心血管风险评估的新兴标记物
Emerging Markers for Cardiovascular Risk Assessment
DOI: 10.12677/ACM.2022.12101324, PDF, HTML, XML, 下载: 355  浏览: 481 
作者: 周文丽, 王营忠*:延安大学附属医院冠心病二病区,陕西 延安
关键词: 载脂蛋白B冠状动脉疾病甘油三酯非高密度脂蛋白-CApoB Coronary Artery Disease TG Non-HDL-C
摘要: 冠状动脉疾病(Coronary Artery Disease, CAD)治疗的传统方法主要集中在低密度脂蛋白胆固醇(LDL-C)上,这通常被认为是动脉粥样硬化进展的关键危险因素。尽管它在预测CAD风险方面广泛使用,但由于一些限制,它已成为次优标志物,最近,甘油三酯、非高密度脂蛋白胆固醇(non-high-density lipoprotein cholesterol, N-HDL-C)或载脂蛋白B (apolipoprotein B, ApoB)已被证实是冠状动脉疾病风险的更可靠预测因子。故本综述概述甘油三酯、N-HDL-C、ApoB对CAD的应用价值,突出三者的可靠性和有效性,从而为将来三者可作为降脂的治疗目标提供依据,纳入常规脂质检查,以便更好地评估CAD。
Abstract: The traditional approach to the management of coronary artery disease (CAD) focuses mainly on low density lipoprotein cholesterol (LDL-C) which is often considered a crucial risk factor for the progression of atherosclerosis. Despite its extensive use in predicting CAD risk, it has become a sub-optimal marker owing to several limitations. Recently, Triglycerides, non-high-density lipopro-tein cholesterol (N-HDL-C) or apolipoprotein B (ApoB) have been proven to be more reliable pre-dictors of coronary artery disease risk. Therefore, this review summarizes the application value of triglyceride, N-HDL-C and ApoB in CAD, highlighting the reliability and effectiveness of the three, so as to provide a basis for them to be used as lipid-lowering therapeutic targets in the future, and to be included in routine lipid examination, so as to better evaluate CAD.
文章引用:周文丽, 王营忠. 心血管风险评估的新兴标记物[J]. 临床医学进展, 2022, 12(10): 9155-9161. https://doi.org/10.12677/ACM.2022.12101324

1. 引言

冠状动脉疾病(Coronary Artery Disease, CAD)在世界范围内是一个重大的健康负担,是全球死亡和发病的主要原因之一。血脂异常是CAD的一个广泛确立的独立主要危险因素 [1]。LDL-C的局限性使其成为CAD风险评估的可疑独立标志。因此,包括CAD在内的脂质相关异常的现代诊断应基于不受这些限制影响的参数。新兴研究已经提出了一些潜在的替代脂质标志物,以更好地评估CAD风险,其中包括甘油三酯、载脂蛋白B以及非高密度脂蛋白胆固醇(非HDL-C)。这三者都与CAD风险高度相关,特别是当低密度脂蛋白胆固醇似乎在正常范围内。

2. ApoB:新兴的风险标志物

载脂蛋白B是一种不可交换的载脂蛋白,仅与血浆脂蛋白相关。它是所有致动脉粥样硬化脂蛋白颗粒的关键结构成分,存在于所有β脂蛋白中,包括小致密LDL。载脂蛋白B是LDL的主要载脂蛋白,它与动脉粥样硬化的发展有关,同时它对于LDL颗粒与LDL受体的结合对于LDL的细胞摄取和降解也是必不可少的。载脂蛋白B能够直接测量所有致动脉粥样硬化脂蛋白的总数,因为每个致动脉粥样硬化颗粒都含有一些ApoB100分子。ApoB作为识别位点能够与动脉内皮下细胞外蛋白聚糖结合,介导脂蛋白滞留动脉壁,从而始动动脉粥样硬化进程。已经发现,血浆中ApoB水平的增加与CAD的发展直接相关。有几份报告表明,ApoB比LDL-C更好地预测冠状动脉风险。Jae-Hong Ryoo等人 [2] 发现,在健康的韩国男性中,使用Framingham风险评分(FRS)的ApoB与CAD风险独立相关,Framingham风险评分(FRS)是一级预防策略中传统上使用的一种算法,用于评估中年无症状个体冠心病(CHD)事件的10年风险 [3]。FRS是根据国家胆固醇教育计划(NCEP)成人治疗小组(ATP) III算法计算的,该算法基于六个冠状动脉危险因素:性别,年龄,总胆固醇,高密度脂蛋白胆固醇,收缩压和吸烟习惯 [3]。在这些因素中,年龄,血压和胆固醇水平根据其值进行分类,吸烟状态被归类为“当前吸烟者”或“非吸烟者”。最后,给每个人相应的分数,然后使用总分作为个人的CHD风险水平。FRS已被用于预测冠状动脉事件(致命/非致命性心肌梗死或猝死)的10年风险 [4]。计算每名男子超过10年的FRS评分 [4],并分为三个风险水平 < 10% (低),10%~19% (中级)和 ≥ 20% (高) [3]。Walldius G等人 [5] 还表明,ApoB可能不仅是更好的风险预测因子,而且比单独使用LDL-C是更好的治疗监测者。同样,Shai等人 [6] 估计了32,826名美国女性中脂质和载脂蛋白作为CAD预测因子的相对风险,并发现ApoB水平与CAD发病率增加更密切相关。

Sniderman等人 [7] 发现ApoB优于非HDL-C,并建议将其纳入常规临床实践。Sweetnam等人 [8] 在2008年进行了一项前瞻性研究,发现ApoB水平与CAD发病率之间存在很强的关系。在Pischon等人进行的研究中也发现了类似的结果,该研究表明ApoB可以预测CAD的发生。Mashayekhi等人进行的研究 [9] 和Sattar等人 [10] 主张ApoB更好地评估未来的CAD风险。同样,AMORIS (载脂蛋白死亡率风险研究) [11] 和INTERHEART研究 [12] 已经认可ApoB在CAD风险预测中比传统脂质谱面板更好的参数 [11]。

3. 非HDL-C:有前途的新兴标记物

非HDL-C于2001年由ATP III指南引入(成人治疗小组III),作为高甘油三酯血症患者的替代靶向治疗 [13]。在几项研究中发现,非HDL-C与代谢综合征的特征相关性更好。Cui等人的脂质研究诊所计划随访研究 [14] 包括4,462名受试者,观察了非HDL-C水平在高甘油三酯人群中的重要性。同样,Pischon等人 [15] 在他们的研究中得出结论,高水平的非HDL-C与冠状动脉粥样硬化的严重程度密切相关,特别是在高甘油三酯血症患者中。

Levinson SS等人在他们的研究中发现 [16],血清非HDL-C与ApoB的相关性优于LDL-C。BARI研究(旁路血管成形术血运重建调查) [17] 发现,非HDL-C是非致死性心肌梗死(MI)的重要且独立的预测因子。同样,Kathariya等人在2020年发现非HDL-C比Friedewald计算的LDL-C用于CAD风险评估的参数更具特异性和敏感性 [18]。Ridker等人进行的一项研究根据相对风险比进行了分析,得出的结论是,与 [19] 号女性的ApoB相比,非HDL-C更能预测未来冠状动脉事件,Grundy等人提出非HDL-C作为Apo-B的替代标志物 [20]。

许多一级和二级预防试验表明,在性别、有和无糖尿病的个体以及无论种族、性别和糖尿病的群体中,非高密度脂蛋白是冠状动脉疾病风险的更好标志物 [21]。CAD和非HDL-C之间的关系在对降胆固醇动脉粥样硬化研究 [22] 的数据进行的多元逻辑回归分析中得到证实,在该分析中,非HDL-C是未使用降脂药物的男性冠状动脉疾病程度总体变化的最佳预测因子 [23]。此外;最近的事后分析表明,与LDL-C相比,治疗时的非HDL-C水平与心血管结局的关系更密切 [24]。Liu等人 [25] 比较了非HDL-C作为健康受试者和糖尿病急性冠状动脉事件和心肌梗死预后因素的诊断价值,发现非HDL-C是比传统脂质标志物更好的预测指标。部分研究表明,在这方面,非HDL-C是LDL-C更好的标志物。例如,Kastelein JJ等人 [26] 得出结论,他汀类药物治疗期间的非HDL-C水平是心血管疾病风险的更好指标。另一项研究报告说,在他汀类药物治疗的患者中,可以通过测量TG,非HDL-C和ApoB来评估未来发生心血管事件的风险,但对于非HDL-C,这种关联最强。Ballantyne CM等人 [27] 的研究比较了高冠心病风险队列中他汀类药物治疗前和期间的LDL-C,非HDL-C和ApoB水平,并观察到非HDL-C测量可能是可接受的标志物,而不是ApoB。在多项使用降脂药物(包括他汀类药物)的介入性研究中,一项确定非HDL-C与冠心病风险关系的荟萃分析得出结论,降低非HDL-C可能是预防心血管疾病的重要靶点 [28]。在涉及多个国家44个队列中的524,444名个体的大型研究中,作者使用多变量分析得出结论,非HDL-C浓度与长期心血管风险有很强的相关性。

非HDL-C由于其相对于LDL-C的独特优势,现在被认为是CAD风险评估的替代物和更好的标志物。非HDL-C的值可以通过简单快速的计算来获得,该计算是从总胆固醇(TC)减去HDL-C,即使在非空腹状态下也可以获得,而不会对结果产生任何影响。它避免了由甘油三酯测量的固有个体内变异性引起的潜在不准确性。这使得非HDL-C对患者更加友好,并能够及时做出临床决策。此外,美国和欧洲心脏病学会、国际动脉粥样硬化学会、专家血脂异常小组和国家脂质协会强烈建议将非HDL-C纳入常规脂质谱小组。印度脂质协会 [29] 也建议将非HDL-C作为预测CAD风险的共同主要目标。不幸的是,非HDL-C在常规脂质检查中的应用在印度的心脏病专家中几乎没有得到支持,尽管它在冠状动脉疾病风险预测中的有效性得到了几项流行病学研究和临床试验的验证。

4. TG:新兴风险因子

一项大型meta分析纳入了29项研究的262,525名受试者,结果显示,TG水平是CV风险的强预测因子,与非空腹状态相比,与随访、或禁食的持续时间无关 [30]。最大的荟萃分析,新兴危险因素协作,包括来自68项长期前瞻性研究的302,430人,还显示非空腹TG与冠心病(CHD)风险增加有关,降低到195 mg/dL (2.2 mmol/L)的TG水平,缺血性中风的风险增加降至248 mg/dL (2.8 mmol/L)。

许多流行病学研究和荟萃分析已经证明TG与ASCVD风险呈正相关 [31] [32] [33] [34] [35]。特别是,两项前瞻性观察性研究,哥本哈根一般人口研究和哥本哈根城市心脏研究,为TG与ASCVD之间的关联提供了重要的见解 [36] [37] [38]。哥本哈根城市心脏研究招募了13,981名未接受降脂治疗的参与者,并证明在27年的随访中,非致病性TG水平的升高与男性和女性心肌梗死(MI),IHD和死亡风险增加有关 [36]。与TG水平 < 1 mmol/L (88 mg/dL)相比,非逼真TG水平>5 mmol/L (440 mg/dL)与男性和女性心肌梗死风险分别增加4.6倍和16.8倍相关。同样,非致食性TG水平的增加与男性和女性缺血性卒中风险分别增加3.2倍和5.1倍相关 [37]。与男性相比,女性发生事件的风险更高,这归因于男性酒精摄入量较高的混淆。随后对哥本哈根城市心脏研究和哥本哈根一般人口研究的约100,000名参与者进行的更大规模研究也证明了类似的发现。具体而言,与TG > 水平 < 0.8 mmol/L (70 mg/dL) (100)相比,非致肌梗死、IHD、缺血性卒中和全因死亡率分别增加了5.1倍、3.2倍、3.2倍、3.2倍和2.2倍 [39]。最近,Varbo等人 [38] 证明,与TG浓度为1 mmol/L (88 mg/dL)的参与者相比,高浓度的脱扣性TG ≥ 5 mmol/L (440 mg/dL)的多变量危险比为2.59 (95%可信区间,1.48~4.54)与TG浓度<1 mmol/L (88 mg/dL)的参与者相比,心力衰竭风险的逐步增加有关。

在临床试验中也观察到TG与ASCVD的类似关联。一项针对15,355例冠状动脉疾病(CAD)确诊患者的贝扎贝特梗死预防(BIP)试验纳入,每1单位自然对数甘油三酯升高与相应的6% (p值 = 0.016)相关,在对包括HDL-C在内的多种协变量进行调整后,22年全因死亡风险增加,即使在TG水平在100~150 mg/dL之间,风险也持续存在 [40]。与TG水平低(<100 mg/dL)的患者相比,重度高甘油三酯血症(≥500 mg/dL)患者的死亡风险增加了68% (p < 0.001)。他汀类药物降低LDL-C后甘油三酯持续升高与心血管疾病风险增加有关。在普伐他汀或阿托伐他汀评估和感染治疗–心肌梗死22(PROVE-IT TIMI-22)的试验中,关于治疗,与<150 mg/dL相比,TG水平 ≥ 150 mg/dL与心血管事件风险较高有关,与达到的LDL-C水平水平无关 [41]。

5. 结论

综上所述,甘油三酯、非高密度脂蛋白、载脂蛋白B与他汀类药物治疗患者CVD事件复发风险增加有关,应将其视为有用的风险标志物。此外,ApoB和非HDL-C都被接受为LDL-C以外的CAD风险分层的参数。ESC/EAS 2019指南 [42] 建议,在糖尿病,肥胖,代谢综合征,高甘油三酯浓度或非常低的LDL-C水平的患者中,非HDL-C和ApoB应优先评估CAD风险。此外,与LDL-C不同,非HDL-C水平可以通过非空腹样品进行估计,从而促进临床决策。这得到了2018年指南的进一步认可,并允许非HDL-C成为主要治疗靶点。此后,根据Ramjee等人,Brunner FJ等人,Stanley S等人,Aggarwal J等人以及许多其他研究人员进行的研究,我们建议将非HDL-C纳入标准脂质谱组中,以评估危险人群的CAD风险。

参考文献

[1] Rajeev, G. and Ravinder, S. (2017) Rao Recent Trends in Epidemiology of Dyslipidemias in India. Indian Heart Journal, 63, 382-392.
https://doi.org/10.1016/j.ihj.2017.02.020
[2] Ryoo, J.H. (2011) Apo B Is Highly Associated with the Risk of Coronary Heart Disease as Estimated by the Farmingham Risk Score in Healthy Korean Men. The Korean Academy of Medical Sciences, 26, 631-636.
https://doi.org/10.3346/jkms.2011.26.5.631
[3] National Cholesterol Education Program (NCEP) Expert Panel On detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2002) Third Re-port of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Final Report. Circulation, 106, 3143-3421.
https://doi.org/10.1161/circ.106.25.3143
[4] Anderson, K.M., Wilson, P.W., Odell, P.M. and Kannel, W.B. (1991) An Updated Coronary Risk Profile. A Statement for Health Professionals. Circulation, 83, 356-362.
https://doi.org/10.1161/01.CIR.83.1.356
[5] Walldius, G. (2006) The Apo B/Apo AI Ratio: A Strong, New Risk Factor for CVD and Target for Lipid Lowering Therapy. A Review of Evidence. Journal of Internal Medicine, 259, 493-519.
https://doi.org/10.1111/j.1365-2796.2006.01643.x
[6] Shai, I., Rimm, E.B. and Hankinson, S.E. (2004) Multivar-iate Assessment of Lipid Parameters as Predictors of CHD among Post Menopausal Women. Circulation, 110, 2824-2830.
https://doi.org/10.1161/01.CIR.0000146339.57154.9B
[7] Sniderman, A.D. and Williams, K. (2011) A Meta-Analysis of Low Density Lipoprotein Cholesterol, Non-High Density Lipoprotein Cholesterol and Apolipopro-tein B as Markers of Cardiovascular Risk. Circulation: Cardiovascular Quality and Outcomes, 4, 337-345.
https://doi.org/10.1161/CIRCOUTCOMES.110.959247
[8] Sabino, A.P. and De Oliveria Sousa, M. (2008) Apo B/Apo A-I Ratio in Young Patients with Ischemic Cerebral Stroke or Peripheral Arterial Disease. Translational Research, 152, 113-118.
https://doi.org/10.1016/j.trsl.2008.06.005
[9] Mashayekhi, N.R. (2014) The Correlation between Serum Apo A1 and B and Coronary Artery Disease as Well as Its Severity. International Cardiovascular Research Journal, 8, 1-5.
[10] Sattar, N., Williams, K., Sniderman, A.D., et al. (2004) Comparison of the Associations of Apolipoprotein B and Non-High Density Lipoprotein Cholesterol with Other Cardiovascular Risk Factors in Patients with Metabolic Syndrome in the Insulin Resistance Atherosclerosis Study. Circulation, 110, 2687-2693.
https://doi.org/10.1161/01.CIR.0000145660.60487.94
[11] Walldius, G., Jungner, I., Holme, I., Aastveit, A.H., Kolar, W. and Steiner, E. (2001) High Apolipoprotein B, Low Apolipoprotein A-I, and Improvement in the Prediction of Fatal Myocardial Infarction (AMORIS Study): A Prospective Study. Lancet, 358, 2026-2033.
https://doi.org/10.1016/S0140-6736(01)07098-2
[12] Yusuf, S., Hawken, S., Ounpuu, S., et al. (2004) Effect of Potentially Modifiable Risk Factors Associated with Myocardial Infarction in 52 Countries (The INTERHEART Study): Case-Control Study. Lancet, 364, 937-952.
https://doi.org/10.1016/S0140-6736(04)17018-9
[13] Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults (2001) Executive Summary of the Third Report of the National Cholesterol Education Pro-gram (NCEP) Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults (Adult Treat-ment Panel III). JAMA, 285, 2486-2497.
https://doi.org/10.1001/jama.285.19.2486
[14] Cui, Y., Blumenthal, R.S., Flaws, J.A., et al. (2001) Non-High-Density Lipoprotein Cholesterol Level as a Predictor of Cardiovascular Disease Mortality. Archives of Internal Medicine, 161, 1413-1419.
https://doi.org/10.1001/archinte.161.11.1413
[15] Pischon, T., Girman, C.J. and Sacks, F.M. (2005) Non-High-Density Lipoprotein Cholesterol and Apolipoprotein B in the Prediction of Coronary Heart Disease in Men. Circulation, 112, 3375-3383.
https://doi.org/10.1161/CIRCULATIONAHA.104.532499
[16] Levinson, S.S. (2002) High Density and Be-ta-Lipoprotein Screening for Risk of Coronary Artery Disease in the Context of New Findings Associated with Reverse Cholesterol Transport. Annals of Clinical & Laboratory Science, 32, 123-136.
[17] Bittner, V., Hardison, R. and Kelsey, S.F. (2002) Non-High-Density Lipoprotein Cholesterol Levels Predict Five-Year Outcome in the Bypass Angioplasty Revascularization Investigation (BARI). Circulation, 106, 2537-2542.
https://doi.org/10.1161/01.CIR.0000038496.57570.06
[18] Kathariya, G. and Aggarwal, J. (2020) Is Evaluation of Non-HDL-C Better than Calculated LDL-C in CAD Patients? MMIMSR Experiences. Indian Heart Journal, 72, 189-191.
https://doi.org/10.1016/j.ihj.2020.05.008
[19] Ridker, P.M., Rifai, N., Cook, N.R., et al. (2005) Non- HDL Cholesterol, Apolipoproteins A-I and B100, Standard Lipid Measures, Lipid Ratios and CRP as Risk Factors for Cardiovascular Disease in Women. JAMA, 294, 326-333.
https://doi.org/10.1001/jama.294.3.326
[20] Grundy, S.M. (2002) Low Density Lipoprotein, Non-High Density Lipoprotein and Apolipoprotein B as Targets of Lipid Lowering Therapy. Circulation, 106, 2526-2529.
https://doi.org/10.1161/01.CIR.0000038419.53000.D6
[21] Emerging Risk Factors Collaboration (2012) Li-pid-Related Markers and Cardiovascular Disease Prediction. JAMA, 307, 2499-2506.
https://doi.org/10.1001/jama.2012.6571
[22] You, J.Y., Zhen, H., Lu, G.P. and Chen, Z.Y. (2020) Association between the Non-High-Density Lipoprotein Cholesterol to High-Density Lipoprote in Cholesterol Ratio and the Risk of Coronary Artery Disease. BioMed Research International, 2020, Article ID: 7146028.
https://doi.org/10.1155/2020/7146028
[23] Valmore, B., Torres, W., Salazar, J., et al. (2018) Non-HDL Cholester-ol Is Better than LDL-C at Predicting Atherosclerotic Cardiovascular Disease Risk Factors Clustering, Even in Subjects with Near-to-Normal Triglycerides: A Report from a Venezuelan Population. F1000Research, 7, 504.
https://doi.org/10.12688/f1000research.13005.1
[24] Wongcharoen, W., Sutthiwutthichai, S., Gunaparn, S., et al. (2017) Wongcharoen Is Non-HDL-Cholesterol a Better Predictor of Long Term Outcome in Patients after Acute Myo-cardial Infarction Compared to LDL-Cholesterol. BMC Cardiovascular Disorders, 17, Article No. 10.
https://doi.org/10.1186/s12872-016-0450-9
[25] Liu, J., Sempos, C., Donahue, R.P., et al. (2005) Joint Distribu-tion of Non-HDL and LDL Cholesterol and Coronary Heart Disease Risk Prediction among Individuals with and without Diabetes. Diabetes Care, 28, 1916-1921.
https://doi.org/10.2337/diacare.28.8.1916
[26] Kastelein, J.J., van der Stieg, W. and Holme, I. (2008) Lipids, Apolipoproteins, and Their Ratios in Relation to Cardiovascular Events with Statin Treatment. Circulation, 117, 3002-3009.
https://doi.org/10.1161/CIRCULATIONAHA.107.713438
[27] Ballantyne, C.M., Raichlen, J.S. and Cain, V.A. (2008) Statin Therapy Alters the Relationship between Apolipoprotein B and Low-Density Lipoprotein Cholesterol and Non-High-Density Lipoprotein Cholesterol Targets in High-Risk Patients: The MERCURY II (Measuring Effective Re-ductions in Cholesterol Using Rosuvastatin) Trial. Journal of the American College of Cardiology, 52, 626-632.
https://doi.org/10.1016/j.jacc.2008.04.052
[28] Robinson, J.G. (2009) Are You Targeting Non-High-Density Lip-oprotein Cholesterol? Journal of the American College of Cardiology, 55, 42-44.
https://doi.org/10.1016/j.jacc.2009.07.056
[29] Iyengar, S.S., Puri, R., Narasingan, S.N., Wangnoo, S.K., Mohan, V., Mohan, J.C., et al. (2016) Lipid Association of India Expert Consensus Statement on Management of Dyslipidemia in Indians 2016: Part 1. Journal of the Association of Physicians of India, 64, 7-52.
[30] Sarwar, N., Danesh, J., Eiriks-dottir, G., Sigurdsson, G., Wareham, N., Bingham, S., Boekholdt, S.M., Khaw, K.T. and Gudnason, V. (2007) Triglyc-erides and the Risk of Coronary Heart Disease: 10,158 Incident Cases among 262,525 Participants in 29 Western Pro-spective Studies. Circulation, 115, 450-458.
https://doi.org/10.1161/CIRCULATIONAHA.106.637793
[31] Di Angelantonio, E., Sarwar, N., Perry, P., Kap-toge, S., Ray, K.K., Thompson, A., et al. (2009) Major Lipids, Apolipoproteins, and Risk of Vascular Disease. JAMA, 302, 1993-2000.
https://doi.org/10.1001/jama.2009.1619
[32] Stensvold, I., Tverdal, A., Urdal, P. and Graff-Iversen, S. (1993) Non-Fasting Serum Triglyceride Concentration and Mortality from Coronary Heart Disease and Any Cause in Middle Aged Norwegian Women. British Medical Journal, 307, 1318-1322.
https://doi.org/10.1136/bmj.307.6915.1318
[33] Stavenow, L. and Kjellström, T. (1999) Influence of Serum Tri-glyceride Levels on the Risk for Myocardial Infarction in 12,510 Middle Aged Males: Interaction with Serum Cholesterol. Atherosclerosis, 147, 243-247.
https://doi.org/10.1016/S0021-9150(99)00190-2
[34] Jeppesen, J., Hein, H.O., Suadicani, P. and Gyntelberg, F. (1998) Triglyceride Concentration and Ischemic Heart Disease: An Eight-Year Follow-Up in the Copenhagen Male Study. Circulation, 97, 1029-1036.
https://doi.org/10.1161/01.CIR.97.11.1029
[35] Hokanson, J.E. and Austin, M.A. (1996) Plasma Triglyceride Level Is a Risk Factor for Cardiovascular Disease Independent of High-Density Lipoprotein Cholesterol Level: A Me-ta-Analysis of Population-Based Prospective Studies. Journal of Cardiovascular Risk, 3, 213-219.
[36] Nordestgaard, B.G., Benn, M., Schnohr, P. and Tybjaerg-Hansen, A. (2007) Nonfasting Triglycerides and Risk of Myocardial Infarc-tion, Ischemic Heart Disease, and Death in Men and Women. JAMA, 298, 299-308.
https://doi.org/10.1001/jama.298.3.299
[37] Freiberg, J.J., Tybjaerg-Hansen, A., Jensen, J.S. and Nordestgaard, B.G. (2008) Nonfasting Triglycerides and Risk of Ischemic Stroke in the General Population. JAMA, 300, 2142-2152.
https://doi.org/10.1001/jama.2008.621
[38] Varbo, A. and Nordestgaard, B.G. (2018) Nonfasting Triglycerides, Low-Density Lipoprotein Cholesterol, and Heart Failure Risk: Two Cohort Studies of 113,554 Individuals. Arterioscle-rosis, Thrombosis, and Vascular Biology, 38, 464-472.
https://doi.org/10.1161/ATVBAHA.117.310269
[39] Nordestgaard, B.G. (2016) Triglyceride-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease: New Insights from Epidemiology, Genetics, and Biology. Circulation Re-search, 118, 547-563.
https://doi.org/10.1161/CIRCRESAHA.115.306249
[40] Klempfner, R., Erez, A., Sagit, B.Z., Goldenberg, I., Fisman, E., Kopel, E., et al. (2016) Elevated Triglyceride Level Is Independently Associated with Increased All-Cause Mortality in Patients with Established Coronary Heart Disease. Circulation: Cardiovascular Quality and Outcomes, 9, 100-108.
https://doi.org/10.1161/CIRCOUTCOMES.115.002104
[41] Miller, M., Cannon, C.P., Murphy, S.A., Qin, J., Ray, K.K. and Braunwald, E. (2008) Impact of Triglyceride Levels beyond Low-Density Lipoprotein Cholesterol after Acute Coronary Syndrome in the PROVE IT-TIMI 22 Trial. Journal of the American College of Cardiology, 51, 724-730.
https://doi.org/10.1016/j.jacc.2007.10.038
[42] Mach, F., Baigent, C., Catapano, A.L., et al. (2020) 2019 ESC/EAS Guidelines for the Management of Dyslipidemias: Lipid Modification to Reduce Cardiovascular Risk. European Heart Journal, 41, 111-118.
https://doi.org/10.1093/eurheartj/ehz455