胸主动脉瘤/动脉夹层的基因遗传学研究进展
Advances in Genetic Research of Thoracic Aortic Aneurysm/Arterial Dissection
DOI: 10.12677/ACM.2022.1291257, PDF, HTML, XML, 下载: 286  浏览: 503  科研立项经费支持
作者: 朱文雅:济宁医学院临床医学院,山东 济宁;左汉恒*:济宁医学院附属医院心内CCU,山东 济宁
关键词: 主动脉夹层致病基因综合征性非综合征性Aortic Dissection Pathogenic Gene Syndrome Non-Syndrome
摘要: 胸主动脉瘤/动脉夹层是一种急性、致命性的大血管疾病,若未能及时有效治疗,死亡率和致残率极高,因此其发生机制的研究非常重要。目前大量研究证明,胸主动脉瘤/动脉夹层有明确的遗传学基础,本文通过分析近年来中外文献进一步对综合征性、非综合征性胸主动脉瘤/动脉夹层相关基因及其作用机制作一综述,为临床诊断和研究提供新的参考思路和展望。
Abstract: Thoracic aortic aneurysm/arterial dissection is an acute and fatal macrovascular disease. If it is not treated in time and effectively, the mortality and disability rate are very high, so the study of its mechanism is very important. At present, a large number of studies have proved that thoracic aor-tic aneurysm/arterial dissection has a clear genetic basis. Through the analysis of Chinese and for-eign literature in recent years, this paper further reviews the genes related to syndromic and non-syndromic thoracic aortic aneurysm/arterial dissection and their mechanism, so as to provide new reference ideas and prospects for clinical diagnosis and research.
文章引用:朱文雅, 左汉恒. 胸主动脉瘤/动脉夹层的基因遗传学研究进展[J]. 临床医学进展, 2022, 12(9): 8713-8719. https://doi.org/10.12677/ACM.2022.1291257

1. 引言

胸主动脉瘤/动脉夹层(Thoracic Aortic Aneurysm/Arterial Dissection, TAAD)被认为是一组退行性疾病,各种原因导致了胸主动脉扩张膨出从而形成动脉瘤,严重者一步扩张形成动脉夹层。该病极为凶险,不典型的临床表现增加了致死率和致残率,需尽早识别并进行干预。多项研究已证实TAAD有高度遗传倾向,根据其不同表现分为综合征性TAAD和非综合征性TAAD [1] [2]。综合征性TAAD不仅有心血管系统症状,还有体表、肌肉骨骼、眼部、颅面等特殊的外部生理特征,而非综合征性TAAD的表现仅限于心血管系统的症状 [3]。非综合征性TAAD进一步可分为散发性TAAD (Sporadic Thoracic Aortic Aneurysm/Arterial Dissection, STAAD)和家族性TAAD (Familial Thoracic Aortic Aneurysm/Arterial Dissection, FTAAD) [4]。TAAD通常由转化生长因子-β信号和细胞外基质相关基因(如FBN1、TGFBR1、TGFBR2、SMAD3、TGFB2和COL3A1)以及编码血管平滑肌细胞收缩器的基因如(ACTA2、MYH11、Mylk和PRKG1等)变异引起的 [5]。TAAD的基因研究不仅可以预测家庭成员的患病风险,还可为研究新的治疗手段提供依据。本文便围绕不同类型的TAAD相应表现及遗传基因展开综述。

2. 综合征性TAAD

主要与TGF-β信号途径相关的基因和细胞外基质相关基因引起的遗传性结缔组织疾病有关 [6]。

2.1. 马凡综合征(Marfan Syndrome, MFS)

MFS是一种发病率为1/5000的常染色体显性遗传病,可累及不同器官,包括血管及心脏(主动脉瘤/夹层、主动脉瓣/二尖瓣脱垂)、肺部(自发性气胸)、骨骼(长臂、脊柱侧凸、前胸畸形、后足畸形)、硬脑膜(硬膜扩张症)、眼部(近视和异位晶状体)、皮肤等 [7] [8]。MFS最常见的心血管表现为主动脉瘤、Valsalve窦部夹层,最终演变为TAAD,也是MFS最主要的死亡原因 [9]。

MFS是由编码原纤维蛋白-1的FBN1基因反复杂合突变引起的 [10]。FBN1突变导致了结缔组织的解体和碎裂,增加了血管组织的脆性和延展性,进而形成动脉瘤和夹层 [11]。目前已发现约3000个FBN1突变,并且突变形式和位置的不同也决定了发病年龄和临床表现及其严重程度的差异 [12]。除了FBN1,TGFBR1、TGFBR2、FBN3和COL1A2也被认为与MFS有关,但这四个基因目前并没有发现有意义的临床表型 [12]。

2.2. Loeys-Dietz综合征(Loeys-Dietz Syndrome, LDS)

LDS也是一组常染色体显性遗传的结缔组织病。其症状与马凡综合征的临床表现非常相似,最典型的表现为主动脉瘤、全身性的动脉扭曲、端粒酶增多症、双裂/宽悬雍垂或腭裂 [13] [14]。但是LDS心血管侵袭性更强,且预后更差。LDS发病率和早期死亡率的主要由于Valsalva窦水平的主动脉扩张致主动脉夹层和破裂,以及脑血管扭曲造成脑出血,平均死亡年龄为26岁 [15] [16]。已知致病基因变异所致LDS的比例为TGFBR2 (55%~60%),TGFBR1 (20%~25%),TGFB2 (5%~10%),SMAD3 (5%~10%),SMAD2 (1%~5%),TGFB3 (1%~5%) [13]。且TGFBR1、TGFBR2、SMAD3基因导致TAAD严重程度明显高于TGFB2、TGFB3、SMAD2基因的表现型 [9]。

2.3. Ehler-Danlos综合征(Ehler-Danlos Syndrome, EDS)

EDS是一组常染色体显性遗传的结缔组织病,主要表现为关节过度活动、皮肤高度伸展及组织脆性 [9]。2017年国际EDS联盟将其划分为13个亚型。与TAAD相关性最高的是血管性EDS (VEDS),也是最严重的EDS,占EDS的5%,且预后最差 [9]。VEDS临床上有特殊的面部特征,易淤血并伴有动脉和中空器官的破裂 [17]。95%的患者存在编码纤维胶原的胶原修饰基因COL3A1突变 [18]。其中三分之二的突变形式是影响Gly-xaa-Yaa三联体甘氨酸残基的错义突变,这种基因突变的形式大大提高了动脉并发症(主动脉夹层和破裂)发生率和死亡率 [5] [19]。致病基因为PLOD1和FKBP14的脊柱侧凸型EDS (Kyphoscoliotic kEDS)和致病基因为COL5A1/2的少数经典型EDS (CEDS),也会出现严重血管并发症,但动脉瘤和夹层的发生率明显低于血管性EDS [19] [20]。

2.4. Shprintzen-Goldberg综合征(Shprintzen-Goldberg Syndrome, SGS)

SGS是编码SKI原癌基因蛋白的SKI基因和FBN1基因突变引起的一组罕见常染色体显性遗传病,与MFS致病基因相同,所以在骨骼表现上有共同特征 [21]。相关研究表明,类似于MFS和LDS,SGS患者主动脉病变也是转化生长因子-β信号增强的结果,但是与马凡综合征相比SGS患者的主动脉表现型较轻 [10] [21]。

下表为MFS、LDS和SGS主动脉表型差异。

2.5. Turner综合征(Turner Syndrome, TS)

TS是由X染色体完全或部分缺失引起的罕见疾病。患者通常身材矮小,卵巢功能衰竭并伴有心脏畸形,包括二尖瓣、主动脉缩窄、动脉扩张和动脉瘤,其中主动脉扩张和动脉瘤的发生率占3%~42% [13] [22]。此病是X染色体上的TIMP1基因和22号染色体上的TIMP3 (特定风险基因)基因突变所致,变异使得主动脉扩张、动脉瘤的发生风险增加10倍以上 [22]。

2.6. BGN相关性主动脉瘤综合征

BGN相关性主动脉瘤综合征是一种位于染色体xq28上BGN基因缺陷导致的X连锁的严重TAAD综合征 [23]。BGN基因的缺陷使主动脉壁的转化生长因子β信号增强,从而导致胶原含量增加,胶原纤维过度聚集使血管纤维化,主动脉壁的顺应性降低而发生主动脉瘤,甚至主动脉破裂猝死 [24]。临床特征与MFS和LDS有显著重叠,包括早发性的主动脉根部扩张和夹层,男性会出现早发的主动脉瘤(最早在1岁)和主动脉夹层(最早15岁) [25],以及眼距过大、关节过度活动、挛缩、悬雍垂裂和胸廓畸形等 [13]。

2.7. 皮肤松弛症(Cutis Laxa, CL)

CL是以皮肤松弛为主要特征并伴疝气、肺气肿、肺动脉狭窄和主动脉瘤的遗传方式多样的遗传病 [26]。由FBLN4突变所致的常染色体隐性遗传性皮肤松弛ARCL型可伴主动脉扩张及主动脉瘤,且症状较严重 [11]。

2.8. 动脉瘤–骨关节炎综合征(Aneurysm-Osteoarthritis Syndrome, AOS)

AOS是近年来发现的常染色体显性遗传病,以多关节早发性关节炎伴主动脉瘤、动脉夹层以及动脉扭曲和轻度颅面、骨骼畸形为特征 [27] [28]。有学者研究证明,AOS是SMAD3突变引起,通过影响TGF-β通路而影响骨关节以及动脉血管平滑肌,导致骨关节炎和动脉瘤及夹层的发生 [29] [30]。大约71%的SMAD3突变患者的主动脉瘤位于Valsalve窦水平,并且夹层的发生可能发生在轻度扩张的动脉中 [27]。主动脉根部轻度扩张和夹层的高风险是AOS发生早期(青春期和成年期)死亡的主要原因 [28]。

2.9. 动脉曲张综合征(Arterial Tortuosity Syndrome, ATS)

ATS是一种罕见的以大中型动脉细长曲折为特征的常染色体隐性结缔组织病,主要表现为主动脉的广泛弯曲、延长、狭窄和动脉瘤的形成 [13] [31]。该疾病是由20号染色体上SLC2A10基因功能缺失导致 [31]。早期文献报道该疾病预后较差,5岁之前的死亡率高达40%,随后也出现了症状较轻的表型 [32],但是患者仅有发生主动脉根部动脉瘤的风险,目前还没有记录表明有主动脉夹层的发生 [33]。

3. 非综合征性TAAD

该病涉及多个基因突变,其中ACTA2基因突变导致的平滑肌细胞收缩障碍是非综合征性TAAD最主要的原因,占12%~21% [34]。

3.1. 家族性胸主动脉瘤和夹层(Familial Thoracic Aortic Aneurysm/Arterial Dissection, FTAAD)

FTAAD有明确的阳性家族史,主要表现为主动脉扩张以及胸主动脉动脉瘤和夹层,起病较隐匿 [13]。但是FTAAD的发病年龄小且动脉瘤生长迅速,具有更高的侵袭性 [35]。FTAAD有较多的致病基因,ACTA2、MYH11、Mylk和PRKG1基因的突变导致血管平滑肌细胞收缩器的组成部分受损,其中ACTA2是FTAAD的主要致病基因,占比14%~21% [5]。ACTA2的突变导致了动脉组织的平滑肌细胞减少和弹性纤维的断裂,增加了主动脉夹层的风险。FBN1、TGFBR1、TGFBR2、SMAD3和TGFB2基因突变破坏了平滑肌细胞功能和转化生长因子β信号,占FTAAD发生比例的14% [36] [37]。其他已知与FTAAD有关的致病基因FOXE3、LOX、MAT2A、MFAP5、NOTCH1和最近才发现的ROBO4、ARIH1、LTBP1和LTBP3大概只占1%~2% [37] [38]。

3.2. 二叶主动脉瓣(Bicuspid Aortic Valve, BAV)

BAV是最常见的心脏发育畸形,在普通人群中的患病率约为0.5%~2%,是常见的动脉瘤类型,40%~50%的患者存在与胸主动脉(或主动脉根部)相关的扩张,至少20%的患者会发展为动脉瘤 [38] [39]。现有数据表明,典型的BAV具有遗传复杂性,并且其致病基因众多,最常见的基因型为如NOTCH1、F13N、ACTA2、TGFB2、SMAD6、GATA5等 [38] [39]。

3.3. 散发性TAAD (SporadicThoracic Aortic Aneurysm/Arterial Dissection, STAAD)

STAAD占非综合征性TAAD的大约80%,起病隐匿并且没有任何受影响的家庭成员,所以其检测、诊断以及遗传机制的研究较为困难。有文献显示,散发性TAAD与FBN1的变异有关,同时表明和MFS有相似的发病机制 [40],但是在散发性病例中不会出现MFS的特征表现,并且患TAAD的风险仍然较高 [41]。最新研究使用加权基因共表达分析确定了与STAAD相关的四个新基因CLU、Des、MYH10和FBLN5,携带这些致病变异基因的患者在发生夹层时更年轻,且没有家庭先证者,这些基因未来可能是STAAD的候选生物标志物或治疗靶点 [38]。

4. 小结

胸主动脉瘤和主动脉夹层具有种类较多的致病基因,及早的筛查、诊断和治疗对于TAAD患者来说至关重要。近年来基因检测技术使得对TAAD的遗传因素有了更加深入的认识,对综合征性和非综合征性TAAD进行了详细广泛的研究。这些检测出来的致病基因可以评估患者或者其家庭成员的患病风险,提前进行必要的干预措施以降低死亡率。但仍有一些机制和遗传因素尚未明确,希望未来通过更加先进的检测技术明确特定的基因与表型的关系,挽救更多的生命。

基金项目

济宁医学院贺林院士新医学临床转化工作站科研基金(JYHL2018FMS18)。

NOTES

*通讯作者。

参考文献

[1] Renard, M., Francis, C., Ghosh, R., et al. (2018) Clinical Validity of Genes for Heritable Thoracic Aortic Aneurysm and Dissection. Journal of the American College of Cardiology, 72, 605-615.
https://doi.org/10.1016/j.jacc.2018.04.089
[2] Disabella, E., Grasso, M., Gambarin, F.I., et al. (2011) Risk of Dissection in Thoracic Aneurysms Associated with Mutations of Smooth Muscle Alpha-Actin 2 (ACTA2). Heart, 97, 321-326.
https://doi.org/10.1136/hrt.2010.204388
[3] Isselbacher, E.M., Lino, C.C. and Lindsay, M.E. (2016) Hereditary Influence in Thoracic Aortic Aneurysm and Dissection. Circulation, 133, 2516-2528.
https://doi.org/10.1161/CIRCULATIONAHA.116.009762
[4] Mariscalco, G., Debiec, R., Elefteriades, J.A., et al. (2018) Systematic Review of Studies That Have Evaluated Screening Tests in Relatives of Patients Affected by Nonsyn-dromic Thoracic Aortic Disease. Journal of the American Heart Association, 7, e9302.
https://doi.org/10.1161/JAHA.118.009302
[5] Takeda, N. and Komuro, I. (2019) Genetic Basis of Hereditary Thoracic Aortic Aneurysms and Dissections. Journal of Cardiology, 74, 136-143.
https://doi.org/10.1016/j.jjcc.2019.03.014
[6] Rigelsky, C.M. and Moran, R.T. (2019) Genetics of Syndromic and Nonsyndromic Aortopathies. Current Opinion in Pediatrics, 31, 694-701.
https://doi.org/10.1097/MOP.0000000000000836
[7] Jonszta, T., Prochazka, V., Czerny, D., et al. (2008) Detec-tion of Dural Ectasia in Diagnosis of Marfan’s Syndrome. Vasa, 37, 364-370.
https://doi.org/10.1024/0301-1526.37.4.364
[8] Loeys, B.L., Dietz, H.C., Braverman, A.C., et al. (2010) The Re-vised Ghent Nosology for the Marfan Syndrome. Journal of Medical Genetics, 47, 476-485.
https://doi.org/10.1136/jmg.2009.072785
[9] Meester, J., Verstraeten, A., Schepers, D., et al. (2017) Differences in Manifestations of Marfan Syndrome, Ehlers-Danlos Syndrome, and Loeys-Dietz Syndrome. Annals of Cardiothoracic Surgery, 6, 582-594.
https://doi.org/10.21037/acs.2017.11.03
[10] Takeda, N., Hara, H., Fujiwara, T., et al. (2018) TGF-Beta Signal-ing-Related Genes and Thoracic Aortic Aneurysms and Dissections. International Journal of Molecular Sciences, 19, Article No. 2125.
https://doi.org/10.3390/ijms19072125
[11] Benke, K., Agg, B., Szilveszter, B., et al. (2013) The Role of Trans-forming Growth Factor-Beta in Marfan Syndrome. Cardiology Journal, 20, 227-234.
https://doi.org/10.5603/CJ.2013.0066
[12] Wang, J., Yan, Y., Chen, J., et al. (2016) Novel FBN1 Mutations Are Responsible for Cardiovascular Manifestations of Marfan Syndrome. Molecular Biology Reports, 43, 1227-1232.
https://doi.org/10.1007/s11033-016-4067-y
[13] Loeys, B.L. and Dietz, H.C. (1993) Loeys-Dietz Syn-drome.
[14] Goldfinger, J.Z., Halperin, J.L., Marin, M.L., et al. (2014) Thoracic Aortic Aneurysm and Dissection. Journal of the American College of Cardiology, 64, 1725-1739.
https://doi.org/10.1016/j.jacc.2014.08.025
[15] MacCarrick, G., Black, J.R., Bowdin, S., et al. (2014) Loeys-Dietz Syndrome: A Primer for Diagnosis and Management. Genetics in Medicine, 16, 576-587.
https://doi.org/10.1038/gim.2014.11
[16] Schepers, D., Tortora, G., Morisaki, H., et al. (2018) A Mutation Update on the LDS-Associated Genes TGFB2/3 and SMAD2/3. Human Mutation, 39, 621-634.
https://doi.org/10.1002/humu.23407
[17] Chumachenko, P.V., Postnov, A.Y., Ivanova, A.G., et al. (2020) Tho-racic Aortic Aneurysm and Factors Affecting Aortic Dissection. Journal of Personalized Medicine, 10, Article No. 153.
https://doi.org/10.3390/jpm10040153
[18] Schwarze, U., Schievink, W.I., Petty, E., et al. (2001) Haploinsuffi-ciency for One COL3A1 Allele of Type III Procollagen Results in a Phenotype Similar to the Vascular form of Eh-lers-Danlos Syndrome, Ehlers-Danlos Syndrome Type IV. The American Journal of Human Genetics, 69, 989-1001.
https://doi.org/10.1086/324123
[19] De Paepe, A. and Malfait, F. (2012) The Ehlers-Danlos Syndrome, a Disorder with Many Faces. Clinical Genetics, 82, 1-11.
https://doi.org/10.1111/j.1399-0004.2012.01858.x
[20] D’Hondt, S., Van Damme, T. and Malfait, F. (2018) Vascular Phenotypes in Nonvascular Subtypes of the Ehlers-Danlos Syndrome: A Systematic Review. Genetics in Medicine, 20, 562-573.
https://doi.org/10.1038/gim.2017.138
[21] Bari, A., Sa-daqat, N., Nawaz, N., et al. (2019) Shprintzen-Goldberg Syndrome: A Rare Disorder. Journal of College of Physicians and Surgeons Pakistan, 29, S41-S42.
https://doi.org/10.29271/jcpsp.2019.06.S41
[22] Gravholt, C.H., Viuff, M.H., Brun, S., et al. (2019) Turner Syndrome: Mechanisms and Management. Nature Reviews Endocrinology, 15, 601-614.
https://doi.org/10.1038/s41574-019-0224-4
[23] McBride, O.W., Fisher, L.W. and Young, M.F. (1990) Localization of PGI (biglycan, BGN) and PGII (decorin, DCN, PG-40) Genes on Human Chromosomes Xq13-qter and 12q, Respectively. Genomics, 6, 219-225.
https://doi.org/10.1016/0888-7543(90)90560-H
[24] Meester, J.A.N., et al. (2017) Loss-of-Function Mutations in the X-Linked Biglycan Gene Cause a Severe Syndromic Form of Thoracic Aortic Aneurysms and Dissections. Genetics in Medicine, 19, 386-395.
https://doi.org/10.1016/j.ejmg.2016.11.004
[25] Jelsig, A.M., Urban, Z., Hucthagowder, V., et al. (2017) Novel ELN Mutation in a Family with Supravalvular Aortic Stenosis and Intracranial Aneurysm. The European Journal of Medical Genetics, 60, 110-113.
[26] Meester, J.A.N., Vandeweyer, G., Pintelon, I., et al. (2017) Loss-of-Function Mu-tations in the X-Linked Biglycan Gene Cause a Severe Syndromic Form of Thoracic Aortic Aneurysms and Dissections. Genetics in Medicine, 19, 386-395.
https://doi.org/10.1038/gim.2016.126
[27] van der Linde, D., Verhagen, H.J., Moelker, A., et al. (2013) Aneu-rysm-Osteoarthritis Syndrome with Visceral and Iliac Artery Aneurysms. Journal of Vascular Surgery, 57, 96-102.
https://doi.org/10.1016/j.jvs.2012.06.107
[28] Arroyave, J., Carretero, J.M. and Gruosso, D. (2018) Isolated Aortic Dilation without Osteoarthritis: A Case of SMAD3 Mutation. Cardiology in the Young, 28, 765-767.
https://doi.org/10.1017/S1047951118000082
[29] van der Kraan, P.M., Blaney, D.E. and van den Berg, W.B. (2010) A Role for Age-Related Changes in TGFbeta Signaling in Aberrant Chondrocyte Differentiation and Osteoarthri-tis. Arthritis Research & Therapy, 12, Article No. 201.
https://doi.org/10.1186/ar2896
[30] Engstrom, K., Vanky, F., Rehnberg, M., et al. (2020) Novel SMAD3 p.Arg386Thr Genetic Variant Co-Segregating with Thoracic Aortic Aneurysm and Dissection. Molecular Genetics & Genomic Medicine, 8, e1089.
https://doi.org/10.1002/mgg3.1089
[31] Beyens, A., Albuisson, J., Boel, A., et al. (2018) Arterial Tortuosity Syn-drome: 40 New Families and Literature Review. Genetics in Medicine, 20, 1236-1245.
https://doi.org/10.1038/gim.2017.253
[32] Wessels, M.W., Catsman-Berrevoets, C.E., Mancini, G.M., et al. (2004) Three New Families with Arterial Tortuosity Syndrome. American Journal of Medical Genetics Part A, 131, 134-143.
https://doi.org/10.1002/ajmg.a.30272
[33] Boel, A., Veszelyi, K., Nemeth, C.E., et al. (2019) Arterial Tortuosity Syndrome: An Ascorbate Compartmentalization Disorder? Antioxidants & Redox Signaling, 34, 875-889.
[34] Milewicz, D.M. and Regalado, E. (1993) Heritable Thoracic Aortic Disease Overview.
[35] Tan, K.L., Haelterman, N.A., Kwartler, C.S., et al. (2018) Ari-1 Regulates Myonuclear Organization Together with Parkin and Is Associated with Aortic Aneu-rysms. Developmental Cell, 45, 226-244.
https://doi.org/10.1016/j.devcel.2018.03.020
[36] Regalado, E.S., Guo, D.C., Santos-Cortez, R.L., et al. (2016) Pathogenic FBN1 Variants in Familial Thoracic Aortic Aneurysms and Dissections. Clinical Genetics, 89, 719-723.
https://doi.org/10.1111/cge.12702
[37] Rohde, S., Zafar, M.A., Ziganshin, B.A., et al. (2020) Thoracic Aortic An-eurysm Gene Dictionary. Asian Cardiovascular and Thoracic Annals, 29, 682-696.
https://doi.org/10.1177/0218492320943800
[38] Ostberg, N.P., Zafar, M.A., Ziganshin, B.A., et al. (2020) The Genetics of Thoracic Aortic Aneurysms and Dissection: A Clinical Perspective. Biomolecules, 10, Article No. 182.
https://doi.org/10.3390/biom10020182
[39] Freeze, S.L., Landis, B.J., Ware, S.M., et al. (2016) Bicuspid Aortic Valve: A Review with Recommendations for Genetic Counseling. Journal of Genetic Counseling, 25, 1171-1178.
https://doi.org/10.1007/s10897-016-0002-6
[40] Weerakkody, R., Ross, D., Parry, D.A., et al. (2018) Targeted Genetic Analysis in a Large Cohort of Familial and Sporadic Cases of Aneurysm or Dissection of the Thoracic Aorta. Genetics in Medicine, 20, 1414-1422.
https://doi.org/10.1038/gim.2018.27
[41] Pinard, A., Jones, G.T. and Milewicz, D.M. (2019) Genetics of Thoracic and Abdominal Aortic Diseases. Circulation Research, 124, 588-606.
https://doi.org/10.1161/CIRCRESAHA.118.312436