甲巯咪唑致肝损伤相关因素研究进展
Advances in the Study of Related Factors of Methimazole-Induced Liver Injury
DOI: 10.12677/ACM.2022.12101304, PDF, HTML, XML, 下载: 234  浏览: 391 
作者: 张丽芹:兰山区方城中心卫生院,山东 临沂
关键词: 甲巯咪唑药物性肝损伤药物代谢HLAMethimazole Drugs-Induced Liver Injury (DILI) Drug Metabolism HLA
摘要: 甲巯咪唑(MMI)是目前临床上应用最广泛的抗甲状腺药物之一,肝功能损害是其最常见的不良反应,并成为困扰临床医生治疗甲状腺功能亢进的难关。本文对药物性肝损伤(DILI)机制主要是甲巯咪唑致肝损伤(MMI-DILI)机制进行综述,以帮助临床医生预判应用甲巯咪唑的可能带来的风险,并为进一步研究MMI-DILI机制提供思路。
Abstract: Methimazole (MMI) is currently one of the most widely used clinically anti-thyroid drugs, liver inju-ry is the most common adverse reactions, and it is a serious problem for physicians to treat hyper-thyroidism. However, the mechanism of methimazole-induced hepatotoxicity is not fully understood so far. In this paper, the mechanisms of drugs-induced liver injury (DILI) and methimazole-induced liver damage (MMI-DILI) were reviewed, in order to help clinical doctors to predict drugs’ side effect, and provide ideas for further research on mechanism of MMI-DILI.
文章引用:张丽芹. 甲巯咪唑致肝损伤相关因素研究进展[J]. 临床医学进展, 2022, 12(10): 9020-9023. https://doi.org/10.12677/ACM.2022.12101304

1. 引言

甲状腺功能亢进是常见的内分泌疾病,根据病因可分为弥漫性毒性甲状腺肿(Graves病)、结节性毒性甲状腺肿和甲状腺自主高功能腺瘤等,其中最为常见的是Graves病。Graves病的治疗包括抗甲状腺药物(anti-thyroid drugs, ATD)、放射性碘和手术 [1]。甲巯咪唑(Methimazole, MMI)是治疗Graves病的经典药物之一,其药物不良反应包括肝损害、粒细胞减少、皮疹等,最为常见的是肝功能损伤 [2]。

甲巯咪唑是硫代酰胺化合物,它引起的肝损害多发生在用药1个月内,临床表现如黄疸、肝区疼痛等无特异性且不明显,实验室检查以转氨酶尤其是ALT升高为主,部分病例以胆红素升高为主,停药后可缓解 [3]。目前甲巯咪唑仍是治疗甲亢最常见的药物,其肝毒性具体机制仍不明确。本文综述了目前国内外研究的一些可能机制,包括药物代谢、免疫损伤等。

2. 药物代谢

目前认为甲巯咪唑引起胆汁淤积性肝炎 [4],其中药物代谢产物可能是重要的一环。肝脏是人体大多数药物代谢的器官,包含多种药物代谢酶,最为重要的是细胞色素CYP450系统,参与药物的I相代谢。研究表明,在包括MMI在内的含硫代酰胺的药物代谢中,CYP450系统发挥着重要作用。MMI在肝脏代谢酶的作用下产生两种中间代谢产物——N-甲基硫脲(N-methylthiourea)和乙二醛(glyoxal),其可能与药物所致的肝脏毒性有关 [5]。另一种药物代谢酶——黄素单加氧酶(flavin-containing monooxygenase, FMO)也可能在MMI-DILI中发挥重要作用。FMO3是FMO最重要的亚型,主要参与氧化含N或S的药物,同时,FMO3基因的某些突变降低酶活性从而增强药效 [6]。甲巯咪唑是含S药物,其被FMO直接氧化,其氧化产物次磺酸及亚磺酸也可能参与肝脏损伤 [7]。国内一些学者发现,山东地区汉族人群GD患者的FMO3基因E308G位点多态性影响酶活性而参与甲巯咪唑致肝损害 [8]。

葡萄糖醛酸苷化是增强MMI排泄的重要代谢途径。因此,葡萄糖醛酸糖基转移酶(UGT)的活性降低导致MMI的II相新陈代谢受损,这可能会参与甲巯咪唑所致的肝脏损伤 [9]。另外,MMI的解毒过程需要还原性谷胱甘肽(GSH)参与,GSH的缺乏可能也对肝脏有不利影响 [10]。

此外,药物转运蛋白同样可能在MMI-DILI中发挥重要作用。目前考虑与DILI相关的药物转运蛋白包括胆盐输出泵(BSEP,由ABCC11编码) [11],多重耐药蛋白2 (MRP2,由ABCC2编码) [12] 和有机阴离子转运多肽B1 (OATP1B1,由SLCO1B1编码) [13] 等。最新研究证实,编码OATP1B1的基因SLCO1B1的多态性与MMI-DILI相关 [14]。

3. 免疫损伤

目前认为药物性肝损伤的免疫损伤机制可能为:药物代谢产物作为为半抗原,与血清蛋白结合后被抗原提呈细胞表面的HLA分子识别并处理,提呈给相应T细胞,介导免疫应答。因此,HLA分子及其基因在药物性肝损伤发挥重要作用 [15] [16]。HLA复合体分为I、II、III类,经典的I类包括HLA-A、HLA-B、HLA-C三个功能基因,其编码的HLA I类分子与CD8+T细胞结合;经典的II类包括HLA-DP、HLA-DQ、HLA-DR三个亚区(每个亚区内含有二至多个A、B基因座位),编码HLA-DP分子、HLA-DQ分子、HLA-DR分子,与CD4+T细胞结合 [17]。目前的GWAS研究发现,药物所致的肝损害与人类白细胞抗原(HLA)基因密切相关 [18]。比如,抗结核药物及抗逆转录药物同时产生肝毒性的患者存在HLA-B*57 [19]、HLA-B*35:01等位基因是何首乌致肝损的遗传危险因素 [20]、氟氯西林所致的药物性肝损害的患者存在HLA-B*57:01 [21]、抗真菌药特比萘芬引起肝脏损伤与HLA-A*33:01相关 [22]、中枢作用非阿片样镇痛药氟吡汀所致的肝损害与HLA-DRB*16:01和HLA-DQB1*05:02相关 [23] 等。

因此,甲巯咪唑的代谢产物同样可能作为半抗原参与了免疫应答,从而介导了肝功能损伤。最新的一项病例对照研究表明,HLA-C*03:02在甲巯咪唑所致的肝损害中发挥重要作用 [24]。

4. 总结

药物性肝损伤(DILI)是临床常见且严重的药物不良反应。甲巯咪唑作为临床最常应用的抗甲状腺药物,它所致的肝功能损害为治疗甲状腺功能亢进带来了挑战。甲巯咪唑的代谢是一个连续且复杂的过程,其中需要多种代谢酶、转运蛋白、免疫分子等参与,此过程中任何参与的分子改变都有可能导致肝功能损伤 [7] [25]。

目前研究发现,甲巯咪唑所致的肝功能损伤可能与药物代谢、免疫损伤相关。随着药物基因组学的发展,研究者们还发现了多种与MMI-DILI相关的基因,包括药物代谢基因 [14] 和免疫相关基因 [24]。这可能帮助临床医生在治疗前找到目标基因,从而判断患者是否适合应用甲巯咪唑来治疗甲亢。但是,对于甲巯咪唑致肝功能损伤的具体机制仍不明确,且基因检测造价昂贵,仍需继续寻找简单可行的检验标志物 [26]。

参考文献

[1] McDermott, M. (2020) Hyperthyroidism. Annals of Internal Medicine, 172, ITC49-ITC64.
https://doi.org/10.7326/AITC202004070
[2] 刘超, 蒋琳. 抗甲状腺药物不良反应的再认识[J]. 中华内分泌代谢杂志, 2011, 27(6): 529-532.
[3] 王宁, 王薇, 张红, 袁振芳, 郭晓蕙, 张俊清. 抗甲状腺药物与甲状腺功能亢进症所致肝功能异常的临床分析[J]. 中国临床药理学杂志, 2018, 34(3): 244-247.
[4] Woeber, K. (2002) Me-thimazole-Induced Hepatotoxicity. Endocrine Practice, 8, 222-224.
https://doi.org/10.4158/EP.8.3.222
[5] Heidari, R., Babaei, H. and Eghbal, M. (2013) Mechanisms of Methima-zole Cytotoxicity in Isolated Rat Hepatocytes. Drug and Chemical Toxicology, 36, 403-411.
https://doi.org/10.3109/01480545.2012.749272
[6] 巩政, 王旗. 黄素单加氧酶3的基因多态性及其在药物代谢和毒性中的作用[J]. 中国中药杂志, 2015, 40(14): 2701-2705.
[7] Heidari, R., Niknahad, H., Jamshidzadeh, A., Eghbal, M.A. and Abdoli. N. (2015) An Overview on the Proposed Mechanisms of Antithyroid Drugs-Induced Liver Injury. Advanced Pharmaceutical Bulletin, 5, 1-11.
https://doi.org/10.5681/apb.2015.001
[8] 殷静, 王芳, 王永艳, 汤洪策, 孙纯, 阎胜利. 甲巯咪唑致肝损害与黄素单加氧酶3E308G位点基因多态性的相关性研究[J]. 中国药学杂志, 2014. 49(15): 1338-1341.
[9] Li, X., Yang, J., Jin, S., Dai, Y., Fan, Y., Fan, X., et al. (2020) Mechanistic Examination of Methimazole-Induced Hepatotoxi-city in Patients with Grave’s Disease: A Metabolomic Approach. Archives of Toxicology, 94, 231-244.
https://doi.org/10.1007/s00204-019-02618-z
[10] Heidari, R., Niknahad, H., Jamshidzadeh, A. and Abdoli, N. (2014) Factors Affecting Drug-Induced Liver Injury: Antithyroid Drugs as Instances. Clinical and Molecular Hepatolo-gy, 20, 237-248.
https://doi.org/10.3350/cmh.2014.20.3.237
[11] Lang, C., Meier, Y., Stieger, B., Beuers, U., Lang, T., Kerb, R., et al. (2007) Mutations and Polymorphisms in the Bile Salt Export Pump and the Multidrug Resistance Protein 3 Associat-ed with Drug-Induced Liver Injury. Pharmacogenet Genomics, 17, 47-60.
https://doi.org/10.1097/01.fpc.0000230418.28091.76
[12] Choi, J.H., Ahn, B.M., Yi, J., Lee, J.H., Lee, J.H., Nam, S.W., et al. (2007) MRP2 haplotypes Confer Differential Susceptibility to Toxic Liver Injury. Pharmacogenetics and Genomics, 17, 403-415.
https://doi.org/10.1097/01.fpc.0000236337.41799.b3
[13] Li, L.M., Chen, L., Deng, G.H., Tan, W.T., Dan, Y.J., Wang, R.Q., et al. (2012) SLCO1B1 *15 Haplotype Is Associated with Rifampin-Induced Liver Injury. Molecular Med-icine Reports, 6, 75-82.
https://doi.org/10.3892/mmr.2012.900
[14] Jin, S., Li, X., Fan, Y., Fan, X., Dai, Y., Lin, H., et al. (2019) Associ-ation between Genetic Polymorphisms of SLCO1B1 and Susceptibility to Methimazole-Induced Liver Injury. Basic & Clinical Pharmacology & Toxicology, 125, 508-517.
https://doi.org/10.1111/bcpt.13284
[15] Stephens, C. and Andrade, R.J. (2020) Genetic Predisposition to Drug-Induced Liver Injury. Clinics in Liver Disease, 24, 11-23.
https://doi.org/10.1016/j.cld.2019.08.003
[16] Grove, J. and Aithal, G. (2015) Human Leukocyte Antigen Genetic Risk Factors of Drug-Induced Liver Toxicology. Expert Opinion on Drug Metabolism & Toxicology, 11, 395-409.
https://doi.org/10.1517/17425255.2015.992414
[17] Fan, W., Shiao, M.S., Hui, R.C., Su, S.C., Wang, C.W., Chang, Y.C., et al. (2017) HLA Association with Drug-Induced Adverse Reactions. Journal of Immunology Research, 2017, Article ID: 3186328.
https://doi.org/10.1155/2017/3186328
[18] Ma, Q., Yang, W., Wang, L., Ma, L., Jing, Y., Wang, J., et al. (2020) Research Advances in the Association of Drug- Induced Liver Injury with Polymorphisms in Human Leukocyte Antigen. International Immunopharmacology, 81, Article ID: 106037.
https://doi.org/10.1016/j.intimp.2019.106037
[19] Petros, Z., Kishikawa, J., Makonnen, E., Yimer, G., Habtewold, A. and Aklillu, E. (2017) HLA-B* 57 Allele Is Associated with Concomitant Anti-Tuberculosis and Antiretroviral Drugs Induced Liver Toxicity in Ethiopians. Frontiers in Pharmacology, 8, Article No. 90.
https://doi.org/10.3389/fphar.2017.00090
[20] Li, C., Rao, T., Chen, X., Zou, Z., Wei, A., Tang, J., et al. (2019) HLA-B* 35:01 Allele Is a Potential Biomarker for Predicting Polygonum multiflorum-Induced Liver Injury in Humans. Hepatology, 70, 346-357.
https://doi.org/10.1002/hep.30660
[21] Nicoletti, P., Aithal, G.P., Chamberlain, T.C., Coulthard, S., Alshabeeb, M., Grove, J.I., et al. (2019) Drug-Induced Liver Injury due to Flucloxacillin: Relevance of Multiple Human Leukocyte An-tigen Alleles. Clinical Pharmacology and Therapeutics, 106, 245-253.
https://doi.org/10.1002/cpt.1375
[22] Fon-tana, R., Cirulli, E.T., Gu, J., Kleiner, D., Ostrov, D., Phillips, E., Schutte, R., et al. (2018) The Role of HLA-A*33:01 in Patients with Cholestatic Hepatitis Attributed to Terbinafine. Journal of Hepatology, 69, 1317-1325.
https://doi.org/10.1016/j.jhep.2018.08.004
[23] Nicoletti, P., Werk, A.N., Sawle, A., Shen, Y., Urban, T.J., Coul-thard, S.A., et al. (2016) HLA-DRB1*16: 01-DQB1*05: 02 Is a Novel Genetic Risk Factor for Flupirtine-Induced Liver Injury. Pharmacogenetics and Genomics, 26, 218-224.
https://doi.org/10.1097/FPC.0000000000000209
[24] Li, X., Jin, S., Fan, Y., Fan, X., Tang, Z., Cai, W., et al. (2019) Association of HLA-C*03:02 with Methimazole-Induced Liver Injury in Graves’ Disease Patients. Biomedicine & Pharmacotherapy, 117, Article ID: 109095.
https://doi.org/10.1016/j.biopha.2019.109095
[25] Akmal, A. and Kung, J. (2014) Propylthiouracil, and Methi-mazole, and Carbimazole-Related Hepatotoxicity. Expert Opinion on Drug Safety, 13, 1397-1406.
https://doi.org/10.1517/14740338.2014.953796
[26] Clare, K., Miller, M. and Dillon, J. (2017) Genetic Factors Influencing Drug-Induced Liver Injury: Do They Have a Role in Prevention and Diagnosis? Current Hepatology Reports, 16, 258-264.
https://doi.org/10.1007/s11901-017-0363-9