|
[1]
|
Kessaris, N., Fogarty, M., Iannarelli, P., et al. (2006) Competing Waves of Oligodendrocytes in the Forebrain and Post-natal Elimination of an Embryonic Lineage. Nature Neuroscience, 9, 173-179. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
de Castro, F. and Bribian, A. (2005) The Molecular Orchestra of the Migration of Oligodendrocyte Precursors during Development. Brain Research Reviews, 49, 227-241. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Yeung, M.S., Zdunek, S., Bergmann, O., et al. (2014) Dy-namics of Oligodendrocyte Generation and Myelination in the Human Brain. Cell, 159, 766-774. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Almeida, R.G. and Lyons, D.A. (2017) On Myelinated Axon Plas-ticity and Neuronal Circuit Formation and Function. Journal of Neuroscience, 37, 10023-10034. [Google Scholar] [CrossRef]
|
|
[5]
|
Auer, F., Vagionitis, S. and Czopka, T. (2018) Evidence for Myelin Sheath Remodeling in the CNS Revealed by in Vivo Imaging. Current Biology, 28, 549-559e3. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Wake, H., Lee, P.R. and Fields, R.D. (2011) Control of Local Pro-tein Synthesis and Initial Events in Myelination by Action Potentials. Science, 333, 1647-1651. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ortiz, F.C., Habermacher, C., Graciarena, M., et al. (2019) Neuronal Activity in Vivo Enhances Functional Myelin Repair. JCI Insight, 5, e123434. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Moyon, S., Dubessy, A.L., Aigrot, M.S., et al. (2015) Demye-lination Causes Adult CNS Progenitors to Revert to an Immature State and Express Immune Cues That Support Their Migration. Journal of Neuroscience, 35, 4-20. [Google Scholar] [CrossRef]
|
|
[9]
|
Lubetzki, C., Zalc, B., Williams, A., et al. (2020) Remye-lination in Multiple Sclerosis: From Basic Science to Clinical Translation. The Lancet Neurology, 19, 678-688. [Google Scholar] [CrossRef]
|
|
[10]
|
Franklin, R.J.M. and French-Constant, C. (2017) Regener-ating CNS Myelin—From Mechanisms to Experimental Medicines. Nature Reviews Neuroscience, 18, 753-769. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ding, Z., Dai, C., Zhong, L., et al. (2021) Neuregulin-1 Converts Reac-tive Astrocytes toward Oligodendrocyte Lineage Cells via Upregulating the PI3K-AKT-mTOR Pathway to Repair Spinal Cord Injury. Biomedicine & Pharmacotherapy, 134, Article ID: 111168. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Cong, Y., Wang, C., Wang, J., et al. (2020) NT-3 Promotes Oligodendrocyte Proliferation and Nerve Function Recovery after Spinal Cord Injury by Inhibiting Autophagy Pathway. Journal of Surgical Research, 247, 128-135. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Nave, K.A. (2010) Myelination and Support of Axonal Integrity by Glia. Nature, 468, 244-252. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Chuquet, J., Quilichini, P., Nimchinsky, E.A., et al. (2010) Predominant Enhancement of Glucose Uptake in Astrocytes versus Neurons during Activation of the Somatosensory Cortex. Journal of Neuroscience, 30, 15298-15303. [Google Scholar] [CrossRef]
|
|
[15]
|
Wang, Q., Hu, Y., Wan, J., et al. (2019) Lactate: A Novel Signaling Molecule in Synaptic Plasticity and Drug Addiction. Bioessays, 41, e1900008. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Philips, T. and Rothstein, J.D. (2017) Oligodendroglia: Metabolic Supporters of Neurons. Journal of Clinical Investigation, 127, 3271-3280. [Google Scholar] [CrossRef]
|
|
[17]
|
Funfschilling, U., Supplie, L.M., Mahad, D., et al. (2012) Glycolytic Oli-godendrocytes Maintain Myelin and Long-Term Axonal Integrity. Nature, 485, 517-521. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Stadelmann, C., Timmler, S., Barrantes-Freer, A., et al. (2019) Myelin in the Central Nervous System: Structure, Function, and Pathology. Physiological Reviews, 99, 1381-1431. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Wang, J., Cui, Y., Yu, Z., et al. (2019) Brain Endothelial Cells Maintain Lactate Homeostasis and Control Adult Hippocampal Neurogenesis. Cell Stem Cell, 25, 754-767e9. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Saab, A.S., Tzvetavona, I.D., Trevisiol, A., et al. (2016) Oli-godendroglial NMDA Receptors Regulate Glucose Import and Axonal Energy Metabolism. Neuron, 91, 119-132. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Adiele, R.C. and Adiele, C.A. (2019) Metabolic Defects in Mul-tiple Sclerosis. Mitochondrion, 44, 7-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Jennings, A.R. and Carroll, W.M. (2015) Oligodendrocyte Lineage Cells in Chronic Demyelination of Multiple Sclerosis Optic Nerve. Brain Pathology, 25, 517-530. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Boyd, A., Zhang, H. and Williams, A. (2013) Insufficient OPC Migration into Demyelinated Lesions Is a Cause of Poor Remyelination in MS and Mouse Models. Acta Neuropathologica, 125, 841-859. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Desai, M.K., Sudol, K.L., Janelsins, M.C., et al. (2009) Tri-ple-Transgenic Alzheimer’s Disease Mice Exhibit Region-Specific Abnormalities in Brain Myelination Patterns Prior to Appearance of Amyloid and Tau Pathology. Glia, 57, 54-65. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Saito, E.R., Miller, J.B., Harari, O., et al. (2021) Alzheimer’s Disease Alters Oligodendrocytic Glycolytic and Ketolytic Gene Ex-pression. Alzheimer’s & Dementia, 17, 1474-1486. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Chu, T.H., Cummins, K., Sparling, J.S., et al. (2017) Axonal and Myelinic Pathology in 5xFAD Alzheimer’s Mouse Spinal Cord. PLOS ONE, 12, e0188218. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Vanzulli, I., Papanikolaou, M., De-La-Rocha, I.C., et al. (2020) Disruption of Oligodendrocyte Progenitor Cells Is an Early Sign of Pathology in the Triple Transgenic Mouse Model of Alzheimer’s Disease. Neurobiology of Aging, 94, 130-139. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Philips, T., Bento-Abreu, A., Nonneman, A., et al. (2013) Oligodendrocyte Dysfunction in the Pathogenesis of Amyotrophic Lateral Sclerosis. Brain, 136, 471-482. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Rinholm, J.E., Hamilton, N.B., Kessaris, N., et al. (2011) Regulation of Oligodendrocyte Development and Myelination by Glucose and Lactate. Journal of Neuroscience, 31, 538-548. [Google Scholar] [CrossRef]
|
|
[30]
|
Hartley, M.D., Banerji, T., Tagge, I.J., et al. (2019) Mye-lin Repair Stimulated by CNS-Selective Thyroid Hormone Action. JCI Insight, 4, e126329. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Xiao, L., Xu, H., Zhang, Y., et al. (2008) Quetiapine Facilitates Ol-igodendrocyte Development and Prevents Mice from Myelin Breakdown and Behavioral Changes. Molecular Psychiatry, 13, 697-708. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Lee, J.Y., Kang, S.R. and Yune, T.Y. (2015) Fluoxetine Prevents Oli-godendrocyte Cell Death by Inhibiting Microglia Activation after Spinal Cord Injury. Journal of Neurotrauma, 32, 633-644. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Chen, Y., Zhen, W., Guo, T., et al. (2017) Histamine Recep-tor 3 Negatively Regulates Oligodendrocyte Differentiation and Remyelination. PLOS ONE, 12, e0189380. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Najm, F.J., Madhavan, M., Zaremba, A., et al. (2015) Drug-Based Modulation of Endogenous Stem Cells Promotes Functional Remyelination in Vivo. Nature, 522, 216-250. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Gingele, S. and Stangel, M. (2020) Emerging Myelin Repair Agents in Preclinical and Early Clinical Development for the Treatment of Multiple Sclerosis. Expert Opinion on Investigational Drugs, 29, 583-594. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Gupta, N., Henry, R.G., Strober, J., et al. (2012) Neural Stem Cell Engraftment and Myelination in the Human Brain. Science Translational Medicine, 4, 155ra137. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Li, G., Fan, Z.K., Gu, G.F., et al. (2020) Epidural Spinal Cord Stimulation Promotes Motor Functional Recovery by Enhancing Oligodendrocyte Survival and Differentiation and by Protecting Myelin after Spinal Cord Injury in Rats. Neuroscience Bulletin, 36, 372-384. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Tang, J., Liang, X., Dou, X., et al. (2021) Exercise Rather than Fluoxetine Promotes Oligodendrocyte Differentiation and Myelination in the Hippocampus in a Male Mouse Model of Depression. Translational Psychiatry, 11, Article No. 622. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Stumpf, S.K., Berghoff, S.A., Trevisiol, A., et al. (2019) Keto-genic Diet Ameliorates Axonal Defects and Promotes Myelination in Pelizaeus-Merzbacher Disease. Acta Neuropatho-logica, 138, 147-161. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
White, C.W., Pratt, K. and Villeda, S.A. (2019) OPCs on a Diet: A Youthful Serving of Remyelination. Cell Metabolism, 30, 1004-1006. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Neumann, B., Baror, R., Zhao, C., et al. (2019) Metformin Re-stores CNS Remyelination Capacity by Rejuvenating Aged Stem Cells. Cell Stem Cell, 25, 473-485e8. [Google Scholar] [CrossRef] [PubMed]
|