Ligament Substitutes in Clinical Practice. A Preliminary Report. The Journal of Bone and Joint Surgery. British, 62-B, 497-499.
https://doi.org/10.1302/0301-620X.62B4.7430232
[3] 蔡荣辉, 刘康. 骨形态发生蛋白12诱导骨髓间充质干细胞构建组织工程肌腱[J]. 中国组织工程研究, 2013, 17(27): 4941-4950.
[4] Qiu, G., Wang, P., Li, G., Shi, Z., Weir, M.D., Sun, J., Song, Y., Wang, J., Xu, H.H. and Zhao, L. (2016) Minipig-BMSCs Combined with a Self-Setting Calcium Phosphate Paste for Bone Tissue Engineering. Molecular Biotechnology, 58, 748-756.
https://doi.org/10.1007/s12033-016-9974-6
[5] Murphy, M.B., Moncivais, K. and Caplan, A.I. (2013) Mesen-chymal Stem Cells: Environmentally Responsive Therapeutics for Regenerative Medicine. Experimental & Molecular Medicine, 45, e54.
https://doi.org/10.1038/emm.2013.94
[6] Teng, C., Zhou, C., Xu, D. and Bi, F. (2016) Combination of Plate-let-Rich Plasma and Bone Marrow Mesenchymal Stem Cells Enhances Tendon-Bone Healing in a Rabbit Model of Ante-rior Cruciate Ligament Reconstruction. Journal of Orthopaedic Surgery and Research, 11, Article No. 96.
https://doi.org/10.1186/s13018-016-0433-7
[7] Usuelli, F.G., Grassi, M., Maccario, C., Vigano, M., Lanfranchi, L., Alfieri Montrasio, U. and de Girolamo, L. (2018) Intratendinous Adipose-Derived Stromal Vascular Fraction (SVF) Injection Provides a Safe, Efficacious Treatment for Achilles Tendinopathy: Results of a Randomized Controlled Clinical Trial at a 6-Month Follow-Up. Knee Surgery, Sports Traumatology, Arthroscopy, 26, 2000-2010.
https://doi.org/10.1007/s00167-017-4479-9
[8] Pelled, G., Snedeker, J.G., Ben-Arav, A., Rigozzi, S., Zilberman, Y., Kimelman-Bleich, N., Gazit, Z., Müller, R. and Gazit, D. (2012) Smad8/BMP2-Engineered Mesenchymal Stem Cells Induce Accelerated Recovery of the Biomechanical Properties of the Achilles Tendon. Journal of Orthopaedic Research, 30, 1932-1939.
https://doi.org/10.1002/jor.22167
[9] 王紫横, 任逸众. 不同细胞因子对诱导间充质干细胞向韧带方向分化影响的研究进展[J]. 生物骨科材料与临床研究, 2015, 12(6): 68-71+75.
[10] Bolt, P., Clerk, A.N., Luu, H.H., Kang, Q., Kummer, J.L., Deng, Z.L., Olson, K., Primus, F., Montag, A.G., He, T.C., et al. (2007) BMP-14 Gene Therapy In-creases Tendon Tensile Strength in a Rat Model of Achilles Tendon Injury. The Journal of Bone & Joint Surgery, 89, 1315-1320.
https://doi.org/10.2106/JBJS.F.00257
[11] Barsby, T. and Guest, D. (2013) Transforming Growth Factor Beta3 Promotes Tendon Differentiation of Equine Embryo-Derived Stem Cells. Tissue Engineering Part A, 19, 2156-2165.
https://doi.org/10.1089/ten.tea.2012.0372
[12] Halper, J. (2014) Advances in the Use of Growth Fac-tors for Treatment of Disorders of Soft Tissues. In: Progress in Heritable Soft Connective Tissue Diseases. Advances in Experimental Medicine and Biology, Vol. 802, Springer, Dordrecht, 59-76.
https://doi.org/10.1007/978-94-007-7893-1_5
[13] Yin, Z., Guo, J., Wu, T.Y., Chen, X., Xu, L.L., Lin, S.E., Sun, Y.X., Chan, K.M., Ouyang, H. and Li, G. (2016) Stepwise Differentiation of Mesenchymal Stem Cells Augments Ten-don-Like Tissue Formation and Defect Repair in Vivo. Stem Cells Translational Medicine, 5, 1106-1116.
https://doi.org/10.5966/sctm.2015-0215
[14] Halper, J. (2010) Growth Factors as Active Participants in Carcino-genesis: A Perspective. Veterinary Pathology, 47, 77-97.
https://doi.org/10.1177/0300985809352981
[15] Burch, M.L., Zheng, W. and Little, P.J. (2011) Smad Linker Region Phosphorylation in the Regulation of Extracellular Matrix Synthesis. Cellular and Molecular Life Sciences, 68, 97-107.
https://doi.org/10.1007/s00018-010-0514-4
[16] Arimura, H., Shukunami, C., Tokunaga, T., Karasugi, T., Oka-moto, N., Taniwaki, T., Sakamoto, H., Mizuta, H. and Hiraki, Y. (2017) TGF-β1 Improves Biomechanical Strength by Extracellular Matrix Accumulation without Increasing the Number of Tenogenic Lineage Cells in a Rat Rotator Cuff Re-pair Model. The American Journal of Sports Medicine, 45, 2394-2404.
https://doi.org/10.1177/0363546517707940
[17] Theodossiou, S.K., Tokle, J. and Schiele, N.R. (2019) TGFβ2-Induced Tenogenesis Impacts Cadherin and Connexin Cell-Cell Junction Proteins in Mesenchymal Stem Cells. Biochemical and Biophysical Research Communications, 508, 889-893.
https://doi.org/10.1016/j.bbrc.2018.12.023
[18] Perucca Orfei, C., Viganò, M., Pearson, J.R., Colombini, A., De Luca, P., Ragni, E., Santos-Ruiz, L. and de Girolamo, L. (2019) In Vitro Induction of Tendon-Specific Markers in Ten-don Cells, Adipose- and Bone Marrow-Derived Stem Cells is Dependent on TGFβ3, BMP-12 and Ascorbic Acid Stim-ulation. International Journal of Molecular Sciences, 20, Article No. 149.
https://doi.org/10.3390/ijms20010149
[19] Melzer, M., Schubert, S., Müller, S.F., Geyer, J., Hagen, A., Niebert, S. and Burk, J. (2021) Rho/ROCK Inhibition Promotes TGF-β3-Induced Tenogenic Differentiation in Mesenchymal Stro-mal Cells. Stem Cells International, 2021, Article ID: 8284690.
https://doi.org/10.1155/2021/8284690
[20] Walsh, D.W., Godson, C., Brazil, D.P. and Martin, F. (2010) Extracellular BMP-Antagonist Regulation in Development and Disease: Tied up in Knots. Trends in Cell Biology, 20, 244-256.
https://doi.org/10.1016/j.tcb.2010.01.008
[21] Alexander, S.P., Benson, H.E., Faccenda, E., Pawson, A.J., Shar-man, J.L., Spedding, M., Peters, J.A. and Harmar, A.J. (2013) The Concise Guide to PHARMACOLOGY 2013/14: Catalytic Receptors. British Journal of Pharmacology, 170, 1676-1705.
https://doi.org/10.1111/bph.12449
[22] Ducy, P. and Karsenty, G. (2000) The Family of Bone Morphogenetic Proteins. Kidney International, 57, 2207-2214.
https://doi.org/10.1046/j.1523-1755.2000.00081.x
[23] Sakou, T. (1998) Bone Morphogenetic Proteins: From Basic Studies to Clinical Approaches. Bone, 22, 591-603.
https://doi.org/10.1016/S8756-3282(98)00053-2
[24] Morita, W., Snelling, S.J.B., Wheway, K., Watkins, B., Ap-pleton, L., Murphy, R.J., Carr, A.J. and Dakin, S.G. (2021) Comparison of Cellular Responses to TGF-β1 and BMP-2 between Healthy and Torn Tendons. The American Journal of Sports Medicine, 49, 1892-1903.
https://doi.org/10.1177/03635465211011158
[25] Constam, D.B. and Robertson, E.J. (1999) Regulation of Bone Morphogenetic Protein Activity by Pro Domains and Proprotein Convertases. Journal of Cell Biology, 144, 139-149.
https://doi.org/10.1083/jcb.144.1.139
[26] Han, L., Hu, Y.G., Jin, B., Xu, S.C., Zheng, X. and Fang, W.L. (2019) Sustained BMP-2 Release and Platelet Rich Fibrin Synergistically Promote Tendon-Bone Healing after Anterior Cruciate Ligament Reconstruction in Rat. European Review for Medical and Pharmacological Sciences, 23, 8705-8712.
[27] Kovacevic, D. and Rodeo, S.A. (2008) Biological Augmentation of Rotator Cuff Tendon Repair. Clin-ical Orthopaedics and Related Research, 466, 622-633.
https://doi.org/10.1007/s11999-007-0112-4
[28] Shen, H., Gelberman, R.H., Silva, M.J., Sakiyama-Elbert, S.E. and Thomopoulos, S. (2013) BMP12 Induces tenogenic Differenti-ation of Adipose-Derived Stromal Cells. PLOS ONE, 8, e77613.
https://doi.org/10.1371/journal.pone.0077613
[29] Chen, P., Cui, L., Chen, G., You, T., Li, W., Zuo, J., Wang, C., Zhang, W. and Jiang, C. (2019) The Application of BMP-12-Overexpressing Mesenchymal Stem Cells Loaded 3D-Printed PLGA Scaffolds in Rabbit Rotator Cuff Repair. International Journal of Biological Macromolecules, 138, 79-88.
https://doi.org/10.1016/j.ijbiomac.2019.07.041
[30] Gelberman, R.H., Linderman, S.W., Jayaram, R., Dikina, A.D., Sakiyama-Elbert, S., Alsberg, E., Thomopoulos, S. and Shen, H. (2017) Combined Administration of ASCs and BMP-12 Promotes an M2 Macrophage Phenotype and Enhances Tendon Healing. Clinical Orthopaedics and Related Research, 475, 2318-2331.
https://doi.org/10.1007/s11999-017-5369-7
[31] Eliasson, P., Fahlgren, A. and Aspenberg, P. (2008) Mechanical Load and BMP Signaling during Tendon Repair: A Role for Follistatin? Clinical Orthopaedics and Related Research, 466, 1592-1597.
https://doi.org/10.1007/s11999-008-0253-0
[32] 尹良军, 罗小辑, 黄伟, 陈亮, 胡宁, 何百成, 罗进勇, 左国伟, 邓忠良. 大鼠肌腱愈合过程中BMP-12、BMP-13和BMP-14基因表达水平的变化[J]. 重庆医学, 2012, 41(15): 1479-1481.
[33] Lamplot, J.D., Angeline, M., Angeles, J., Beederman, M., Wagner, E., Rastegar, F., Scott, B., Skjong, C., Mass, D., Kang, R., et al. (2014) Distinct Effects of Platelet-Rich Plasma and BMP13 on Rotator Cuff Tendon Injury Healing in a Rat Model. The American Journal of Sports Medicine, 42, 2877-2887.
https://doi.org/10.1177/0363546514547171
[34] Molloy, T., Wang, Y. and Murrell, G. (2003) The Roles of Growth Factors in Tendon and Ligament Healing. Sports Medicine, 33, 381-394.
https://doi.org/10.2165/00007256-200333050-00004
[35] Plouët, J., Schilling, J. and Gospodarowicz, D. (1989) Isolation and Characterization of a Newly Identified Endothelial Cell Mitogen Produced by AtT-20 Cells. The EMBO Journal, 8, 3801-3806.
https://doi.org/10.1002/j.1460-2075.1989.tb08557.x
[36] Yu, P.J., Ferrari, G., Galloway, A.C., Mignatti, P. and Pintucci, G. (2007) Basic Fibroblast Growth Factor (FGF-2): The High Molecular Weight Forms Come of Age. Journal of Cellular Biochemistry, 100, 1100-1108.
https://doi.org/10.1002/jcb.21116
[37] Benington, L., Rajan, G., Locher, C. and Lim, L.Y. (2020) Fibroblast Growth Factor 2—A Review of Stabilisation Approaches for Clinical Applications. Pharmaceutics, 12, Article No. 508.
https://doi.org/10.3390/pharmaceutics12060508
[38] Zhang, J., Liu, Z., Li, Y., You, Q., Yang, J., Jin, Y., Zou, G., Tang, J., Ge, Z. and Liu, Y. (2020) FGF-2-Induced Human Amniotic Mesenchymal Stem Cells Seeded on a Human Acellular Amniotic Membrane Scaffold Accelerated Tendon-to-Bone Healing in a Rabbit Extra-Articular Model. Stem Cells International, 2020, Article ID: 4701476.
https://doi.org/10.1155/2020/4701476
[39] Cai, T.Y., Zhu, W., Chen, X.S., Zhou, S.Y., Jia, L.S. and Sun, Y.Q. (2013) Fibroblast Growth Factor 2 Induces Mesenchymal Stem Cells to Differentiate into Tenocytes through the MAPK Pathway. Molecular Medicine Reports, 8, 1323-1328.
https://doi.org/10.3892/mmr.2013.1668
[40] Zhang, J., Yuan, T., Zheng, N., Zhou, Y., Hogan, M.V. and Wang, J.H. (2017) The Combined Use of Kartogenin and Platelet-Rich Plas-ma Promotes Fibrocartilage Formation in the Wounded Rat Achilles Tendon Entheses. Bone & Joint Research, 6, 231-244.
https://doi.org/10.1302/2046-3758.64.BJR-2017-0268.R1
[41] Chan, B.P., Fu, S., Qin, L., Lee, K., Rolf, C.G. and Chan, K. (2000) Effects of Basic Fibroblast Growth Factor (bFGF) on Early Stages of Tendon Healing: A Rat Patellar Tendon Model. Acta Orthopaedica Scandinavica, 71, 513-518.
https://doi.org/10.1080/000164700317381234
[42] Kraus, T.M., Imhoff, F.B., Wexel, G., Wolf, A., Hirsch, D., Lenz, L., Stöckle, U., Buchmann, S., Tischer, T., Imhoff, A.B., et al. (2014) Stem Cells and Basic Fibroblast Growth Factor Failed to Improve Tendon Healing: An in Vivo Study Using Lentiviral Gene Transfer in a Rat Model. The Journal of Bone & Joint Surgery, 96, 761-769.
https://doi.org/10.2106/JBJS.L.01794
[43] Huang, A.H., Watson, S.S., Wang, L., Baker, B.M., Akiyama, H., Brigande, J.V. and Schweitzer, R. (2019) Requirement for Scleraxis in the Recruitment of Mesenchymal Progenitors during Embryonic Tendon Elongation. Development, 146, dev182782.
https://doi.org/10.1242/dev.182782
[44] Dabrowski, B., Swieszkowski, W., Godlinski, D. and Kurzydlowski, K.J. (2010) Highly Porous Titanium Scaffolds for Orthopaedic Applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 95, 53-61.
https://doi.org/10.1002/jbm.b.31682
[45] Viganò, M., Lugano, G., Perucca Orfei, C., Menon, A., Ragni, E., Co-lombini, A., De Luca, P., Randelli, P. and de Girolamo, L. (2019) Autologous Microfragmented Adipose Tissue Reduces the Catabolic and Fibrosis Response in an In Vitro Model of Tendon Cell Inflammation. Stem Cells International, 2019, Article ID: 5620286.
https://doi.org/10.1155/2019/5620286
[46] Mao, W.F., Wu, Y.F., Yang, Q.Q., Zhou, Y.L., Wang, X.T., Liu, P.Y. and Tang, J.B. (2017) Modulation of Digital Flexor Tendon Healing by Vascular Endothelial Growth Factor Gene Transfection in a Chicken Model. Gene Therapy, 24, 234-240.
https://doi.org/10.1038/gt.2017.12
[47] Kaux, J.F., Janssen, L., Drion, P., Nusgens, B., Libertiaux, V., Pascon, F., Heyeres, A., Hoffmann, A., Lambert, C., Le Goff, C., et al. (2014) Vascular Endothelial Growth Factor-111 (VEGF-111) and Tendon Healing: Preliminary Results in a Rat Model of Tendon Injury. Muscle, Ligaments and Tendons Journal, 4, 24-28.
[48] Tang, J.B., Wu, Y.F., Cao, Y., Chen, C.H., Zhou, Y.L., Avanessian, B., Shimada, M., Wang, X.T. and Liu, P.Y. (2016) Basic FGF or VEGF Gene Therapy Corrects Insufficiency in the Intrinsic Healing Capacity of Tendons. Scientific Reports, 6, Article No.20643.
https://doi.org/10.1038/srep20643
[49] Huang, Y., Pan, M., Shu, H., He, B., Zhang, F. and Sun, L. (2020) Vascu-lar Endothelial Growth Factor Enhances Tendon-Bone Healing by Activating Yes-Associated Protein for Angiogenesis Induction and Rotator Cuff Reconstruction in Rats. Journal of Cellular Biochemistry, 121, 2343-2353.
https://doi.org/10.1002/jcb.29457
[50] Zhang, F., Liu, H., Stile, F., Lei, M.P., Pang, Y., Oswald, T.M., Beck, J., Dorsett-Martin, W. and Lineaweaver, W.C. (2003) Effect of Vascular Endothelial Growth Factor on Rat Achilles Tendon Healing. Plastic and Reconstructive Surgery, 112, 1613-1619.
https://doi.org/10.1097/01.PRS.0000086772.72535.A4
[51] Okamoto, N., Kushida, T., Oe, K., Umeda, M., Ikeha-ra, S. and Iida, H. (2010) Treating Achilles Tendon Rupture in Rats with Bone-Marrow-Cell Transplantation Therapy. The Journal of Bone & Joint Surgery, 92, 2776-2784.
https://doi.org/10.2106/JBJS.I.01325
[52] Yuksel, S., Guleç, M.A., Gultekin, M.Z, Adanır, O., Caglar, A., Bey-temur, O., Onur Küçükyıldırım, B., Avcı, A., Subaşı, C., İnci, Ç., et al. (2016) Comparison of the Early Period Effects of Bone Marrow-Derived Mesenchymal Stem Cells and Platelet-Rich Plasma on the Achilles Tendon Ruptures in Rats. Connective Tissue Research, 57, 360-373.
https://doi.org/10.1080/03008207.2016.1189909
[53] Cui, J., Chen, Z. and Wu, W. (2019) Expression of TGF-β1 and VEGF in Patients with Achilles Tendon Rupture and the Clinical Efficacy. Experimental and Therapeutic Medicine, 18, 3502-3508.
https://doi.org/10.3892/etm.2019.7968
[54] Yang, Q.Q., Shao, Y.X., Zhang, L.Z. and Zhou, Y.L. (2018) Therapeutic Strategies for Flexor Tendon Healing by Nanoparticle-Mediated Co-Delivery of bFGF and VEGFA Genes. Colloids and Surfaces B: Biointerfaces, 164, 165-176.
https://doi.org/10.1016/j.colsurfb.2018.01.031
[55] Anitua, E., Sanchez, M., Nurden, A.T., Zalduendo, M., de la Fuente, M., Azofra, J. and Andia, I. (2007) Reciprocal Actions of Platelet-Secreted TGF-β1 on the Production of VEGF and HGF by Human Tendon Cells. Plastic and Reconstructive Surgery, 119, 950-959.
https://doi.org/10.1097/01.prs.0000255543.43695.1d
[56] Inaba, T., Shimano, H., Gotoda, T., Harada, K., Shimada, M., Ohsuga, J., Watanabe, Y., Kawamura, M., Yazaki, Y., Yamada, N., et al. (1993) Expression of Platelet-Derived Growth Factor β Receptor on Human Monocyte-Derived Macrophages and Effects of Platelet-Derived Growth Factor BB Dimer on the Cellular Function. The Journal of Biological Chemistry, 268, 24353-24360.
https://doi.org/10.1016/S0021-9258(20)80533-X
[57] Evrova, O. and Buschmann, J. (2017) In Vitro and in Vivo Effects of PDGF-BB Delivery Strategies on Tendon Healing: A Review. European Cells and Materials, 34, 15-39.
https://doi.org/10.22203/eCM.v034a02
[58] Meier Bürgisser, G., Evrova, O., Calcagni, M., Scalera, C., Giovanoli, P. and Buschmann, J. (2020) Impact of PDGF-BB on Cellular Distribution and Extracellular Matrix in the Healing Rab-bit Achilles Tendon Three Weeks Post-Operation. FEBS Open Bio, 10, 327-337.
https://doi.org/10.1002/2211-5463.12736
[59] Wang, X.T., Liu, P.Y. and Tang, J.B. (2004) Tendon Healing in Vitro: Genetic Modification of Tenocytes with Exogenous PDGF Gene and Promotion of Collagen Gene Expression. The Journal of Hand Surgery, 29, 884-890.
https://doi.org/10.1016/j.jhsa.2004.05.016
[60] Tsuzaki, M., Brigman, B.E., Yamamoto, J., Lawrence, W.T., Sim-mons, J.G., Mohapatra, N.K., Lund, P.K., Van Wyk, J., Hannafin, J.A., Bhargava, M.M., et al. (2000) Insulin-Like Growth Factor-I Is Expressed by Avian Flexor Tendon Cells. Journal of Orthopaedic Research, 18, 546-556.
https://doi.org/10.1002/jor.1100180406
[61] Mazzocca, A.D., McCarthy, M.B., Chowaniec, D., Cote, M.P., Jud-son, C.H., Apostolakos, J., Solovyova, O., Beitzel, K. and Arciero, R.A. (2011) Bone Marrow-Derived Mesenchymal Stem Cells Obtained during Arthroscopic Rotator Cuff Repair Surgery Show Potential for Tendon Cell Differentiation after Treatment with Insulin. Arthroscopy, 27, 1459-1471.
https://doi.org/10.1016/j.arthro.2011.06.029
[62] Scott, A., Khan, K.M. and Duronio, V. (2005) IGF-I Activates PKB and Prevents Anoxic Apoptosis in Achilles Tendon Cells. Journal of Orthopaedic Research, 23, 1219-1225.
https://doi.org/10.1016/j.orthres.2004.12.011
[63] Kelley, K.M., Schmidt, K.E., Berg, L., Sak, K., Galima, M.M., Gillespie, C., Balogh, L., Hawayek, A., Reyes, J.A. and Jamison, M. (2002) Comparative Endocrinology of the Insulin-Like Growth Factor-Binding Protein. Journal of Endocrinology, 175, 3-18.
https://doi.org/10.1677/joe.0.1750003
[64] Platt, M.A. (2005) Tendon Repair and Healing. Clinics in Podia-tric Medicine and Surgery, 22, 553-560.
https://doi.org/10.1016/j.cpm.2005.08.001
[65] Guess, A.J., Daneault, B., Wang, R., Bradbury, H., La Perle, K.M.D., Fitch, J., Hedrick, S.L., Hamelberg, E., Astbury, C., White, P., et al. (2017) Safety Profile of Good Manufac-turing Practice Manufactured Interferon γ-Primed Mesenchymal Stem/Stromal Cells for Clinical Trials. Stem Cells Translational Medicine, 6, 1868-1879.
https://doi.org/10.1002/sctm.16-0485
[66] Marques, L.F., Stessuk, T., Camargo, I.C., Sabeh Junior, N., dos Santos, L. and Ribeiro-Paes, J.T. (2015) Platelet-Rich Plasma (PRP): Methodological Aspects and Clinical Applications. Platelets, 26, 101-113.
https://doi.org/10.3109/09537104.2014.881991
[67] Caliari, S.R. and Harley, B.A. (2011) The Effect of Aniso-tropic Collagen-GAG Scaffolds and Growth Factor Supplementation on Tendon Cell Recruitment, Alignment, and Met-abolic Activity. Biomaterials, 32, 5330-5340.
https://doi.org/10.1016/j.biomaterials.2011.04.021