肠道菌群与冠心病的相关关系研究
Study on the Relationship between Intestinal Flora and Coronary Heart Disease
DOI: 10.12677/ACM.2022.1291274, PDF, HTML, XML, 下载: 238  浏览: 437 
作者: 段豪亮:青海大学,青海 西宁
关键词: 肠道菌群冠心病联系Intestinal Flora Coronary Heart Disease Connection
摘要: 人体内居住着大量的微生物,其中大部分位于胃肠道,人类的胃肠道中有着1013~1014种细菌(即肠道菌群),肠道菌群在人体形成一个庞大而复杂的微生态系统。在参与能量代谢、调节免疫、营养循环及人类健康和疾病方面发挥着重要的作用。人体肠道系统的变化会影响新陈代谢,并可能导致疾病的发生。近年来,国内外研究发现肠道菌群在心脑血管尤其与冠心病密切相关,一些研究已经确定了冠心病患者肠道微生物群组成和代谢的特征性变化。肠道菌群及代谢产物在冠心病诊断、治疗、预后方面也起着重要作用。或许在不久的将来,肠道菌群在疾病的诊断、治疗、预防等方面的作用将会对人类医学进步产生重要意义。此篇文章阐述了近年来的一些相关研究,为下一步研究肠道菌群与冠心病的关系及预防冠心病的发生、发展提供一些新思路、新想法。
Abstract: There are a large number of microorganisms living in the human body, most of which are located in the gastrointestinal tract. There are 1013~1014 kinds of bacteria (intestinal flora) in the human gas-trointestinal tract. Intestinal floras form a huge and complex micro-ecosystem in the human body. It plays an important role in participating in energy metabolism, regulating immunity, nutrient cy-cling and human health and disease. Changes in the human gut system can affect metabolism and can lead to disease. In recent years, domestic and foreign studies have found that the gut microbiota is closely related to coronary heart disease, especially in the cardiovascular and cerebrovascular disease. Some studies have identified the characteristic changes in the composition and metabolism of the gut microbiota in patients with coronary heart disease. Intestinal flora and metabolites also play an important role in the diagnosis, treatment and prognosis of coronary heart disease. Perhaps in the near future, the role of gut microbiota in the diagnosis, treatment, and prevention of diseases will be of great significance to the progress of human medicine. This article describes some related research in recent years, and provides some new ideas for the next step to study the relationship between intestinal flora and coronary heart disease and to prevent the occurrence and develop-ment of coronary heart disease.
文章引用:段豪亮. 肠道菌群与冠心病的相关关系研究[J]. 临床医学进展, 2022, 12(9): 8823-8830. https://doi.org/10.12677/ACM.2022.1291274

1. 肠道菌群概述

人类的肠道中含有数以亿计的细菌。这些细菌构成了人体内最大的微生物群,称为肠道微生物群 [1]。肠道微生物群是一个复合群。这些微生物编码的基因至少是人类基因组的150倍 [2] [3]。人体肠道菌群是一个多样而复杂的生态环境系统,栖息着数千种微生物,而这些微生物又与宿主共同进化,其代谢活动及与免疫系统的相互作用常影响到人体的新陈代谢、疾病和健康 [4]。肠道菌群组成成分受到很多因素的影响如饮食习惯、季节性、生活方式、压力、抗生素的使用或疾病。健康的宿主微生物平衡必须得到尊重,以最佳地维持肠道屏障和免疫系统功能,从而防止疾病发展 [5]。对于健康人来说,肠道微生物群主要由有益细菌和有害菌及中性菌组成,有益菌的含量最高,而有害细菌最少。这三种细菌的成分及丰度是保持动态平衡的,以维持宿主的健康状态。然而,某些疾病可以通过减少有益细菌数量和增加有害细菌的数量明显打破原有的肠道菌群状态。在菌群失衡的状态下,会影响宿主生长、发育、也会导致一些疾病的发生,这可能与心血管疾病的发生密切相关,如肥胖、高血压、糖耐量异常、冠状动脉粥样硬化、冠心病。随着老龄化社会的来临及人民生活水平的提高,冠心病的发病率会激增,所以防治心血管疾病已经是当务之急。大量国内外研究表明高血压、吸烟、糖尿病、缺乏运动、肥胖、高血脂和家族史都会增加冠心病的风险 [6]。

2. 肠道菌群与冠心病高危因素的关系

2.1. 肠道菌群与肥胖的关系

2004年,Bäckhed等人 [7] 首次报告肠道微生物群与肥胖相关,因为他们发现肠道微生物群调节实验室小鼠的脂肪储存。这些作者在控制食物摄入和能量消耗的条件下,比较了无菌(GF)小鼠在肠道微生物群移植前后的脂肪总量。2周后,GF小鼠体内的脂肪总量增加了57%,表明肠道微生物群参与调节脂肪能量代谢。在人和小鼠中都发现了与肥胖相关的类似肠道微生物群。也就是说,在肥胖小鼠和肥胖人体肠道微生物群中,厚壁菌与类杆菌的比例都较高 [8] [9]。Bäckhed等人 [6] 将遗传性肥胖小鼠的肠道微生物群移植到GF小鼠体内,2周后,GF小鼠体内的脂肪储备显著高于对照组。将肥胖肠道菌群或瘦肉肠道菌群移植到GF小鼠后,肥胖肠道菌群显著增加了GF小鼠的体重。他们的结果表明,肥胖微生物群从饮食中获取能量的能力增强。这一发现进一步证实了肠道微生物群与肥胖之间的关系 [7]。肠道微生物群发酵宿主无法消化的物质,将其转化为短链脂肪酸(SCFA)等小分子,并为宿主提供能量 [8] [10] [11]。肠道微生物群抑制禁食诱导脂肪细胞因子(FIAF)的表达,增加脂蛋白脂肪酶的表达,并促进脂肪细胞中甘油三酯的储存(乙酰辅酶A羧化酶[ACC]和脂肪酸合成酶[FAS]是关键调节因子),从而诱导肥胖 [7]。肠道微生物群还调节内源性大麻素(eCB)系统。eCB调节肠道通透性以及紧密连接蛋白在肠粘膜中的定植和分布,导致肠道通透性增强,脂多糖和炎症反应增加,导致肥胖 [12] [13] [14]。eCB系统由激活称为大麻素受体1和2 (CB1R和CB2R)的特异性G蛋白偶联受体的内源性脂质组成。不同的研究表明,ECB在啮齿动物和人类的脂肪组织代谢中发挥作用,但这种调节的确切分子机制仍在研究中。

2.2. 肠道菌群与糖尿病(不分类型)的关系

糖尿病的发病机制与环境因素和宿主遗传学有关。作为一个重肠道菌群作为一个重要的环境因素与糖尿病密切相关 [15]。copri普氏杆菌和外阴拟杆菌是支链氨基酸合成与胰岛素抵抗之间关联的驱动因素。胰岛素抵抗个体的血清代谢组以支链氨基酸(BCAAs)水平升高为特征。已经证明,copri可诱导小鼠胰岛素抵抗,加重糖耐量,并增加循环中的支链氨基酸水平。copri普氏菌可引起胰岛素抵抗,并增加循环支链氨基酸水平,从而介导糖尿病 [16]。许多研究表明,肠道微生物群通过影响胰岛素抵抗和胰岛素分泌紊乱促进糖尿病。肠道微生物群与2型糖尿病之间的重要联系是Toll样受体(TLR)。肠道微生物群的变化通过调节TLR4参与胰岛素抵抗诱导的肥胖 [17]。来自肠道微生物群的脂多糖(LPS)通过肠道吸收进入血液循环,这一过程被称为代谢性内毒素血症。TLR4缺失对胰岛素抵抗的保护作用与其抑制代谢性内毒素血症的信号转导有关 [18]。LPS可促进胰岛B细胞凋亡,减少胰岛素分泌 [18]。肠道菌群失衡会导致短链脂肪酸(SCFA)紊乱,短链脂肪酸在调节肠道菌群、维持体液平衡、向肠上皮提供能量、抑制炎症因子形成和促进肠粘膜修复等方面发挥重要作用 [19]。SCFA增加可诱导TLR4信使RNA表达显著增加,并增强活化B细胞(NF-κB)的核因子κ轻链增强子与白细胞介素(IL)-6的结合 [20]。与G蛋白偶联受体41 \/ 43结合的SCFA也会影响抗炎和脑肠肽激素分泌功能,导致胰岛素抵抗和胰岛细胞功能障碍 [21],并导致胰岛素样生长因子-1 (GLP-1)分泌障碍(例如,GLP-1可降低血糖和胰岛细胞凋亡) [22] [23]。此外,肠道微生物群结构和稳态的变化会改变胆汁酸转化,从而导致TGR5和法尼类X受体(FXR) [24] 信号通路异常。这种变化会导致代谢紊乱,最终导致糖尿病。

2.3. 肠道菌群与冠状动内皮功能及脉粥样硬化的关系

最近的基于人体和人体组织的关联研究表明,肠道微生物组与动脉粥样硬化疾病的患病率之间存在密切联系 [25] [26]。人类肠道微生物组的物种平衡和多样性(例如,厚壁菌门与类杆菌门的患病率)的差异与动脉粥样硬化和斑块稳定性的发展有关 [27]。内皮功能受损发生在动脉粥样硬化之前,并且能预测患有和未患有普遍动脉粥样硬化疾病的患者未来的不良心血管事件的发生率。目前为止,关于对肠道微生物干预是否能改善心血管不良事件高危人群血管内皮功能的人类数据非常有限。Koren等 [28] 在心血管疾病患者的动脉粥样硬化斑块中观察到各种细菌DNA,并发现它们与来自同一受试者口腔和肠道的细菌相关。这项研究最先提供了肠道菌群与动脉粥样硬化相关的病因证据。在动脉粥样硬化小鼠模型中,植物乳杆菌可减少LPS介导的动脉粥样硬化斑块炎症 [29]。有研究表明,敲除小鼠载脂蛋白E和NOD1后可显著降低动脉粥样硬化的发展 [30]。科学家通过元基因组测序发现,动脉粥样硬化患者编码PG合成的基因富集 [31]。Laman等 [32] 在动脉粥样硬化中检测到了促炎性细菌PG,并发现它与易损斑块相关,这些证据说明肠道菌群能够影响动脉粥样硬化的进程。

2.4. 肠道菌群与高血压的关系

高血压的发生、发展与很多因素密切相关,重要的是与饮食中的高盐摄入呈正相关,即高盐性高血压。最近的研究表明,高血压患者和动物的肠道菌群发生了显著变化,包括产生短链脂肪酸(SCFA)的细菌减少,促炎细菌和机会性病原体增加 [33] [34]。通过移植高血压患者或动物的肠道微生物群,健康动物的血压可以显著升高 [35] [36]。一些益生菌或益生元也可以降低高血压患者或动物的血压 [34] [35] [36] [37]。然而,关于肠道菌群与高血压关系的机制研究仍然很少。最近,Wilck等人发现高盐饮食可显著减少高血压FVB \/ N小鼠的肠道鼠乳杆菌,而鼠乳杆菌可代谢饮食中的色氨酸生成吲哚,从而抑制T淋巴细胞分化为Th17细胞,减轻炎症并降低血压 [38]。然而,高血压的发病机制非常复杂。除了炎症外,肠道菌群还应通过其他机制调节血压,如葡萄糖/盐皮质激素。然而,这些问题迄今尚未阐明。根据已有研究报道,抗生素治疗可有效降低难治性高血压患者的血压,停止抗生素治疗后,降压效果仍能维持6个月 [39]。我们还发现,四倍抗生素治疗可显著降低高盐性高血压(High Salt-Induced Hypertension)大鼠的血压,并在接受健康大鼠粪便微生物群后进一步降低血压。然而,健康大鼠的血压在四倍抗生素治疗后升高,在接受hSIH大鼠的肠道菌群后进一步升高。这些结果表明,抗生素对血压的影响应与肠道菌群的组成密切相关 [40],如果肠道菌群组成不同,相同的抗生素可能会产生相反的影响。高血压大鼠肠道菌群中以有害细菌为主,因此抗生素对有害细菌的影响更为优越,主要起到降压作用。健康大鼠肠道菌群的移植进一步改善了高血压大鼠的肠道生态失调,导致有害细菌减少,有益细菌增加,血压进一步降低。然而,有益细菌在健康大鼠的肠道菌群中占主导地位,因此抗生素主要影响它们,并随着血压的升高破坏肠道菌群的稳态。移植高血压大鼠的肠道菌群进一步扰乱了肠道菌群平衡,即具有降压作用的有益细菌减少,具有促高血压作用的有害细菌增加,导致血压进一步升高。然而关于肠道菌群与高血压的关系的内在机制十分复杂,还有待于进一步研究。

3. 肠道菌群及其代谢产物与冠心病的关系

TOYA等 [41] 选取53例晚期CHD患者和53例年龄、性别、种族和体质指数(BMI)匹配的对照组,采用测序检测其粪肠材料的16SrDNA的V3~V5区,分析比较CHD患者和对照组之间的肠道微生物组成,结果显示,CAD患者的α多样性(包括菌群丰富度指数Chao1和香农–威纳指数)明显降低,这项研究深入揭示了肠道微生物组成和CHD之间的联系。另有研究表明,CHD患者的肠道菌群失衡,副细菌和柯林斯菌的丰度明显降低。表明CHD的发生、发展与肠道菌群失调有密切关系。但上述结果仍需在人体研究和动物实验中进一步验证,以进一步明确肠道菌群与CHD之间的内在联系。肠道菌群使用诸如卵磷脂、胆碱、甜菜碱和肉碱等营养物质作为碳源,经过人体代谢,形成氧化三甲胺(TMAO) [42]。TMAO与CHD的相关性在多项研究中心已经得到充分证实 [43] [44] [45] [46]。

4. 肠道菌群对冠心病的防治

4.1. 生活方式调控肠道菌群

饮食是肠道微生物群组成的关键调节剂之一,它直接影响宿主体内平衡和生物过程,人类宿主与其细菌共生体之间的这种关键互惠关系可以通过新的饮食习惯改变,可能影响肠道屏障功能和免疫系统。CAVALCANTE等 [47] 实验显示,高脂饮食喂养的大鼠肠道中有益菌群乳酸杆菌计数明显减少;反过来,肠道菌群及其代谢产物的失衡使胆固醇的逆向转运减少,导致动脉粥样硬化加重 [48],所以重塑血脂异常人群的肠道菌群,对预防CHD尤为必要。已有研究证实,健身可以增加有益微生物的数量,丰富菌群多样性,促进共生的发展菌,平衡肠道菌群,从而恢复血脂的正常代谢 [49]。过量摄入高脂和高胆固醇饮食会引起机体营养过剩,继而引发慢性低度炎性反应和血液中活性氧增加,影响肠道菌群平衡,改变肠道菌群的数目、比例,导致肥胖的发生,从而加速心血管疾病的进展,所以低脂饮食对于肠道菌群的平衡极为关键。此外大量研究表明,高盐饮食是高血压的重要独立危险因素 [50]。hSIH是许多高血压患者的病因,目前认为其发病机制主要与肾钠潴留、血容量升高和外周血管阻力增加有关 [51]。高盐饮食降低肠内脆弱双歧杆菌及其代谢产物氨基酸的丰度,从而减弱氨基酸对肠皮质酮产生的抑制作用,导致皮质酮水平升高。然而高血压也是CHD的重要发病诱因。所以低盐饮食也能延缓冠心病的进程。此外,苹果及一些粗粮的摄入,可以增加机体如双歧杆菌和乳杆菌的活性和促进其生长,尤其能延缓冠状动脉粥样硬化的进展。

4.2. 中西医调控肠道菌群及代谢产物防治冠心病

大量研究报告指出,中药对肠道菌群的组成和代谢具有重大影响。肠道微生物可以释放信号物质,促进宿主消化、免疫、代谢和神经生物学功能的发展和维持,因此,有望将这些信号物质转化为药物 [52]。目前,肠道微生物已成为探索中药治疗疾病机制和方法的新前沿,通过不同的药物来恢复肠道微生物群落,对于具有同样发生肠道失调的不同疾病会有较满意的治疗效果。有证据表明中草药可以保护肠黏膜屏障,调节肠道菌群,恢复肠道微生物的多样性 [53]。例如,猴头菌菌丝多糖通过提高短链脂肪酸水平,调节肠道菌群组成,抑制GPR41和GPR43的表达来改善UC大鼠 [54]。灵芝多糖的研究发现其生物活性效应中的关键作用,可能是通过调节肠道菌群来实现的,并且提高了大鼠肠道短链脂肪酸和分泌免疫球蛋白a的浓度 [55]。总体而言,上述研究证明了传统中草药可以调节肠道微生态及其代谢产物并增加肠道菌群的多样性,从而预防及改善冠心病的发生及发展。

近年来,益生元和益生菌的广泛医用价值已被各个科室的医生所熟知,并被广泛用于临床患者的治疗中。益生菌用于治疗冠心病主要体现在胆固醇的分解作用上,一方面分泌酸性物质来分解胆汁酸,携带胆固醇的胆汁酸都被益生菌分解,就不会有多余的胆固醇囤积在血管内。另一方面,益生菌以粪便的形式排出血液中多余的胆固醇。此外,益生菌可产生降低血压的物质,从而有效降低血压,表明益生菌可有效预防和抵抗冠心病。

5. 总结与展望

综上所述,肠道菌群与CHD的发生、发展关系密切,并可通过饮食干预、口服中药制剂、益生菌添加,来调控肠道菌群及其代谢产物,这为CHD的防治提供了新的治疗思路。相信在不久的将来,随着对肠道菌群的深入研究,目标在于控制特定的菌种和靶向确定的微生物途径来科学阐释肠道菌群与冠心病的相关机制。同时,新一代中草药、新一代益生菌为冠心病的治疗开辟新篇章。

参考文献

[1] Belkaid, Y. and Hand, T.W. (2014) Role of the Microbiota in Immunity and Inflammation. Cell, 157, 121-141.
https://doi.org/10.1016/j.cell.2014.03.011
[2] Qin, J., et al. (2010) A Human Gut Microbial Gene Catalogue Es-tablished by Metagenomic Sequencing. Nature, 464, 59-65.
https://doi.org/10.1038/nature08821
[3] Li, J., et al. (2014) An Integrated Catalog of Reference Genes in the Human Gut Microbiome. Nature Biotechnology, 32, 834-841.
https://doi.org/10.1038/nbt.2942
[4] Fassarella, M., Blaak, E.E., Penders, J., et al. (2021) Gut Microbiome Stabil-ity and Resilience: Elucidating the Response to Perturbations in Order to Modulate Gut Health. Gut, 70, 595-605.
https://doi.org/10.1136/gutjnl-2020-321747
[5] Rinninella, E., Cintoni, M., Raoul, P., et al. (2019) Food Compo-nents and Dietary Habits: Keys for a Healthy Gut Microbiota Composition. Nutrients, 11, Article No. 2393.
https://doi.org/10.3390/nu11102393
[6] Fihn, S.D., Gardin, J.M., Abrams, J., Berra, K., Blankenship, J.C., Dallas, A.P., et al. (2012) 2012 ACCF/AHA/ACP/ AATS/PCNA/SCAI/STS Guideline for the Diagnosis and Management of Patients with Stable Ischemic Heart Disease: A Report of the American College of Cardiology Foundation/American Heart Association T Ask Force on Practice Guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and In-terventions, and Society of Thoracic Surgeons. JACC: Journal of the American College of Cardiology, 60, e44-e164.
[7] Backhed, F., et al. (2004) The Gut Microbiota as an Environmental Factor That Regulates Fat Storage. Proceedings of the National Academy of Sciences of the United States of America, 101, 15718-15723.
https://doi.org/10.1073/pnas.0407076101
[8] Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R. and Gordon, J.I. (2006) An Obesity-Associated Gut Microbiome with Increased Capacity for Energy Harvest. Na-ture, 444, 1027-1031.
https://doi.org/10.1038/nature05414
[9] Ley, R.E., Turnbaugh, P.J., Klein, S. and Gordon, J.I. (2006) Microbial Ecology: Human Gut Microbes Associated with Obesity. Nature, 444, 1022-1023.
https://doi.org/10.1038/4441022a
[10] den Besten, G., Lange, K., Havinga, R., van Dijk, T.H., et al. (2013) Gut-Derived Short-Chain Fatty Acids Are Vividly As-Similated into Host Carbohydrates and Lipids. The American Journal of Physiology-Gastrointestinal and Liver Physiology, 305, G900.
https://doi.org/10.1152/ajpgi.00265.2013
[11] Flint, H.J., Scott, K.P., Duncan, S.H., Louis, P. and Forano, E. (2012) Microbial Degradation of Complex Carbohydrates in the Gut. Gut Microbes, 3, 289-306.
https://doi.org/10.4161/gmic.19897
[12] Geurts, L., Lazarevic, V., et al. (2011) Altered Gut Microbiota and Endo-cannabinoid Systemtone in Obese and Diabetic Leptin-Resistant Mice: Impact on Apelin Regulation in Adipose Tissue. Frontiers in Microbiology, 2, Article No. 149.
https://doi.org/10.3389/fmicb.2011.00149
[13] Cani, P.D., Osto, M., Geurts, L. and Everard, A. (2012) Involvement of Gut Micro-Biota in the Development of Low- Grade Inflammation and Type 2 Diabetes Associated with Obesity. Gut Microbes, 3, 279-288.
https://doi.org/10.4161/gmic.19625
[14] Muccioli, G.G., Naslain, D., Bäckhed, F., Reigstad, C.S., Lambert, D.M., Delzenne, N.M., et al. (2010) The Endocannabinoid System Links Gut Micro-Biota to Adipogenesis. Molecular Systems Biology, 6, Article No. 392.
https://doi.org/10.1038/msb.2010.46
[15] Noble, D., Mathur, R., Dent, T., Meads, C. and Greenhalgh, T. (2011) Risk Models and Scores for Type 2 Diabetes: Systematic Review. BMJ, 343, d7163.
https://doi.org/10.1136/bmj.d7163
[16] Pedersen, H.K., Gudmundsdottir, V., Nielsen, H.B., Hyotylainen, T., Niel-sen, T., Jensen, B.A.H., et al. (2016) Human Gut Microbes Impact Host Serum Metabolome and Insulin Sensitivity. Nature, 535, 376-381.
https://doi.org/10.1038/nature18646
[17] Cani, P.D., Bibiloni, R., et al. (2008) Changes in Gut Microbiota Control Metabolic Endotoxemia Induced Inflammation in High-Fat Diet-Induced Obesity and Diabetes in Mice. Diabetes, 57, 1470-1481.
https://doi.org/10.2337/db07-1403
[18] Amyot, J., Semache, M., Ferdaoussi, M., Fontés, G. and Poitout, V. (2012) Lipopolysaccharides Impair Insulin Gene Expression in Isolated Is-Lets of Langerhans via Toll-Like Receptor-4 and NF-kappaB Signalling. PLOS ONE, 7, e36200.
https://doi.org/10.1371/journal.pone.0036200
[19] Tolhurst, G., Heffron, H., Lam, Y.S., Parker, H.E., Habib, A.M., et al. (2012) Short-Chain Fatty Acids Stimulate Glucagon-Like Peptide-1 Secretion via the G-Protein-Coupled Receptor FFAR2. Diabetes, 61, 364-371.
https://doi.org/10.2337/db11-1019
[20] Shi, H., Kokoeva, M.V., Inouye, K., Tzameli, I., Yin, H. and Flier, J.S. (2006) TLR4 Links Innate Immunity and Fatty Acid-Induced Insulin Resistance. Journal of Clinical Investigation, 116, 3015-3025.
https://doi.org/10.1172/JCI28898
[21] Wang, T.J., et al. (2011) Metabolite Profiles and the Risk of Developing Diabetes. Nature Medicine, 17, 448-453.
https://doi.org/10.1038/nm.2307
[22] El-Mesallamy, H.O., et al. (2011) Vaspin and Visfatin/Nampt Are Interesting Interrelated Adipokines Playing a Role in the Pathogenesis of Type 2 Diabetes Mellitus. Metabolism, 60, 63-70.
https://doi.org/10.1016/j.metabol.2010.04.008
[23] Perino, A., Pols, T.W.H., Nomura, M., Stein, S., Pellicciari, R. and Schoonjans, K. (2014) TGR5 Reduces Macrophage Migration through mTOR-Induced C/EBPbeta Differential Translation. Journal of Clinical Investigation, 124, 5424- 5436.
https://doi.org/10.1172/JCI76289
[24] Fang, S., et al. (2015) Intestinal FXR Agonism Promotes Adipose Tissue Browning and Reduces Obesity and Insulin Resistance. Nature Medicine, 21, 159-165.
https://doi.org/10.1038/nm.3760
[25] Ettinger, G., MacDonald, K., Reid, G. and Burton, J.P. (2014) The Influence of the Human Microbiome and Probiotics on Cardiovascular Health. Gut Microbes, 5, 719-728.
https://doi.org/10.4161/19490976.2014.983775
[26] Griffin, J.L., Wang, X. and Stanley, E. (2015) Does Our Gut Microbiome Predict Cardiovascular Risk? A Review of the Evidence from Metabolomics. Circula-tion-Cardiovascular Genetics, 8, 187-191.
https://doi.org/10.1161/CIRCGENETICS.114.000219
[27] Emoto, T., Yamashita, T., Sasaki, N., Hirota, Y., Hayashi, T., So, A., Kasahara, K., Yodoi, K., Matsumoto, T., Mizoguchi, T., Ogawa, W. and Hirata, K. (2016) Analysis of Gut Microbiota in Coronary Artery Disease Patients: A Possible Link between Gut Microbiota and Coronary Artery Disease. Journal of Atherosclerosis and Thrombosis, 23, 908-921.
https://doi.org/10.5551/jat.32672
[28] Tang, W., Bäckhed, F., Landmesser, U., et al. (2019) Intestinal Microbiota in Cardiovascular Health and Disease: JACC State-of-the-Art Review. JACC: Journal of the American College of Cardiol-ogy, 73, 2089-2210.
https://doi.org/10.1016/j.jacc.2019.03.024
[29] Kim, J.Y., Kim, H., Jung, B.J., Kim, N.R., Park, J.E. and Chung, D.K. (2013) Lipoteichoic Acid Isolated from Lactobacillus plantarum Suppresses LPS-Mediated Atherosclerotic Plaque Inflammation. Molecules and Cells, 35, 115-124.
https://doi.org/10.1007/s10059-013-2190-3
[30] Kanno, S., Nishio, H., Tanaka, T., et al. (2015) Activation of an Innate Immune Receptor, Nod1, Accelerates Atherogenesis in Apoe-/-mice. The Journal of Immunology, 194, 773-780.
https://doi.org/10.4049/jimmunol.1302841
[31] Karlsson, F.H., Fåk, F., Nookaew, I., et al. (2012) Symptomatic Atherosclerosis Is Associated with an Altered Gut Metagenome. Nature Communications, 3, Article No. 1245.
https://doi.org/10.1038/ncomms2266
[32] Laman, J.D., Schoneveld, A.H., Moll, F.L., et al. (2002) Significance of Peptidoglycan, a Proinflammatory Bacterial Antigen in Atherosclerotic Arteries and Its Association with Vulnerable Plaques. The American Journal of Cardiology, 90, 119-123.
https://doi.org/10.1016/S0002-9149(02)02432-3
[33] Santisteban, M.M., Qi, Y., Zubcevic, J., et al. (2017) Hyper-tension-Linked Pathophysiological Alterations in the Gut. Circulation Research, 120, 312-323.
https://doi.org/10.1161/CIRCRESAHA.116.309006
[34] Marques, F.Z., Nelson, E., Chu, P.Y., Horlock, D., Fiedler, A., Ziemann, M., Tan, J.K., Kuruppu, S., Rajapakse, N.W., El-Osta, A., Mackay, C.R. and Kaye, D.M. (2017) High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice. Circulation, 135, 964-977.
https://doi.org/10.1161/CIRCULATIONAHA.116.024545
[35] Durgan, D.J., Ganesh, B.P., Cope, J.L., Ajami, N.J., Phillips, S.C., Petrosino, J.F., Hollister, E.B. and Bryan, R.M. (2016) Role of the Gut Microbiome in Obstructive Sleep Apnea-Induced Hypertension. Hypertension, 67, 469-474.
https://doi.org/10.1161/HYPERTENSIONAHA.115.06672
[36] Li, J., Zhao, F., Wang, Y., et al. (2017) Gut Mi-crobiota Dysbiosis Contributes to the Development of Hypertension. Microbiome, 5, Article No. 14.
https://doi.org/10.1186/s40168-016-0222-x
[37] Khalesi, S., Sun, J., Buys, N. and Jayasinghe, R. (2014) Effect of Probiotics on Blood Pressure: A Systematic Review and Meta-Analysis of Randomized, Controlled Trials. Hypertension, 64, 897-903.
https://doi.org/10.1161/HYPERTENSIONAHA.114.03469
[38] Wilck, N., Matus, M.G., Kearney, S.M., et al. (2017) Salt-Responsive Gut Commensal Modulates TH17 Axis and Disease. Nature, 551, 585-589.
https://doi.org/10.1038/nature24628
[39] Qi, Y.F., Aranda, J.M., Rodriguez, V., Raizada, M.K. and Pepine, C.J. (2015) Impact of Antibiotics on Arterial Blood Pressure in a Patient with Resistant Hypertension—A Case Report. In-ternational Journal of Cardiology, 201, 157-158.
https://doi.org/10.1016/j.ijcard.2015.07.078
[40] Robinson, C.J. and Young, V.B. (2010) Antibiotic Administration Alters the Community Structure of the Gastrointestinal Microbiota. Gut Microbes, 1, 279-284.
https://doi.org/10.4161/gmic.1.4.12614
[41] Toya, T., Corban, M.T., Marrietta, E., et al. (2020) Coronary Arte-rydisease Is Associated with an Altered Gut Microbiome Composition. PLOS ONE, 15, e0227147.
https://doi.org/10.1371/journal.pone.0227147
[42] Wang, Z.N., Klipfell, E., Bennett, B.J., et al. (2011) Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease. Nature, 472, 57-63.
https://doi.org/10.1038/nature09922
[43] Trøseid, M., Ueland, T., Hov, J.R., et al. (2015) Microbiota-Dependent Metabolite Trimethylamine-N-Oxide Is Associated with Disease Severity and Survival of Patients with Chronic Heart Failure. Journal of Internal Medicine, 277, 717-726.
https://doi.org/10.1111/joim.12328
[44] Suzuki, T., et al. (2016) Trimethylamine N-Oxide and Prognosis in Acute Heart Failure. Heart, 102, 841-848.
https://doi.org/10.1136/heartjnl-2015-308826
[45] Suzuki, T., Heaney, L.M., Jones, D.J., et al. (2017) Trimethyla-mine N-Oxide and Risk Stratification after Acute Myocardial Infarction. Clinical Chemistry, 63, 420-428.
https://doi.org/10.1373/clinchem.2016.264853
[46] Schuett, K., et al. (2017) Trimethylamine-N-Oxide and Heart Failure with Reduced versus Preserved Ejection Fraction. JACC: Journal of the American College of Cardiology, 70, 3202-3204.
https://doi.org/10.1016/j.jacc.2017.10.064
[47] Cavalcante, R.G.S., De Albuquerque, T.M.R., De Luna Freire, M.O., et al. (2019) The Probiotic Lactobacillus fermentum 296 Attenuates Cardiometabolic Disorders in High Fat Diet-Treated Rats. Nutrition, Metabolism & Cardiovascular Diseases, 29, 1408-1417.
https://doi.org/10.1016/j.numecd.2019.08.003
[48] Koeth, R.A., Wang, Z.N., Levison, B.S., et al. (2013) Intestinal Microbiota Metabolism of L-carnitine, a Nutrient in Red Meat, Promotes Atherosclerosis. Nature Medicine, 19, 576-585.
https://doi.org/10.1038/nm.3145
[49] Monda, V., Villano, I., Messina, A., et al. (2017) Exercise Modifies the Gut Microbiota with Positive Health Effects. Oxidative Medicine and Cellular Longevity, 2017, Article ID: 3831972.
https://doi.org/10.1155/2017/3831972
[50] Juraschek, S.P., Miller, E.R., Weaver, C.M. and Appel, L.J. (2017) Ef-fects of Sodium Reduction and the DASH Diet in Elation to Baseline Blood Pressure. JACC: Journal of the American College of Cardiology, 70, 2841-2848.
https://doi.org/10.1016/j.jacc.2017.10.011
[51] Fujita, T. (2014) Mechanism of Salt-Sensitive Hypertension: Focus on Adrenal and Sympathetic Nervous Systems. The Journal of the American Society of Nephrology, 25, 1148-1155.
https://doi.org/10.1681/ASN.2013121258
[52] Zhao, L.P., Niholson, J.K., Lu, A., Wang, Z.T., et al. (2012) Tar-geting the Human Genome-Microbiome Axis for Drug Discovery: Inspirations from Global Systems Biology and Tradi-tional Chinese Medicine. Journal of Proteome Research, 11, 3509-3519.
https://doi.org/10.1021/pr3001628
[53] Lin, Z., Ye, W., Zu, X.P., Xie, H., Li, H., et al. (2018) Integrative Meta-bolic and Microbial Profiling on Patients with Spleen-Yang-Deficiency Syndrome. Scientific Reports, 8, Article 6619.
https://doi.org/10.1038/s41598-018-24130-7
[54] Shao, S., Wang, D., Zheng, W., et al. (2019) A Unique Poly-saccharide from Hericium erinaceus Mycelium Ameliorates Acetic Acid-Induced Ulcerative Colitis Rats by Modulating the Composition of the Gut Microbiota, Short Chain Fatty Acids Levels and GPR41/43 Respectors. International Im-munopharmacology, 71, 411-422.
https://doi.org/10.1016/j.intimp.2019.02.038
[55] Fan, S., Nie, S., Huang, X., et al. (2018) Protective Properties of Combined Fungal Polysaccharides from Cordyceps sinensis and Ganoderma atrum on Colon Immune Dysfunction. In-ternational Journal of Biological Macromolecules, 114, 1049-1055.
https://doi.org/10.1016/j.ijbiomac.2018.04.004