醋酸钠对氧糖剥夺损伤后PC12的影响
Effect of Sodiun Acetate on PC12 Injury after Oxygen-Glucose Deprivation
DOI: 10.12677/ACM.2022.12101386, PDF, HTML, XML, 下载: 249  浏览: 357  国家自然科学基金支持
作者: 张雅瑞:青岛大学基础医学院病理学与病理生理学,山东 青岛;侯庆明*:青岛大学基础医学院病理学与病理生理学,山东 青岛;青岛大学神经再生与康复研究院,山东 青岛
关键词: 氧糖剥夺醋酸钠ATF-6神经保护Oxygen-Glucose Deprivation Sodium Acetate ATF-6 Neuroprotection
摘要: 目的:通过OGD/R处理PC12细胞,证明NaAc在人类缺血性脑卒中中的作用和意义。方法:OGD模型的建立:用无氧糖培养液处理PC12细胞作为脑缺血再灌注损伤的体外模型;使用CCK-8比色法检测OGD损伤后NaAc对PC12细胞的保护状况;使用免疫印迹法Western blot检测OGD损伤后的NaAc对PC12中ATF-6蛋白水平的影响。结果:OGD损伤后,补充浓度为6 mM的NaAc可增加PC12的存活率(n = 6, F = 70.10, P < 0.05);OGD损伤后,PC12中ATF-6的表达升高(t = 2.98, P < 0.05);向正常的PC12细胞补充NaAc后ATF-6表达降低(t = 3.11, P < 0.05);在损伤后的PC12细胞中添加浓度为6 mM的NaAc后,ATF-6的表达水平降低(n = 6, F = 2.09, P < 0.05)。结论:OGD损伤后,PC12中添加浓度为6 mM的NaAc是通过抑制ATF-6的表达来发挥神经保护作用。
Abstract: Objective: The purpose of investigating is demonstrated the effect and significance of NaAc in hu-man ischemic stroke by OGD/R treatment of PC12 cells. Methods: Establishment of OGD model: treatment of PC12 cells with Anaerobic sugar culture solution culture solution as an in vitro model of cerebral ischemia reperfusion injury; The protective status of NaAc on PC12 cells after OGD injury was detected using CCK-8 colorimetry; Effects of NaAc after OGD injury on ATF-6 protein levels in PC12 were detected using Western blotting methods. Results: After OGD injury, NaAc 6 mM sup-plementation increased PC12 survival (n = 6, F = 70.10, P < 0.05) and increased ATF-6 expression in PC12 (t = 2.98, P < 0.05). Supplementation of NaAc 6 mM to normal PC12 reduced the expression of ATF-6 (t = 3.11, P < 0.05). On the contrary, after OGD Supplementation of NaAc 6 mM to PC12 re-duced the expression of ATF-6 (n = 6, F = 20.09, P < 0.05). Conclusion: After OGD injury, intra-PC12 NaAc 6 mM supplementation exerts neuroprotective effects by inhibiting the expression of ATF-6 signaling pathway.
文章引用:张雅瑞, 侯庆明. 醋酸钠对氧糖剥夺损伤后PC12的影响[J]. 临床医学进展, 2022, 12(10): 9582-9588. https://doi.org/10.12677/ACM.2022.12101386

1. 引言

脑卒中(stroke)俗称中风,包括缺血性脑卒中和出血性脑卒中,是全球死亡和永久性障碍的主要原因 [1]。在缺血条件下,由于氧的中断和糖原的消耗非常显著而引起神经功能的永久性缺陷,甚至脑细胞死亡 [2]。广泛的细胞死亡和炎症反应是脑卒中病理学的两个突出方面 [3]。细胞代谢紊乱可引起内质网应激等一系列分子的变化 [4] [5]。研究发现,脑卒中后小鼠脑组织中有显著促进炎症和内质网(Endoplasmic Reticulum, ER)应激的相关分子 [6] [7]。激活转录因子-6即(ATF-6)是内质网状应激的一种相关蛋白质,也是内质网状膜贯通蛋白质 [8] [9]。研究表明,药物可通过ATF-6抑制炎症和内质网状应激,显著减轻中风后脑损伤。醋酸钠又叫乙酸钠(NaAc)作为一种短链脂肪酸发挥着重要的作用。醋酸盐的化学式为C2H3O的一个小分子,在整个生物系统中普遍存在,参与了包含多种代谢途径的许多生化反应,已成为细胞代谢的关键替代燃料。醋酸盐生产的三个主要代谢途径,包括:1) 乙酰辅酶A途径;2) 甘氨酸合成酶依赖途径;3) 还原柠檬酸循环。由于乙酰辅酶A在原核生物和真核生物中都有表达,因此乙酰辅酶A途径被认为是生产醋酸盐的最原始的途径。正常情况下,人血清中的乙酸盐水平仅为0.2 mM左右,而在缺氧或葡萄糖缺乏状态下,乙酸盐可能成为乙酰辅酶A重要来源。补充乙酸盐可能被证明是一种新的、有效的胶质瘤治疗途径。更有文献报道含有乙酸酯的短链脂肪酸显示出降低炎症的作用 [10]。但NaAc的药物价值对脑卒中实验模型机制的研究较少。因此,本研究旨在探讨醋酸钠作为一种新的药物,能否通过氧糖剥夺(OGD)在PC12损伤后ATF-6的表达发挥神经保护作用。

2. 材料与方法

2.1. 实验材料

NaAc购自上海艾比化学试剂有限公司;PC12细胞购自中国科学院上海生命科学研究所;细胞培养试剂DMEM-H-Glucose、青霉素–链霉素(100×)全部从Gibico公司购买;胎牛血清是从四季青公司购买的;CCK-8购自北京Bioss生物技术有限公司;多功能酶标器购自美国Molecular Devices公司;ATF-6是Affinity抗体公司购买的;β-actin从武汉三鹰生物技术公司购买;二抗在北京索莱宝科技有限公司购买;PMSF、蛋白磷酸酶抑制剂(All-inone, 100×)从索莱宝(北京)科技有限公司购买;RIPA分解液购自上海碧云天生物技术有限公司。

2.2. PC12细胞培养

将含有PC12细胞的冻存管从液氮罐取出后立即转移到37℃水浴锅中至完全融化,吸取冻存管中的PC12细胞悬液并转移到含有5 mL完全培养基(DMEM培养基 + 体积分数0.10胎牛血清 + 体积分数0.01青链霉素混合液)的离心管中。然后用吸管吹打混匀后以1000 r/min离心5 min,弃掉上清液。再次与5 mL完全培养基混匀,接种到培养瓶中,在37℃、含体积分数0.05 CO2的培养箱中培养。每2~3 d传代1次,传到第3代且细胞融合度达到90%时进行下一步实验。

2.3. OGD/再灌注损伤模型制备

PC12细胞培养3d后,以磷酸盐缓冲液PBS轻轻冲洗2次,Control组加入有糖细胞外液,ODG组加入无糖细胞外液。然后将OGD组细胞置于37℃厌氧箱中低氧处理1 h (气体参数设置为体积分数0.01 O2 + 体积分数0.94N2 + 体积分数0.05 CO2)将Conrtol组PC12细胞置于正常培养箱中,氧处理结束后,将各组培养液换为等体积无血清培养液。

2.4. 分组及处理

为了研究NaAc对OGD损伤后PC12细胞存活率的影响,实验将培养的PC12分成Control组(正常的培养液)、OGD组(无糖无氧的培养液处理)、OGD+NaAc组(无糖无氧的培养液中加入浓度为6 mM的NaAc);为了研究缺血再灌注损伤后PC12细胞中ATF-6蛋白量的变化,将实验分为Control组(DMSO处理组)、OGD/R 6 h组(氧糖剥夺复氧6 h);为研究NaAc对ATF-6在正常PC12细胞中表达的影响,将实验分成Control组(正常的培养液处理),NaAc组(6 mM浓度的NaAc);为了研究PC12细胞中NaAc的增加对OGD损伤后ATF-6表达量的影响,将实验分为Control组(正常的培养液处理)、OGD组(无糖无氧的培养液处理);OGD + NaAc组(无糖无氧的培养液加入6 mM浓度的NaAc)。各组蛋白含量的检测均在OGD复氧后6 h进行。

2.5. 免疫印迹法检测(Western Blotting)

各组蛋白于复氧后6小时提取,用RIPA裂解液在冰上裂解细胞,用BCA法测定相应蛋白浓度,配置浓缩胶和分离胶,每孔10 μg蛋白计算上样量,电泳后转膜至PVDF膜上,用5% (wt/vol)牛血清白蛋白或5% (wt/ol)脱脂干奶在TBST(含0.1%TBS Tween20)中封闭膜。在室温下孵育60分钟,在4℃下与ATF-6的一抗(比例为1:1000)孵育过夜,用TBST溶液清洗PVDF膜3次,每次10分钟,然后在室温下与HRP偶联的二抗孵育60分钟。用TBST溶液清洗PVDF膜3次,每次10分钟,用化学发光试剂检测抗原–抗体复合物。用Image J软件对蛋白条带进行半定量分析,实验重复3次取平均值。

2.6. CCK-8比色法

弃掉96孔板中的培养基,然后用PBS清洗一次细胞,每孔加入浓度为10%的CCK-8溶液(避免产生气泡),在培养箱中避光孵育4 h;使用酶标仪检测各孔在波长450 nm处的吸光度(A)值并进一步计算细胞存活率,OGD组细胞存活率(%) = OGD组/对照组 × 100%;OGD + NaAC组细胞存活率(%) = OGD + NaAC组/OGD组 × 100%。

2.7. 统计学处理

使用Graph Pad Prism8.0软件对所得数据结果进行统计学分析。计量数据以c ± s形式表示,多组比较采用单因素方差分析 [11],两独立样本均数的比较采用t检验,组间两项比较采用LSD-t检验。以P < 0.05为差异具有统计学意义。

3. 结果

3.1. NaAc对OGD损伤后PC12细胞存活的影响

OGD损伤及加入NaAc后,培养PC12细胞的存活变化见表1。各组PC12细胞中ATF-6的存活率有显著差异,(n = 6, F = 70.10, P < 0.05)与Control组相比,OGD组PC12细胞的存活率明显降低,差异具有统计学意义(tlsd = 10.89, p < 0.05);OGD + NaAc组的PC12细胞的存活率与Control组相比明显降低,差异具有统计学意义(tlsd = 6.40, p < 0.05);与OGD组相比,OGD + NaAc组PC12细胞的存活率明显升高,差异具有统计学意义,(tlsd = 6.04, p < 0.05)。

Table 1. The effect of NaAc on the survival of PC12 cells after OGD injury (n = 6, x/%, x ¯ ± s )

表1. NaAc对OGD损伤后PC12细胞存活的影响(n = 6, x/%, x ¯ ± s )

n = 6,x/%, x ¯ ± s *代表与Control组比较**代表与OGD组比较,P < 0.05。

3.2. OGD损伤后PC12细胞中ATF-6水平变化

Western blot检测结果表明,AFT-6在PC12细胞中内表达,并且在OGD损伤后的PC12细胞中ATF-6的表达增加。OGD/R 6 h组与Control组相比,ATF-6蛋白表达明显上升(t = 2.98, P < 0.05)。这些数据表明ATF-6介导了OGD后细胞的损伤。见图1

Figure 1. Western blot detection of changes in AFTF-6 protein levels within PC12 cells after OGD/R 6 h

图1. OGD/R 6 h后PC12细胞内AFTF-6蛋白水平变化的Western blot检测

3.3. 补充NaAc对正常PC12细胞中ATF-6表达的影响

在正常PC12细胞中加入NaAc 6 mM,Western blot检测结果表明,在培养相同时间的PC12细胞中,NaAc组ATF-6蛋白表达水平较Control组明显下降(t = 3.11, P < 0.05)。见图2。这些数据说明了NaAc可以使正常PC12细胞中的ATF-6表达量降低。

Figure 2. Western blot detection of the effect of NaAc on ATF-6 protein levels in normal PC12 cells

图2. NaAc对正常PC12细胞中ATF-6蛋白水平影响的Western blot检测

3.4. OGD损伤后补充NaAc对PC12细胞中ATF-6的表达的影响

在PC12细胞OGD 2 h后新培养基中加入NaAc 6 mM,于再灌注6小时后Western blot检测结果显示,各组PC12细胞中ATF-6的表达量有显著差异(n = 6, F = 20.09, P < 0.05);在OGD 6 h后,OGD组的ATF-6蛋白表达水平升高(tlsd = 6.33, P < 0.05);OGD + NaAc组的ATF-6蛋白表达水平与OGD组相比明显降低(tlsd = 2.94, P < 0.05);与Control组相比,OGD + NaAc组的ATF-6表达明显上升,差异具有统计学意义(tlsd = 3.39, P < 0.05)。见图3,说明了OGD损伤后ATF-6表达量升高,补充NaAc使PC12细胞内ATF-6表达量降低。

Figure 3. Western blot detection of the effect of adding NaAc on changes in ATF-6 protein levels within PC12 cells after OGD/R 6h

图3. OGD/R 6h后加入NaAc对PC12细胞内ATF-6蛋白水平变化影响的Western blot检测

4. 讨论

脑卒中是一种全球发病率高、致残率高、死亡率高的疾病,也是造成全球永久性致残和死亡的主要原因,但目前治疗水平仍面临巨大挑战 [12] [13]。缺血性脑卒中占其85%左右 [14],形成以神经元坏死为主的核心区及缺血半暗带 [15] [16]。半暗带内出现神经元代谢紊乱,同时伴有凋亡发生。细胞代谢紊乱可引起一系列分子变化,包括内质网应激障碍 [4] [5]。同时缺血区因突发糖氧供应而中断代谢紊乱,未折叠或错误折叠的蛋白质蓄积在内质网中,诱发内质网应激 [17] 和细胞稳态失衡,从而进一步引起组织和器官损伤 [18]。缺血性中风占绝大多数,发病时给很多家庭和社会造成了沉重的负担 [19]。因此,寻找脑缺血再灌注损伤后可能的内质网应激相关靶点,对寻找减轻脑损伤的药物具有重要意义。

越来越多的证据表明内质网应激在细胞存活过程中起着重要作用 [20] [21] [22]。内质网应激信号路径包括ATF-6、IRE1-α和PERK等路径。研究表明,脊髓损伤后大鼠神经元出现内质网应激,ATF-6表达升高,miR-211-5p直接靶向作用于ATF-6,缓解神经元凋亡和炎症 [23]。也有证据表明阿尔茨海默病患者神经元样细胞内质网应激相关蛋白ATF-6表达升高,草酸可通过下调ATF-6表达发挥细胞保护作用 [24]。提示ATF-6及其下游通路对细胞命运有很大影响。醋酸钠(NaAc)由不能消化的食品残渣和肠道内源性上皮源性粘液的厌氧发酵产生,NaAc作为短链脂肪酸,含有醋酸酯的短链脂肪酸显示出降低炎症的作用 [12] 在缺氧或葡萄糖缺乏状态下,醋酸盐可能成为乙酰辅酶A的重要来源,补充醋酸盐是一种新的、有效的胶质瘤治疗途径 [25]。显而易见,乙酸盐的补充增强了小鼠的抗应激能力 [26]。并且,NaAc通过上调p53通路来抑制肿瘤细胞的生存 [27],确认了OGD损伤后的NaAc对PC12细胞的影响。因此,补充NaAc可能成为缺血性脑卒中治疗的新靶点。

本研究采用PC12细胞培养后OGD体外模型,证明了NaAc对缺血再灌注损伤的作用机制。缺血再灌注损伤后,PC12细胞中ATF-6蛋白水平表达升高,补充NaAc抑制ATF-6表达,促进细胞存活。有文献报道,NaAc可以自由通过血脑屏障和细胞膜,增加蛋白质的乙酰化 [25]。补充NaAc还可能通过促进p53的表达发挥神经保护作用 [25] [28]。NaAc还具有抑制炎症、促进细胞自主代谢调节等多种作用 [29]。因此,NaAc可能通过抑制ATF-6的表达来抑制炎症和内质网应激,对脑缺血再灌注损伤起保护作用。

然而,本研究也存在一些局限性,首先,需要进一步研究与内质网应激相关分子ATF-6相关的下游效应因子或信号通路,如ATF-6/CHOP,ATF-6/AKT信号通路来验证OGD/R诱导的神经损伤。其次,将进一步开展神经元培养和建立体内模型等方法,采用多指标分析进一步证实NaAc对脑卒中的神经保护作用。综上所述,NaAc作为一种很有前途的治疗药物,在治疗脑卒中发挥着重要意义,后续将在动物模型中继续探讨。

基金项目

国家自然科学基金资助项目(8217051911)。

参考文献

[1] Saunders, D.H., Sanderson, M., Hayes, S., et al. (2020) Physical Fitness Training for Patients with Stroke. Stroke, 51, e299-e300.
https://doi.org/10.1161/STROKEAHA.120.030826
[2] Ma, Y., Nie, H., Chen, H., et al. (2015) NAD⁺/NADH Metabolism and NAD⁺-Dependent Enzymes in Cell Death and Ischemic Brain Injury: Current Advances and Therapeutic Implications. Current Medicinal Chemistry, 22, 1239-1247.
https://doi.org/10.2174/0929867322666150209154420
[3] Lu, Y.Y., Li, Z.Z., Jiang, D.S., et al. (2013) TRAF1 Is a Critical Regulator of Cerebral Ischaemia-Reperfusion Injury and Neuronal Death. Nature Communications, 4, Article No. 2852.
https://doi.org/10.1038/ncomms3852
[4] Pires Monteiro, S., Voogd, E., Muzzi, L., et al. (2021) Neu-roprotective Effect of Hypoxic Preconditioning and Neuronal Activation in a in Vitro Human Model of the Ischemic Pe-numbra. Journal of Neural Engineering, 18, Article ID: 036016.
https://doi.org/10.1088/1741-2552/abe68a
[5] Prentice, H., Gharibani, P.M., Ma, Z., et al. (2017) Neuroprotective Functions through Inhibition of ER Stress by Taurine or Taurine Combination Treatments in a Rat Stroke Model. Ad-vances in Experimental Medicine and Biology, 975, 193-205.
https://doi.org/10.1007/978-94-024-1079-2_17
[6] Ridder, D.A. and Schwaninger, M. (2009) NF-kappaB Sig-naling in Cerebral Ischemia. Neuroscience, 158, 995-1006.
https://doi.org/10.1016/j.neuroscience.2008.07.007
[7] Harari, O.A. and Liao, J.K. (2010) NF-κB and Innate Im-munity in Ischemic Stroke. Annals of the New York Academy of Sciences, 1207, 32-40.
https://doi.org/10.1111/j.1749-6632.2010.05735.x
[8] Burkewitz, K., Dutta, S., Kelley, C.A., et al. (2020) Atf-6 Regulates Lifespan through ER-Mitochondrial Calcium Homeostasis. Cell Reports, 32, Article ID: 108125.
https://doi.org/10.1016/j.celrep.2020.108125
[9] Ogata, S., Kameda, K., Kono, T., et al. (2019) Expressions of ATF6, XBP1, and GRP78 in Normal Tissue, Atypical Adenomatous Hyperplasia, and Adenocarcinoma of the Lung. Human Pathology, 83, 22-28.
https://doi.org/10.1016/j.humpath.2018.08.009
[10] Pandey, S.K., Yadav, S., Temre, M.K., et al. (2018) Tracking Acetate through a Journey of Living World: Evolution as Alternative Cellular Fuel with Potential for Application in Can-cer Therapeutics. Life Sciences, 215, 86-95.
https://doi.org/10.1016/j.lfs.2018.11.004
[11] Blagosklonny, M.V., An, W.G., Romanova, L.Y., et al. (1998) p53 Inhibits Hypoxia-Inducible Factor-Stimulated Transcription. The Journal of Biological Chemistry, 273, 11995-11998.
https://doi.org/10.1074/jbc.273.20.11995
[12] Markus, H.S., Brainin, M. and Fisher, M. (2020) Tracking the Global Burden of Stoke and Dementia: World Stroke Day 2020. International Journal of Stroke, 15, 817-818.
https://doi.org/10.1177/1747493020959186
[13] Vosler, P.S. and Chen, J. (2009) Potential Molecular Targets for Translational Stroke Research. Stroke, 40, S119-S120.
https://doi.org/10.1161/STROKEAHA.108.533109
[14] Feigin, V.L., Forouzanfar, M.H., Krishnamurthi, R., et al. (2014) Global and Regional Burden of Stroke during 1990-2010: Findings from the Global Burden of Disease Study 2010. The Lancet (London, England), 383, 245-254.
https://doi.org/10.1016/S0140-6736(13)61953-4
[15] Yang, S.H. and Liu, R. (2021) Four Decades of Ischemic Penumbra and Its Implication for Ischemic Stroke. Translational Stroke Research, 12, 937-945.
https://doi.org/10.1007/s12975-021-00916-2
[16] Uzdensky, A.B. (2020) Regulation of Apoptosis in the Ischemic Penumbra in the First Day Post-Stroke. Neural Regeneration Research, 15, 253-254.
https://doi.org/10.4103/1673-5374.265546
[17] Gupta, S., Biswas, J., Gupta, P., et al. (2019) Salubrinal Attenuates Nitric Oxide Mediated PERK:IRE1α: ATF-6 Signaling and DNA Damage in Neuronal Cells. Neurochemistry Interna-tional, 131, Article ID: 104581.
https://doi.org/10.1016/j.neuint.2019.104581
[18] Wu, F., Qiu, J., Fan, Y., et al. (2018) Apelin-13 Attenuates ER Stress-Mediated Neuronal Apoptosis by Activating Gα(i)/Gα(q)-CK2 Signaling in Ischemic Stroke. Experimental Neu-rology, 302, 136-144.
https://doi.org/10.1016/j.expneurol.2018.01.006
[19] Jin, W.Y., Lin, S.L., Hou, R.L., et al. (2016) Associations between Maternal Lipid Profile and Pregnancy Complications and Perinatal Outcomes: A Population-Based Study from China. BMC Pregnancy and Childbirth, 16, Article No. 60.
https://doi.org/10.1186/s12884-016-0852-9
[20] Fu, J., Peng, L., Wang, W., et al. (2019) Sodium Valproate Reduces Neuronal Apoptosis in Acute Pentylenetetrzole-Induced Seizures via Inhibiting ER Stress. Neurochemical Research, 44, 2517-2526.
https://doi.org/10.1007/s11064-019-02870-w
[21] Almanza, A., Carlesso, A., Chintha, C., et al. (2019) Endoplas-mic Reticulum Stress Signalling—From Basic Mechanisms to Clinical Applications. The FEBS Journal, 286, 241-278.
https://doi.org/10.1111/febs.14608
[22] Kong, F.J., Ma, L.L., Guo, J.J., et al. (2018) Endoplasmic Reticulum Stress/Autophagy Pathway Is Involved in Diabetes-Induced Neuronal Apoptosis and Cognitive Decline in Mice. Clinical Science (London, England: 1979), 132, 111-125.
https://doi.org/10.1042/CS20171432
[23] Zhang, H.-C., Piao, M., Guo, M., et al. (2020) MicroRNA-211-5p Attenuates Spinal Cord Injury via Targeting of Activating Transcription Factor 6. Tissue and Cell, 68, Article ID: 101459.
https://doi.org/10.1016/j.tice.2020.101459
[24] Li, X., Zhang, X., Xing, R., et al. (2021) Syringic Acid Demonstrates Promising Protective Effect against Tau Fibrillization and Cytotoxicity through Regulation of Endoplasmic Reticulum Stress-Mediated Pathway as a Prelude to Alzheimer’s Disease. Interna-tional Journal of Biological Macromolecules, 192, 491-497.
https://doi.org/10.1016/j.ijbiomac.2021.09.173
[25] Reisenauer, C.J., Bhatt, D.P., Mitteness, D.J., et al. (2011) Ac-etate Supplementation Attenuates Lipopolysaccharide- Induced Neuroinflammation. Journal of Neurochemistry, 117, 264-274.
https://doi.org/10.1111/j.1471-4159.2011.07198.x
[26] Huang, W., Hu, W., Cai, L., et al. (2021) Acetate Supple-mentation Produces Antidepressant-Like Effect via Enhanced Histone Acetylation. Journal of Affective Disorders, 281, 51-60.
https://doi.org/10.1016/j.jad.2020.11.121
[27] Pandey, S.K., Yadav, S., Goel, Y., et al. (2019) Cytotoxic Action of Acetate on Tumor Cells of Thymic Origin: Role of MCT-1, pH Homeostasis and Altered Cell Survival Regula-tion. Biochimie, 157, 1-9.
https://doi.org/10.1016/j.biochi.2018.10.022
[28] Suzuki, H., Tomida, A. and Tsuruo, T. (2001) Dephosphorylated Hypoxia-Inducible Factor 1alpha as a Mediator of p53-Dependent Apoptosis during Hypoxia. Oncogene, 20, 5779-5788.
https://doi.org/10.1038/sj.onc.1204742
[29] Bose, S., Ramesh, V. and Locasale, J.W. (2019) Acetate Metabolism in Physiology, Cancer, and Beyond. Trends in Cell Biology, 29, 695-703.
https://doi.org/10.1016/j.tcb.2019.05.005