特发性肺纤维化预后生物标志物的研究进展
Research Progress of Prognostic Biomarkers in Idiopathic Pulmonary Fibrosis
DOI: 10.12677/ACM.2022.12101384, PDF, HTML, XML, 下载: 186  浏览: 294 
作者: 任 静, 于文成*:青岛大学附属医院呼吸与危重症医学科,山东 青岛
关键词: 特发性肺纤维化生物标志物预后Idiopathic Pulmonary Fibrosis Biomarkers Prognosis
摘要: 特发性肺纤维化(IPF)是一种病因不明的慢性、进行性、纤维化性间质性肺疾病(ILD),其特征是肺部结构和功能的不可逆性丧失,导致患者呼吸困难,呼吸衰竭和过早死亡。它是特发性间质肺炎最常见的类型,同时预后也最差。目前,已从IPF患者的血液、肺泡灌洗液、支气管肺组织等生物组织样本中发现多种有价值的生物标志物,尤其是通过血液中获得,因其具有易取样、创伤小、成本低、可连续重复监测等优点,具有较大的临床应用前景。本文从基因组学、血清蛋白质学和血液细胞学三个方面对近年来发现的与IPF预后相关的生物标志物进行综述,旨在为临床工作中IPF患者的管理选择合适的生物标志物提供参考,并在疾病早期更方便、快速地识别IPF预后不良的患者。
Abstract: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic interstitial lung disease (ILD) of unknown cause, characterized by irreversible loss of lung structure and function, resulting in dyspnea, respiratory failure, excessive lung function, and early death. It is the most common and the worst type of idiopathic interstitial pneumonia. At present, a variety of valuable biomarkers have been detected from biological samples such as blood, lavage fluid, and bronchopulmonary tis-sue of IPF patients. Especially from blood, because of its advantages of convenient acquisition, less trauma, low cost, and continuous monitoring, it has great prospects for clinical application. This ar-ticle reviews the biomarkers related to the prognosis of IPF discovered in recent years from three aspects: genomics, serum proteinology, and blood cytology. The purpose of this study is to provide a reference for clinical work to select appropriate biomarkers for the management of IPF patients, and to identify patients with poor prognosis of IPF at an early stage more conveniently and quickly.
文章引用:任静, 于文成. 特发性肺纤维化预后生物标志物的研究进展[J]. 临床医学进展, 2022, 12(10): 9569-9575. https://doi.org/10.12677/ACM.2022.12101384

1. 遗传学

1.1. 黏蛋白5B(MUC5B)

MUC5B是一种分泌型蛋白质,主要由支气管远端的粘膜下粘液腺细胞产生和分泌。其主要的功能是黏液屏障保护、气道黏膜纤毛运动清除病原体和气道抗炎防御功能 [1]。MUC5B启动子的多态性并不仅仅可以作为IPF易感性的参考,同时还是IPF的预后的潜在标志物 [2]。到目前为止,广泛的全基因组连锁扫描已经在MUC5B基因启动子区域(rs35705950)发现了一个单核苷酸多态性(SNP),它是IPF发生发展的主要风险因素,占风险的30%~35% [3]。Jiang等 [4] 以我国汉族人口为研究对象,通过比较IPF患者和健康对照人群的基因型,发现MUC5B中的SNP与IPF患者FVC和DLCO的下降具有关,即具有最小等位基因的SNP的患者病情进展恶化率增高。同时,也有研究显示,无论等位基因状态如何,MUC5B蛋白都可能在IPF的发病机制中发挥直接作用 [3]。尽管机制尚不清楚,但目前多数观点认为,首先,过量的MUC5B会破坏粘膜宿主防御,降低吸入颗粒、溶解性化学物质和病原微生物的清除率,久而久之,可能会导致瘢痕组织的形成和持续的纤维增生,导致IPF的发生发展。其次,呼吸性细支气管中MUC5B过多可能会干扰肺泡上皮的修复。这两种机制途径可能单独或共同作用于IPF的发生和发展过程。

1.2. Toll样受体3 (TLR3)

Toll样受体(TLR)是人类早期病原体识别系统和宿主防御系统的组成部分。TLR功能在提供细胞损伤保护和调节组织内稳态方面至关重要 [5] [6]。人类TLR3基因位于染色体4q35上。最近,在人类TLR3基因Leu412Phe (TLR3 L412F, rs3775291)中发现了功能性单核苷酸多态性(SNP),这导致受影响细胞中NF-κB和IRF3激活缺陷 [7]。通过一项对INSPIRE队列96周随访期间FVC变化的进一步研究发现,TLR3的L412F多态性可加快FVC下降的速度,从而极大提高了患者病情恶化的死亡风险。TLR3激活缺陷将促进IPF中异常的炎症和纤维增生反应,从而加速疾病进展 [8]。以上研究结果提示TLR3L 412F多态性与IPF患者死亡率增加和疾病进展有关,但相关研究还较少,尚需进行更多临床研究加以证实。

1.3. 端粒长度

端粒是包含数千个核苷酸串联重复序列的核蛋白结构,可以稳定染色体末端,防止DNA降解。随着细胞分裂,这些重复序列逐渐丢失,导致端粒缩短。端粒低于临界阈值会导致染色体不稳定和DNA损伤反应途径的激活,从而导致细胞衰老和凋亡 [9]。端粒酶是一种能刺激DNA的合成,维持端粒长度的蛋白质。它包含两个重要的核心成分,即端粒酶逆转录酶(TERT)和端粒酶RNA元件(TERC) [10]。已发现在肺移植队列中,8%~15%的家族性IPF患者和高达11.3%的散发性IPF病人中发生端粒酶突变 [11]。即使是没有已知端粒酶突变的IPF受试者,也发现与对照组相比端粒缩短 [12],这可能是由于罕见且无特征的变异所致。已经证明,IPF患者外周血中端粒缩短,并且其与生存率降低相关 [13]。进一步研究发现,与周围细胞相比,散发性IPF患者纤维化区域AT2细胞的端粒长度缩短 [14]。以上研究表明,染色体端粒长度与IPF存活率有关。

2. 血清蛋白学

2.1. 血清涎液化糖链抗6 (Krebs von den lugen 6, KL-6)

KL-6是在肺泡上皮细胞膜表面表达一种粘蛋白样的高分子糖蛋白。当肺泡上皮细胞增殖、活化或受损时,KL-6会释放到血液之中 [15]。许多研究已经验证了KL-6在间质性肺疾病患者中的价值。IPF患者的血清中KL-6水平明显升高 [16]。然而,血清KL-6水平升高并非IPF患者独有,在患有其他间质性肺疾病或恶性肿瘤的患者中也可以观察到相同的现象 [17]。有趣的是,IPF患者的血清KL-6水平高于肺纤维化并发肺气肿或慢性阻塞性肺疾病(Chronic obstructive pulmonary disease, COPD)的患者 [18]。血清KL-6浓度高于1000 U/ml与IPF患者死亡率增加相关 [19] [20]。在最近发表的两项针对IPF患者的回顾性研究中,即使在基线时调整了肺功能参数和KL-6浓度后,6个月内KL-6浓度的持续升高也仍然是患者死亡的预测因素之一 [21] [22]。KL-6水平升高也与IPF急性加重相关 [23]。IPF患者的BAL和痰KL-6水平升高也曾有报道 [24]。

2.2. SP-A和SP-D

表面活性蛋白SP-A和SP-D是分布在肺泡气液界面的脂蛋白复合物,由肺泡上皮细胞和细支气管细胞合成和分泌 [25]。Greene等 [26] 研究结果表明,SP-A和SP-D在维持肺泡结构稳定和免疫功能稳定方面起着重要作用。它们是维持肺功能的有效调节剂,与肺纤维化有一定关系。血清SP-A和SP-D水平对IPF患者预后具有独立且高度的预测作用,而SP-A和SP-D的协同预测作用更佳 [27]。与低SP-A水平的患者相比,血清SP-A升高的IPF患者的死亡风险提高了39%,而与低SP-D水平的患者相比,高SP-D水平可使死亡风险增加11% [28]。SP-A与磷脂沉积并与肺泡中的表面活性脂质相结合,和SP-D更容易迁移到血液中,导致血清和PF中BALF SP-D的浓度变化更明显 [29]。血清SP-A水平升高是IPF患者早期死亡率的有力预测指标。与SP-A相比,血清SP-D水平能更好地反映IPF患者肺部的病理变化过程 [28] [29]。BALF中的SP-D水平与IPF中的肺功能恶化和死亡率明显相关 [30]。在一项多中心队列研究中,Maher等 [31] 发现,与疾病稳定的患者相比,疾病进展患者的SP-D基线值明显更高。与KL-6不同,血清SP-D在Sokai A报告中没有明显增加,其6个月的变化仅与DLCO%有关 [21]。

2.3. 基质金属蛋白酶-7 (MMP-7)

基质金属蛋白酶是锌依赖性内肽酶,可以降解细胞外基质(ECM)所有成分 [32]。ECM的立时降解是人体发育,形态发生,组织修复和重塑的重要过程。因此,MMP通过ECM更新调节在纤维化的发病机制中发挥重要作用。MMP7由肺上皮细胞、单核吞噬细胞和纤维细胞表达,是MMP家族中重要一员。目前,许多研究已经证实MMP7可以评估IPF患者的预后。IPF患者血浆和灌洗液中MMP-7水平升高,血浆MMP-7已被证实为IPF的生物标志物 [33]。Richards等 [34] 检测了241例IPF患者血浆中MMP7的浓度,并进行了长期随访。MMP7水平较低的患者中位生存时间约为4年,而MMP7水平较高的患者中位生存时间仅为2年左右。这些研究成果表明,血清MMP7水平与IPF患者的死亡率显著相关,并且有可能成为IPF预后的重要预测价值。

3. 血液细胞学

3.1. 单核细胞计数

一份源于吡非尼酮和IFNg-1b试验的汇总数据显示,在调整人口统计学,生理功能,合并症特征和长期使用免疫抑制剂后,单核细胞计数为0.60~0.95 × 109/L或> 0.95 × 109/L的IPF患者具有更高的IPF进展风险、全因住院及全因死亡风险,且单核细胞计数与研究结果的关系有别于其他白细胞计数 [35]。因此,对于IPF患者而言,单核细胞计数升高与病情进展,住院和死亡的风险增加相关。单核细胞计数可能为患者提供一种新颖、简单且廉价的预后生物标志物。

3.2. 红细胞分布宽度(RDW)

红细胞分布宽度(RDW)可以作为评价肺部疾病、心血管疾病等疾病预后的血清学标志物,并已发现与IPF患者预后相关。RDW与体内炎症介质水平相关,已成为反映炎症反应过程的新型标志物。一项包含319例IPF患者的队列研究显示,RDW值处于正常范围内的IPF患者中位生存期为43.1个月,而RDW > 15%的IPF患者中位生存期仅为16.3个月。RDW变化小于或大于10的患者的中位生存时间分别为43.0个月和23.9个月 [36]。RDW可以在IPF患者的基线和随访中提供重要且独立的预后信息。它是IPF的潜在临床预后生物标志物。需要进一步的研究来验证其作为IPF结果的生物标志物的作用,并确定这种关联的生物学基础。

3.3. 中性粒细胞–淋巴细胞比值(NLR)、血小板–淋巴细胞比值(PLR)

中性粒细胞淋巴细胞比率(NLR)和血小板–淋巴细胞比率(PLR)是炎症和氧化应激的生物标志物。NLR和PLR的表达与多种疾病的不良预后相关,包括慢性阻塞性肺病、2019冠状病毒病(COVID-2019)、肺栓塞、心血管疾病、类风湿性关节炎和各种实体瘤。一些研究评估了NLR和PLR在IPF患者中的预后价值,表明较高的NLR和PLR可能导致较差的预后。此外,单核细胞数量是IPF进展、全因住院和全因死亡率的独立危险因素。在一项回顾性队列研究中,证实NLR和PLR与PaO2/FiO2显著负相关 [37]。基线NLR与IPF患者的总生存率显著负相关。在总队列和AE-IPF亚组中,入院时较高的NLR与较短的总生存时间相关。在调整了临床混杂因素后,这种关系保持稳定。此外,还发现死于医院的AE-IPF患者中,NLR在末次住院期间呈动态增加的趋势。ROC分析显示,NLR预测总生存期的AUROC为0.776,大于PLR、NLR + PLR。NLR对IPF患者总体生存情况具有良好的预测作用。在基线NLR较高的患者中观察到不良预后,并且与GAP (性别、年龄、生理)评分无关。先前对73例IPF患者进行的回顾性研究表明,NLR与基线第一秒用力呼气量(FEV1)和一氧化碳扩散能力(DLCO%)呈显著负相关 [38]。Natha等人 [39] 发现,NLR或PLR在1年内的较快增加与较高的死亡率呈正相关。D’alessandro等人 [40] 测量了从IPF患者分离的支气管肺泡灌洗(BAL)样品中的NLR,表明NLR与用力肺活量(FVC)和FEV之间呈负相关。他们的结果表明,NLR与在收集BAL样本的时间点测量的复合生理指标相关。基线NLR与IPF患者预后之间的关系与先前的研究一致。

综上所述,随着近年来IPF研究的逐步深入,与IPF预后相关的生物标志物研究取得了显著进展。除了上述的生物标志物,还有LOXL2、纤维细胞、CCL-8、YKL-40、CXCL13、抗热休克蛋白70等都被作为IPF的生物标志物在研究。但很多研究都来自观察单个队列,病例组的数量相对少,缺乏前瞻性。总之,探索IPF的生物标志物的领域还需要进一步的深入研究,即需要更多的大样本前瞻性研究来证实生物标志物与IPF之间的相关性,从而为临床应用做好充分的准备。

参考文献

[1] Bonser, L.R. and Erle, D.J. (2017) Airway Mucus and Asthma: The Role of MUC5AC and MUC5B. Journal of Clinical Medicine, 6, Article No. 112.
https://doi.org/10.3390/jcm6120112
[2] Peljto, A.L., Zhang, Y., Fingerlin, T.E., Ma, S.-F., Garcia, J.G.N., Richards, T.J., Silveira, L.J., Lindell, K.O., Steele, M.P., Loyd, J.E., Gibson, K.F., Seibold, M.A., Brown, K.K., Talbert, J.L., Markin, C., Kossen, K., Seiwert, S.D., Murphy, E., Noth, I., Schwarz, M.I., Kaminski, N. and Schwartz, D.A. (2013) Association between the MUC5B Promoter Polymorphism and Survival in Patients with Id-iopathic Pulmonary Fibrosis. JAMA, 309, 2232-2239.
https://doi.org/10.1001/jama.2013.5827
[3] Seibold, M.A., Wise, A.L., Speer, M.C., Steele, M.P., Brown, K.K., Loyd, J.E., Fingerlin, T.E., Zhang, W., Gudmundsson, G., Groshong, S.D., Evans, C.M., Garantziotis, S., Adler, K.B., Dickey, B.F., du Bois, R.M., Yang, I.V., Herron, A., Kervitsky, D., Talbert, J.L., Markin, C., Park, J., Crews, A.L., Slifer, S.H., Auerbach, S., Roy, M.G., Lin, J., Hennessy, C.E., Schwarz, M.I. and Schwartz, D.A. (2011) A Common MUC5B Promoter Polymorphism and Pulmonary Fibrosis. The New England Journal of Medicine, 364, 1503-1512.
https://doi.org/10.1056/NEJMoa1013660
[4] Jiang, H., Hu, Y., Shang, L., Li, Y., Yang, L. and Chen, Y. (2015) Association between MUC5B Polymorphism and Susceptibility and Severity of Idiopathic Pulmonary Fibrosis. Interna-tional Journal of Clinical and Experimental Pathology, 8, 14953-14958.
[5] Samara, K.D., Antoniou, K.M., Karagian-nis, K., Margaritopoulos, G., Lasithiotaki, I., Koutala, E. and Siafakas, N.M. (2012) Expression Profiles of Toll-Like Receptors in Non-Small Cell Lung Cancer and Idiopathic Pulmonary Fibrosis. International Journal of Oncology, 40, 1397-1404.
https://doi.org/10.3892/ijo.2012.1374
[6] O'Dwyer, D.N., Armstrong, M.E., Kooblall, M. and Don-nelly, S.C. (2015) Targeting Defective Toll-Like Receptor-3 Function and Idiopathic Pulmonary Fibrosis. Expert Opinion on Therapeutic Targets, 19, 507-514.
https://doi.org/10.1517/14728222.2014.988706
[7] O'Dwyer, D.N., Armstrong, M.E., Trujillo, G., Cooke, G., Keane, M.P., Fallon, P.G., Simpson, A.J., Millar, A.B., McGrath, E.E., Whyte, M.K., Hirani, N., Hogaboam, C.M. and Donnelly, S.C. (2013) The Toll-Like Receptor 3 L412F Polymorphism and Disease Progression in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 188, 1442-1450.
https://doi.org/10.1164/rccm.201304-0760OC
[8] McElroy, A.N., Invernizzi, R., Laskowska, J.W., O'Neill, A., Doroudian, M., Moghoofei, M., Mostafaei, S., Li, F., Przybylski, A.A., O'Dwyer, D.N., Bowie, A.G., Fallon, P.G., Maher, T.M., Hogaboam, C.M., Molyneaux, P.L., Hirani, N., Armstrong, M.E. and Donnelly, S.C. (2022) Candidate Role for Toll-Like Receptor 3 L412F Polymorphism and Infection in Acute Exacerbation of Idiopathic Pulmonary Fibro-sis. American Journal of Respiratory and Critical Care Medicine, 205, 550-562.
https://doi.org/10.1164/rccm.202010-3880OC
[9] Stewart, J.A., Chaiken, M.F., Wang, F. and Price, C.M. (2012) Maintaining the End: Roles of Telomere Proteins in End-Protection, Telomere Replication and Length Regulation. Muta-tion Research, 730, 12-19.
https://doi.org/10.1016/j.mrfmmm.2011.08.011
[10] Borie, R., Tabèze, L., Thabut, G., Nunes, H., Cottin, V., Marchand-Adam, S., Prevot, G., Tazi, A., Cadranel, J., Mal, H., Wemeau-Stervinou, L., Bergeron Lafaurie, A., Isra-el-Biet, D., Picard, C., Reynaud Gaubert, M., Jouneau, S., Naccache, J.-M., Mankikian, J., Ménard, C., Cordier, J.-F., Valeyre, D., Reocreux, M., Grandchamp, B., Revy, P., Kannengiesser, C. and Crestani, B. (2016) Prevalence and Char-acteristics of TERT and TERC Mutations in Suspected Genetic Pulmonary Fibrosis. The European Respiratory Journal, 48, 1721-1731.
https://doi.org/10.1183/13993003.02115-2015
[11] Alder, J.K., Chen, J.J.L., Lancaster, L., Danoff, S., Su, S.-c., Cogan, J.D., Vulto, I., Xie, M., Qi, X., Tuder, R.M., Phillips, J.A., Lansdorp, P.M., Loyd, J.E. and Ar-manios, M.Y. (2008) Short Telomeres Are a Risk Factor for Idiopathic Pulmonary Fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 105, 13051- 13056.
https://doi.org/10.1073/pnas.0804280105
[12] Armanios, M. (2013) Telomeres and Age-Related Disease: How Telomere Biology Informs Clinical Paradigms. The Journal of Clinical Investigation, 123, 996-1002.
https://doi.org/10.1172/JCI66370
[13] Dai, J., Cai, H., Zhuang, Y., Wu, Y., Min, H., Li, J., Shi, Y., Gao, Q. and Yi, L. (2015) Telomerase Gene Mutations and Telomere Length Shortening in Patients with Idiopathic Pulmonary Fibro-sis in a Chinese Population. Respirology (Carlton, Vic.), 20, 122-128.
https://doi.org/10.1111/resp.12422
[14] Dai, J., Cai, H., Li, H., Zhuang, Y., Min, H., Wen, Y., Yang, J., Gao, Q., Shi, Y. and Yi, L. (2015) Association between Te-lomere Length and Survival in Patients with Idiopathic Pulmonary Fibrosis. Respirology (Carlton, Vic.), 20, 947-952.
https://doi.org/10.1111/resp.12566
[15] Hisata, S., Kimura, Y., Shibata, N., Ono, S., Kobayashi, T., Chiba, S., Ohta, H., Nukiwa, T. and Ebina, M. (2011) A Normal Range of KL-6/MUC1 Independent of Elevated SP-D Indicates a Better Prognosis in the Patients with Honeycombing on High-Resolution Computed Tomography. Pulmonary Medicine, 2011, Article ID: 806014.
https://doi.org/10.1155/2011/806014
[16] Satoh, H., Kurishima, K., Ishikawa, H. and Ohtsuka, M. (2006) In-creased Levels of KL-6 and Subsequent Mortality in Patients with Interstitial Lung Diseases. Journal of Internal Medi-cine, 260, 429-434.
https://doi.org/10.1111/j.1365-2796.2006.01704.x
[17] Okamoto, T., Fujii, M., Furusawa, H., Tsuchiya, K., Miyazaki, Y. and Inase, N. (2015) The Usefulness of KL-6 and SP-D for the Diagnosis and Management of Chronic Hypersensitivity Pneumonitis. Respiratory Medicine, 109, 1576- 1581.
https://doi.org/10.1016/j.rmed.2015.10.005
[18] Xu, L., Bian, W., Gu, X.-H. and Shen, C. (2017) Differing Ex-pression of Cytokines and Tumor Markers in Combined Pulmonary Fibrosis and Emphysema Compared to Emphysema and Pulmonary Fibrosis. COPD, 14, 245-250.
https://doi.org/10.1080/15412555.2017.1278753
[19] Hamai, K., Iwamoto, H., Ishikawa, N., Horimasu, Y., Ma-suda, T., Miyamoto, S., Nakashima, T., Ohshimo, S., Fujitaka, K., Hamada, H., Hattori, N. and Kohno, N. (2016) Com-parative Study of Circulating MMP-7, CCL18, KL-6, SP-A, and SP-D as Disease Markers of Idiopathic Pulmonary Fi-brosis. Disease Markers, 2016, Article ID: 4759040.
https://doi.org/10.1155/2016/4759040
[20] Yokoyama, A., Kondo, K., Nakajima, M., Matsushima, T., Takahashi, T., Nishimura, M., Bando, M., Sugiyama, Y., Totani, Y., Ishizaki, T., Ichiyasu, H., Suga, M., Hamada, H. and Kohno, N. (2006) Prognostic Value of Circulating KL-6 in Idiopathic Pulmonary Fibrosis. Respirology (Carlton, Vic.), 11, 164-168.
https://doi.org/10.1111/j.1440-1843.2006.00834.x
[21] Sokai, A., Tanizawa, K., Handa, T., Kanatani, K., Kubo, T., Ikezoe, K., Nakatsuka, Y., Tokuda, S., Oga, T., Hirai, T., Nagai, S., Chin, K. and Mishima, M. (2017) Importance of Se-rial Changes in Biomarkers in Idiopathic Pulmonary Fibrosis. ERJ Open Research, 3, 1-8.
https://doi.org/10.1183/23120541.00019-2016
[22] Wakamatsu, K., Nagata, N., Kumazoe, H., Oda, K., Ishimoto, H., Yoshimi, M., Takata, S., Hamada, M., Koreeda, Y., Takakura, K., Ishizu, M., Hara, M., Ise, S., Izumi, M., Akasaki, T., Maki, S., Kawabata, M., Mukae, H. and Kawasaki, M. (2017) Prognostic Value of Serial Serum KL-6 Measurements in Patients with Idiopathic Pulmonary Fibrosis. Respiratory Investigation, 55, 16-23.
https://doi.org/10.1016/j.resinv.2016.09.003
[23] Qiu, M., Chen, Y. and Ye, Q. (2018) Risk Factors for Acute Ex-acerbation of Idiopathic Pulmonary Fibrosis: A Systematic Review and Meta-Analysis. The Clinical Respiratory Journal, 12, 1084-1092.
https://doi.org/10.1111/crj.12631
[24] Kohno, N., Awaya, Y., Oyama, T., Yamakido, M., Akiyama, M., Inoue, Y., Yokoyama, A., Hamada, H., Fujioka, S. and Hiwada, K. (1993) KL-6, a Mucin-Like Glycoprotein, in Bronchoalveolar Lavage Fluid from Patients with Interstitial Lung Disease. The American Review of Respiratory Disease, 148, 637-642.
https://doi.org/10.1164/ajrccm/148.3.637
[25] Mulugeta, S., Nureki, S.-I. and Beers, M. F. (2015) Lost after Translation: Insights from Pulmonary Surfactant for Understanding the Role of Alveolar Epithelial Dysfunction and Cel-lular Quality Control in Fibrotic Lung Disease. American Journal of Physiology. Lung Cellular and Molecular Physiolo-gy, 309, L507-L525.
https://doi.org/10.1152/ajplung.00139.2015
[26] Greene, K.E., King, T.E., Kuroki, Y., Bucher-Bartelson, B., Hun-ninghake, G.W., Newman, L.S., Nagae, H. and Mason, R.J. (2002) Serum Surfactant Proteins-A and -D as Biomarkers in Idiopathic Pulmonary Fibrosis. The European Respiratory Journal, 19, 439-446.
https://doi.org/10.1183/09031936.02.00081102
[27] Kinder, B.W., Brown, K.K., McCormack, F.X., Ix, J.H., Ker-vitsky, A., Schwarz, M.I. and King, T.E. (2009) Serum Surfactant Protein-A Is a Strong Predictor of Early Mortality in Idiopathic Pulmonary Fibrosis. Chest, 135, 1557-1563.
https://doi.org/10.1378/chest.08-2209
[28] Wang, K., Ju, Q., Cao, J., Tang, W. and Zhang, J. (2017) Impact of Se-rum SP-A and SP-D Levels on Comparison and Prognosis of Idiopathic Pulmonary Fibrosis: A Systematic Review and Meta-Analysis. Medicine, 96, e7083.
https://doi.org/10.1097/MD.0000000000007083
[29] Nishikiori, H., Chiba, H., Ariki, S., Kuronuma, K., Otsuka, M., Shiratori, M., Ikeda, K., Watanabe, A., Kuroki, Y. and Takahashi, H. (2014) Distinct Compartmentalization of SP-A and SP-D in the Vasculature and Lungs of Patients with Idiopathic Pulmonary Fibrosis. BMC Pulmonary Medicine, 14, Article No. 196.
https://doi.org/10.1186/1471-2466-14-196
[30] Maher, T.M., Oballa, E., Simpson, J.K., Porte, J., Habgood, A., Fahy, W.A., Flynn, A., Molyneaux, P.L., Braybrooke, R., Divyateja, H., Parfrey, H., Rassl, D., Russell, A.-M., Saini, G., Renzoni, E.A., Duggan, A.-M., Hubbard, R., Wells, A.U., Lukey, P.T., Marshall, R.P. and Jenkins, R.G. (2017) An Epithelial Biomarker Signature for Idiopathic Pulmonary Fibrosis: An Analysis from the Multicentre PROFILE Cohort Study. The Lancet Respiratory Medicine, 5, 946-955.
https://doi.org/10.1016/S2213-2600(17)30430-7
[31] Doubková, M., Karpíšek, M., Mazoch, J., Skřičková, J. and Doubek, M. (2016) Prognostic Significance of Surfactant Protein A, Surfactant Protein D, Clara Cell Protein 16, S100 Protein, Trefoil Factor 3, and Prostatic Secretory Protein 94 in Idiopathic Pulmonary Fibrosis, Sarcoidosis, and Chronic Pulmonary Obstructive Disease. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases: Official Journal of WASOG, 33, 224-234.
[32] Morais, A., Beltrão, M., Sokhatska, O., Costa, D., Melo, N., Mota, P., Marques, A. and Delgado, L. (2015) Serum Metalloproteinases 1 and 7 in the Diagnosis of Idiopathic Pulmonary Fibrosis and Other Interstitial Pneu-monias. Respiratory Medicine, 109, 1063-1068.
https://doi.org/10.1016/j.rmed.2015.06.003
[33] Tzouvelekis, A., Herazo-Maya, J. D., Slade, M., Chu, J.-H., Deiuliis, G., Ryu, C., Li, Q., Sakamoto, K., Ibarra, G., Pan, H., Gulati, M., Antin-Ozerkis, D., Herzog, E.L. and Kaminski, N. (2017) Validation of the Prognostic Value of MMP-7 in Idiopathic Pulmonary Fibrosis. Respirology (Carlton, Vic.), 22, 486-493.
https://doi.org/10.1111/resp.12920
[34] Richards, T.J., Kaminski, N., Baribaud, F., Flavin, S., Brodmerkel, C., Horowitz, D., Li, K., Choi, J., Vuga, L.J., Lindell, K.O., Klesen, M., Zhang, Y. and Gibson, K.F. (2012) Peripheral Blood Proteins Predict Mortality in Idiopathic Pulmonary Fi-brosis. American Journal of Respiratory and Critical Care Medicine, 185, 67-76.
https://doi.org/10.1164/rccm.201101-0058OC
[35] Kreuter, M., Lee, J.S., Tzouvelekis, A., Oldham, J.M., Molyneaux, P.L., Weycker, D., Atwood, M., Kirchgaessler, K.U. and Maher, T.M. (2021) Monocyte Count as a Prog-nostic Biomarker in Patients with Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 204, 74-81.
https://doi.org/10.1164/rccm.202003-0669OC
[36] Nathan, S.D., Reffett, T., Brown, A.W., Fischer, C.P., Shlobin, O.A., Ahmad, S., Weir, N. and Sheridan, M.J. (2013) The Red Cell Distribution width as a Prognostic Indicator in Idio-pathic Pulmonary Fibrosis. Chest, 143, 1692-1698.
https://doi.org/10.1378/chest.12-1368
[37] Chen, Y., Cai, J., Zhang, M. and Yan, X. (2022) Prognostic Role of NLR, PLR and MHR in Patients with Idiopathic Pulmonary Fibrosis. Frontiers in Immunology, 13, Article ID: 882217.
https://doi.org/10.3389/fimmu.2022.882217
[38] Zinellu, A., Paliogiannis, P., Sotgiu, E., Mellino, S., Mangoni, A.A., Zinellu, E., Negri, S., Collu, C., Pintus, G., Serra, A., Pistuddi, A.M., Carru, C., Pirina, P. and Fois, A.G. (2020) Blood Cell Count Derived Inflammation Indexes in Patients with Idiopathic Pulmonary Fibrosis. Lung, 198, 821-827.
https://doi.org/10.1007/s00408-020-00386-7
[39] Nathan, S.D., Mehta, J., Stauffer, J., Morgenthien, E., Yang, M., Limb, S.L. and Bhorade, S. (2021) Changes in Neutrophil-Lymphocyte or Platelet-Lymphocyte Ratios and Their Associ-ations with Clinical Outcomes in Idiopathic Pulmonary Fibrosis. Journal of Clinical Medicine, 10, Article No. 1427.
https://doi.org/10.3390/jcm10071427
[40] Ruta, V.M., Man, A.M., Alexescu, T.G., Motoc, N.S., Tarmure, S., Ungur, R.A., Todea, D.A., Coste, S.C., Valean, D. and Pop, M.C. (2020) Neutrophil-to-Lymphocyte Ratio and Systemic Immune-Inflammation Index-Biomarkers in Interstitial Lung Disease. Medicina (Kaunas), 56, Article No. 381.
https://doi.org/10.3390/medicina56080381